Research article

On linear transformation of generalized affine fractal interpolation function

  • Received: 19 March 2024 Revised: 24 April 2024 Accepted: 06 May 2024 Published: 14 May 2024
  • MSC : 28A80, 47H10, 65D05

  • In this work, we investigate a class of generalized affine fractal interpolation functions (FIF) with variable parameters, where ordinate scaling is substituted by a real-valued control function. Let $ {\mathcal S} $ be an iterated function system (IFS) with the attractor $ G_\Delta $, where $ \Delta $ is a given data set. We consider an affine transformation $ \omega(\Delta) $ of $ \Delta $, and we define the IFS $ \hat {\mathcal S} $ with the attractor $ G_{\omega(\Delta)} $. We give a sufficient condition so that $ G_{\omega(\Delta)} = \omega(G_\Delta) $. In addition, we compare the definite integrals of the corresponding FIF and study the additivity property. Some examples will be given, highlighting the effectiveness of our results.

    Citation: Najmeddine Attia, Rim Amami. On linear transformation of generalized affine fractal interpolation function[J]. AIMS Mathematics, 2024, 9(7): 16848-16862. doi: 10.3934/math.2024817

    Related Papers:

  • In this work, we investigate a class of generalized affine fractal interpolation functions (FIF) with variable parameters, where ordinate scaling is substituted by a real-valued control function. Let $ {\mathcal S} $ be an iterated function system (IFS) with the attractor $ G_\Delta $, where $ \Delta $ is a given data set. We consider an affine transformation $ \omega(\Delta) $ of $ \Delta $, and we define the IFS $ \hat {\mathcal S} $ with the attractor $ G_{\omega(\Delta)} $. We give a sufficient condition so that $ G_{\omega(\Delta)} = \omega(G_\Delta) $. In addition, we compare the definite integrals of the corresponding FIF and study the additivity property. Some examples will be given, highlighting the effectiveness of our results.



    加载中


    [1] M. F. Barnsley, Fractal functions and interpolation, Constr. Approx., 2 (1986), 303–329. https://doi.org/10.1007/BF01893434 doi: 10.1007/BF01893434
    [2] G. E. Hardy, T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0
    [3] M. A. Navascuès, M. V. Sebastian, Fitting curves by fractal interpolation: an application to the quantification of cognitive brain processes, In: Thinking in patterns, 2004,143–154. https://doi.org/10.1142/9789812702746_0011
    [4] P. R. Massopust, Fractal functions, fractal surfaces, and wavelets, Academic Press, 1995.
    [5] A. Petrusel, I. A. Rus, M. A. Serban, Fixed points, fixed sets and iterated multifunction systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223–237. https://doi.org/10.1007/s11228-014-0291-6 doi: 10.1007/s11228-014-0291-6
    [6] X. Y. Wang, F. P. Li, A class of nonlinear iterated function system attractors, Nonlinear Anal., 70 (2009), 830–838. https://doi.org/10.1016/j.na.2008.01.013 doi: 10.1016/j.na.2008.01.013
    [7] N. Attia, N. Saidi, R. Amami, R. Amami, On the stability of fractal interpolation functions with variable parameters, AIMS Math., 9 (2024), 2908–2924. https://doi.org/10.3934/math.2024143 doi: 10.3934/math.2024143
    [8] A. K. B. Chand, G. P. Kapoor, Stability of affine coalescence hidden variable fractal interpolation functions, Nonlinear Anal., 68 (2008), 3757–3770. https://doi.org/10.1016/j.na.2007.04.017 doi: 10.1016/j.na.2007.04.017
    [9] M. A. Navascuès, M. V. Sebastian, Smooth fractal interpolation, J. Inequal. Appl., 2006 (2006), 1–20. https://doi.org/10.1155/JIA/2006/78734 doi: 10.1155/JIA/2006/78734
    [10] A. K. B. Chand, G. P. Kapoor, Generalized cubic spline fractal interpolation functions, SIAM J. Numer. Anal., 44 (2006), 655–676. https://doi.org/10.1137/040611070 doi: 10.1137/040611070
    [11] J. Kim, H. Kim, H. Mun, Nonlinear fractal interpolation curves with function vertical scaling factors, Indian J. Pure Appl. Math., 51 (2020), 483–499. https://doi.org/10.1007/s13226-020-0412-x doi: 10.1007/s13226-020-0412-x
    [12] N. Attia, T. Moulahi, R. Amami, N. Saidi, Note on fractal interpolation function with variable parameters, AIMS Math., 9 (2024), 2584–2601. https://doi.org/10.3934/math.2024127 doi: 10.3934/math.2024127
    [13] N. Vijender, Bernstein fractal trigonometric approximation, Acta Appl. Math., 159 (2019), 11–27. https://doi.org/10.1007/s10440-018-0182-1 doi: 10.1007/s10440-018-0182-1
    [14] E. Mihailescu, M. Urbanśki, Random countable iterated function systems with overlaps and applications, Adv. Math., 298 (2016), 726–758. https://doi.org/10.1016/j.aim.2016.05.002 doi: 10.1016/j.aim.2016.05.002
    [15] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747. https://doi.org/10.1512/iumj.1981.30.30055 doi: 10.1512/iumj.1981.30.30055
    [16] K. Leśniak, Infinite iterated function systems: a multivalued approach, Bull. Pol. Acad. Sci. Math., 52 (2004), 1–8.
    [17] A. Mihail, R. Miculescu, The shift space for an infinite iterated function system, Math. Rep., 11 (2009), 21–32.
    [18] A. Mihail, R. Miculescu, Generalized IFSs on non-compact spaces, Fixed Point Theory Appl., 2010 (2010), 1–15. https://doi.org/10.1155/2010/584215 doi: 10.1155/2010/584215
    [19] S. Ri, A new nonlinear fractal interpolation function, Fractals, 25 (2017), 1750063. https://doi.org/10.1142/S0218348X17500633 doi: 10.1142/S0218348X17500633
    [20] M. A. Navascués, C. Pacurar, V. Drakopoulos, Scale-free fractal interpolation, Fractal Fract., 6 (2022), 1–15. https://doi.org/10.3390/fractalfract6100602 doi: 10.3390/fractalfract6100602
    [21] S. Ri, New types of fractal interpolation surfaces, Chaos Solitons Fract., 119 (2019), 291–297. https://doi.org/10.1016/j.chaos.2019.01.010 doi: 10.1016/j.chaos.2019.01.010
    [22] N. Attia, H. Jebali, On the construction of recurrent fractal interpolation functions using Geraghty contractions, Electron. Res. Arch., 31 (2023), 6866–6880. https://doi.org/10.3934/era.2023347 doi: 10.3934/era.2023347
    [23] N. Attia, M. Balegh, R. Amami, R. Amami, On the fractal interpolation functions associated with Matkowski contractions, Electron. Res. Arch., 31 (2023), 4652–4668. https://doi.org/10.3934/era.2023238 doi: 10.3934/era.2023238
    [24] P. Viswanathan, A. K. B. Chand, M. A. Navascuès, Fractal perturbation preserving fundamental shapes: bounds on the scale factors, J. Math. Anal. Appl., 419 (2014), 804–817. https://doi.org/10.1016/j.jmaa.2014.05.019 doi: 10.1016/j.jmaa.2014.05.019
    [25] M. Barnsley, A. N. Harrington, The calculus of fractal interpolation functions, J. Approx. Theory, 57 (1989), 14–34. https://doi.org/10.1016/0021-9045(89)90080-4 doi: 10.1016/0021-9045(89)90080-4
    [26] M. Navascués, Fractal polynomial interpolation, Z. Anal. Anwend., 24 (2005), 401–418.
    [27] H. Y. Wang, J. S. Yu, Fractal interpolation functions with variable parameters and their analytical properties, J. Approx. Theory, 175 (2013), 1–18.
    [28] L. M. Kocić, Notes on fractal interpolation, Novi Sad J. Math., 30 (2000), 59–68.
    [29] C. Gang, The smoothness and dimension of fractal interpolation functions, Appl. Math., 11 (1996), 409–418. https://doi.org/10.1007/BF02662880 doi: 10.1007/BF02662880
    [30] M. N. Akhtar, M. G. P. Prasad, M. A. Navascués, Box dimension of $\alpha$-fractal function with variable scaling factors in subintervals, Chaos Solitons Fract., 103 (2017), 440–449. https://doi.org/10.1016/j.chaos.2017.07.002 doi: 10.1016/j.chaos.2017.07.002
    [31] M. F. Barnsley, Fractals everywhere, Academic Press, 1988.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(555) PDF downloads(89) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog