Research article Special Issues

Some new oscillation results for second-order differential equations with neutral term

  • Received: 29 November 2024 Revised: 31 December 2024 Accepted: 06 January 2025 Published: 13 January 2025
  • MSC : 34C10, 34K11

  • In this paper, we study the oscillatory behavior of second-order differential equations. Using the comparison method, we obtain new oscillation criteria that improve the relevant results in the literature. Additionally, an example is given to illustrate the importance of the obtained oscillation criteria.

    Citation: Abdullah Mohammed Alomair, Ali Muhib. Some new oscillation results for second-order differential equations with neutral term[J]. AIMS Mathematics, 2025, 10(1): 694-704. doi: 10.3934/math.2025031

    Related Papers:

  • In this paper, we study the oscillatory behavior of second-order differential equations. Using the comparison method, we obtain new oscillation criteria that improve the relevant results in the literature. Additionally, an example is given to illustrate the importance of the obtained oscillation criteria.



    加载中


    [1] S. R. Grace, J. R. Graef, E. Tunc, Oscillatory behaviour of third order nonlinear differential equations with a nonlinear nonpositive neutral term, J. Taibah Univ. Sci., 13 (2019), 704–710. https://doi.org/10.1080/16583655.2019.1622847 doi: 10.1080/16583655.2019.1622847
    [2] O. Moaaz, A. Muhib, S. Owyed, E. E. Mahmoud, A. Abdelnaser, Second-order neutral differential equations: improved criteria for testing the oscillation, J. Math., 2021 (2021), 6665103. https://doi.org/10.1155/2021/6665103 doi: 10.1155/2021/6665103
    [3] A. Muhib, O. Moaaz, C. Cesarano, S. Askar, E. M. Elabbasy, Neutral differential equations of fourth-order: new asymptotic properties of solutions, Axioms, 11 (2022), 52. https://doi.org/10.3390/axioms11020052 doi: 10.3390/axioms11020052
    [4] R. P. Agarwal, M. Bohner, W. T. Li, Nonoscillation and oscillation: theory for functional differential equations, Boca Raton: CRC Press, 2004. https://doi.org/10.1201/9780203025741
    [5] L. Erbe, Q. Kong, B. G. Zhang, Oscillation theory for functional differential equations, New York: Routledge, 1995. https://doi.org/10.1201/9780203744727
    [6] I. Gyori, G. Ladas, Oscillation theory of delay differential equations with applications, Oxford: Oxford University Press, 1991. https://doi.org/10.1093/oso/9780198535829.001.0001
    [7] J. K. Hale, Theory of functional differential equations, New York: Springer, 1977. https://doi.org/10.1007/978-1-4612-9892-2
    [8] R. Agarwal, S. Shieh, C. Yeh, Oscillation criteria for second-order retarded differential equations, Math. Comput. Model., 26 (1997), 1–11. https://doi.org/10.1016/S0895-7177(97)00141-6 doi: 10.1016/S0895-7177(97)00141-6
    [9] T. Kusano, Y. Naito, Oscillation and nonoscillation criteria for second order quasilinear differential equations, Acta Math. Hung., 76 (1997), 81–99. https://doi.org/10.1007/bf02907054 doi: 10.1007/bf02907054
    [10] Y. G. Sun, F. W. Meng, Note on the paper of Dzurina and Stavroulakis, Appl. Math. Comput., 174 (2006), 1634–1641. https://doi.org/10.1016/j.amc.2005.07.008 doi: 10.1016/j.amc.2005.07.008
    [11] J. Dzurina, I. P. Stavroulakis, Oscillation criteria for second-order delay differential equations, Appl. Math. Comput., 140 (2003), 445–453. https://doi.org/10.1016/S0096-3003(02)00243-6 doi: 10.1016/S0096-3003(02)00243-6
    [12] B. Baculikova, Oscillatory behavior of the second order noncanonical differential equations, Electron. J. Qual. Theory Differ. Equ., 2019 (2019), 1–11. https://doi.org/10.14232/ejqtde.2019.1.89 doi: 10.14232/ejqtde.2019.1.89
    [13] B. Baculikova, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett., 91 (2019), 68–75. https://doi.org/10.1016/j.aml.2018.11.021 doi: 10.1016/j.aml.2018.11.021
    [14] J. Dzurina, I. Jadlovska, A note on oscillation of second-order delay differential equations, Appl. Math. Lett., 69 (2017), 126–132. https://doi.org/10.1016/j.aml.2017.02.003 doi: 10.1016/j.aml.2017.02.003
    [15] Y. Wu, Y. Yu, J. Zhang, J. Xiao, Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type, J. Inequal. Appl., 2016 (2016), 328. https://doi.org/10.1186/s13660-016-1268-9 doi: 10.1186/s13660-016-1268-9
    [16] O. Moaaz, New criteria for oscillation of nonlinear neutral differential equations, Adv. Differ. Equ., 2019 (2019), 484. https://doi.org/10.1186/s13662-019-2418-4 doi: 10.1186/s13662-019-2418-4
    [17] B. Baculikova, J. Dzurina, Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl., 62 (2011), 4472–4478. https://doi.org/10.1016/j.camwa.2011.10.024 doi: 10.1016/j.camwa.2011.10.024
    [18] R. Koplatadze, G. Kvinkadze, I. P. Stavroulakis, Properties A and B of n-th order linear differential equations with deviating argument, Gorgian Math. J., 6 (1999), 553–566. https://doi.org/10.1023/A:1022962129926 doi: 10.1023/A:1022962129926
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(76) PDF downloads(16) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog