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Abstract: In this work, we investigate a class of generalized affine fractal interpolation functions (FIF)
with variable parameters, where ordinate scaling is substituted by a real-valued control function. Let S
be an iterated function system (IFS) with the attractor G∆, where ∆ is a given data set. We consider an
affine transformation ω(∆) of ∆, and we define the IFS Ŝ with the attractor Gω(∆). We give a sufficient
condition so that Gω(∆) = ω(G∆). In addition, we compare the definite integrals of the corresponding
FIF and study the additivity property. Some examples will be given, highlighting the effectiveness of
our results.

Keywords: iterated function system; generalized affine fractal interpolation function; linear
transformation
Mathematics Subject Classification: 28A80, 47H10, 65D05

1. Introduction and main results

The fractal interpolation function (FIF) interpolates some experimental data using a non-smooth
curve. Since most time series often exhibit sudden fluctuations or changes, it is natural to use the FIF
when studying these data. In fact, the concept of FIF is essentially the key to construct fractals and it
was first introduced via iterative function systems (IFS) on compact subsets of R [1]. Since then, this
theory has become common practice in several fields of applied sciences [2–6]. Furthermore, various
important properties of FIF have been demonstrated, such as stability [7, 8] and smoothness [9–13].

Let N ≥ 2, J = {1, . . . ,N}, (X, d) be a complete metric space and {wi : X → X}i∈J be a finite set of
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continuous mappings. Now, consider the IFS{
X,wi, i ∈ J

}
,

and the Hutchinson operator W : H(X) −→ H(X) by

W(B) =
N⋃

n=1

wn(B) , ∀ B ∈ H(X), (1.1)

where wn(B) =
{
wn(x) , x ∈ B

}
and H(X) denotes the set of all compact subsets of X. For k ∈ N∗, let

Wk denote the k-fold auto composition of W. Any compact set G ∈ H(X) such that W(G) = G is called
an attractor for the IFS, and the IFS admits always at least one attractor [1]. Moreover, if each wn is a
contraction, i.e., if there exists c ∈ [0, 1) such that d(w(x),w(y)) ≤ c d(x, y), for all x, y ∈ X, then S is
called hyperbolic. In this case, the Hutchinson operator W is a contraction mapping, that is,

dH(W(A),W(B)) ≤ c dH(A, B), ∀A, B ∈ H(X),

and hence, by Banach’s fixed point theorem, admits a unique attractor G, which is the limit set of the
IFS, i.e., G = lim

k→∞
Wk(B), for an arbitrary B ∈ H(X) [1] (see, for instance, some extensions of the

Hutchinson framework [14–18]). The construction of the attractor is based on Banach’s fixed point
theorem or some of its generalizations [11, 19–23].

Let x0 < x1 < · · · < xN , yi ∈ [a, b], with −∞ < a < b < ∞. We define J0 := {0, . . . ,N}, I = [x0, xN]
and ∆ =

{
(xn, yn) ∈ I × R ; n ∈ J0

}
as a given data set. We also define, for n ∈ J, the set In = [xn−1, xn],

a contractive homeomorphism Ln : I −→ In, and a continuous mapping Fn : K := I × [a, b] −→ R.
Assume that

Ln(x0) = xn−1, Ln(xN) = xn and |Ln(x) − Ln(x′)| ≤ l|x − x′|, (1.2)

Fn(x0, y0) = yn−1, Fn(xN , yN) = yn, (1.3)

and
|Fn(x, y) − Fn(x, y′)| ≤ |sn||y − y′|, (1.4)

for all x, x′ ∈ I, y, y′ ∈ [a, b], and for some l ∈ [0, 1) and sn ∈ (−1, 1). For n ∈ J, we define the mapping

Wn(x, y) =
(
Ln(x), Fn(x, y)

)
,

for all (x, y) ∈ K. Then, the IFS
{
K,Wn : n ∈ J

}
has a unique attractor G∆ which is the graph of

the continuous function f : I −→ R, called FIF, such that f (xn) = yn for all n ∈ J [1]. For n ∈ J, let
αn, ψn, ψ̂n : I −→ R be continuous functions. Here, we investigate the generalized affine FIF defined by

S =

Ln(x) = anx + en,

Fn(x, y) = αn(x)y + ψn(x),
(1.5)

where n ∈ J, an and en are determined by (1.2), and the conditions (1.3) and (1.4) hold. This
system is extensively studied (see, for instance, [7, 12, 24–27]), especially when the functions {αn}n

are constant [8–10, 24, 28–30]. We consider a small perturbation on the data set ∆. For this, we define
the following affine transformation:

ω(x, y) = (px, sy),
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where p and s are positive real numbers. Let ∆̂ = ω(∆) :=
{
(pxn, syn), n ∈ J0

}
and consider the

generalized affine FIFs f̂ , interpolating ∆̂ and defined by the following IFS:

Ŝ =

L̂n(x) = ânx + ên,

F̂n(x, y) = αn(x)y + ψ̂n(x).
(1.6)

We will assume that

L̂n(px0) = pxn−1, L̂n(pxN) = pxn and |L̂n(x) − L̂n(x′)| ≤ l̂|x − x′|,

F̂n(px0, sy0) = syn−1, F̂n(pxN , syN) = syn,

and
|F̂n(x, y) − F̂n(x, y′)| ≤ |ŝn||y − y′|,

for all x, x′ ∈ I, y, y′ ∈ [a, b], and for some l̂ ∈ [0, 1) and ŝn ∈ (−1, 1). Our first main result gives a
sufficient condition to have ω(G∆) = Gω(∆), where ω(A) =

{
(px, sy); (x, y) ∈ A

}
, for any compact set A

in R2.

Theorem 1.1. Let G∆ and Gω(∆) be the attractors of the IFSs S and Ŝ, respectively. Assume, for all
(x, y) ∈ K and n ∈ J, that

s
[
αn(x) − αn(px)

]
y + sψn(x) − ψ̂n(px) = 0,

then ω(G∆) = Gω(∆).

Remark 1.1. Assume that αn is a constant function and ψn is affine for each n ∈ J. Then, in the case
of equally spaced interpolation points, one can get a smooth or non-smooth fractal function depending
on the choice of αn. More precisely, we have the box dimension of ∆ which is given by [31]

DG∆ := 1 +
log
(∑N

n=1 |αn|
)

log(N)
. (1.7)

Therefore, if ψ̂n is affine for each n ∈ J, then DG∆ = Dω(G∆). Note that the condition of Theorem 1.1 may
be satisfied, for example, if p = 1 or αn is a constant function for each n ∈ J. This makes it possible, in
particular, to obtain FIFs with different box dimensions.

In Section 2, we will prove Theorem 1.1 and consider some examples. Let C(I,R) =
{
f : I −→ R,

continuous
}

and assume that C(I,K) is endowed with the uniform norm. We define the bounded and
nonidentity linear operator b : C(I,R) −→ C(I,R) such that

b(g)(x0) = g(x0) and b(g)(xN) = g(xN), (1.8)

for all g ∈ C(I,R). Now, let h ∈ C(I,R) be the piecewise linear interpolation function through the set
points ∆ and consider the IFS S with

ψn(x) = h ◦ Ln(x) − αn(x)b(h)(x), n ∈ J. (1.9)

Let Γh be the graph of the function h, and define the function ĥ such that ω(Γh) = Γĥ. It is clear that ĥ
is the piecewise linear interpolation function through the set points ω(∆). Similarly, we define the
generalized affine FIF f̂ , interpolating ∆̂, and defined by the IFS Ŝ with

ψ̂n(x) = ĥ ◦ L̂n(x) − αn(x)b̂
(
ĥ
)
(x), n ∈ J, (1.10)

such that b̂(sh)(x) = sb(h)(x).
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Corollary 1.1. Let G∆ and Gω(∆) be the attractors of the IFSs S and Ŝ, respectively, such that ψn and
ψ̂n are defined by (1.9) and (1.10). Assume that p = 1 or, for n ∈ J, αn is a constant function, then
ω(G∆) = Gω(∆).

Section 4 is devoted to studying the additivity property. Let m ≥ 2 and ∆k, for 0 ≤ k ≤ m, be the
data set such that ∆0 = ∆ and ∆k =

{
(xn, yk

n) ∈ I × R ; n ∈ J0

}
, for k , 0. We define the sequence of

IFSs (Sk) such that S0 = S and

Sk =

Ln(x) = anx + en,

Fk,n(x, y) = αn(x)y + ψk,n(x),
(1.11)

n ∈ J, 1 ≤ k ≤ m. Now, we define the data ∆S =
{
(xn,
∑m

k=1 yk
n) ∈ I × R ; n ∈ J0

}
and let G∆S be the

attractor of the IFS Ln(x) = anx + en,

S n(x, y) = αn(x)y +
∑m

k=1 ψk,n(x),
(1.12)

where n ∈ J.

Theorem 1.2. Let f s be the FIF defined through the IFS (1.12). Then for all n ∈ J0, f s(xn) =
∑m

k=1 yk
n.

Moreover, we have

G∆S =

m∑
k=1

G∆k :=
{(

x,
m∑

k=1

yk
)
, (x, yk) ∈ G∆k

}
.

2. FIF under affine transformation

2.1. Proof of Theorem 1.1

For (x, y) ∈ K and n ∈ J, we define first Ŵn(x, y) =
(
Ln(x), F̂n(x, y)

)
, and the Hutchinson operators

W and Ŵ by

W(A) =
N⋃

n=1

Wn(A) and Ŵ(A) =
N⋃

n=1

Ŵn(A)

for all A ∈ H(K). Therefore, G∆ =W(G∆) and G∆ = limk→∞W
k(A) for any A ∈ H(K). Now, let (Ak)

be the sequence on H(K) such that A0 be the polygonal interpolation of ∆ and Ak = W(Ak−1), for all
k ≥ 1. It follows that

G∆ = lim
k→∞

Ak and ω(G∆) = lim
k→∞

ω(Ak).

In addition, ω ◦Wn maps Ak into the n-th piece of ω(Ak+1). We also define the sequence (A′k) on H(K)
such that A′0 = ω(A0) and, for k ≥ 1, A′k = Ŵ(A′k−1). Therefore, by definition of Gω(∆), we have
Gω(∆) = limk→∞ A′k. Then,

A′1 =
N⋃

n=1

Ŵn(A′0) =
N⋃

n=1

Ŵn ◦ ω(A0) =
N⋃

n=1

ω ◦Wn(A0) = ω(A1),

and hence A′k = ω(Ak), for all k ≥ 1. As a consequence, we obtain

Gω(∆) = lim
k→∞

A′k = lim
k→∞

ω(Ak) = ω(G∆).
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Now, Ŵn maps ω(Ak) into ω(Ak+1) if, and only if ω ◦Wn = Ŵn ◦ω, for all n ∈ J. For all n ∈ J, we have

ω ◦Wn(x, y) = ω
(
anx + en, αn(x)y + ψn(x)

)
=
(
panx + pen, sαn(x)y + sψn(x)

)
.

Similarly, we have

Ŵn ◦ ω(x, y) = Ŵn(px, sy) =
(
ân px + ên, sαn(px)y + ψ̂n(px)

)
.

It follows that, for n ∈ J, ω ◦Wn − Ŵn ◦ ω = 0 if and only ifpanx + pen = ân px + ên,

sαn(x)y + sψn(x) = sαn(px)y + ψ̂n(px).
(2.1)

In addition, using (1.2), we get, for all n ∈ J,

an =
∆xn−1

xN − x0
= ân =

p∆xn−1

p(xN − x0)
,

en = xn − anxN and ên = pxn − ân pxN ,

where ∆xn = xn − xn−1. Thus, under our hypothesis, we have ω(G∆) = Gω(∆).

2.2. Application: linear case

In this paragraph, we will consider the linear case, that is, when the functions ψn and ψ̂n are
defined by

ψn(x) = cnx + dn and ψ̂n(x) = ĉnx + d̂n. (2.2)

From Theorem 1.1, we may deduce the following corollary:

Corollary 2.1. Let G and Ĝ be the attractors of the IFSs S and, Ŝ respectively, such that ψn and ψ̂n

are defined by (2.2). Assume that p = 1 or, for n ∈ J, αn is a constant function, then ω(G) = Ĝ.

Proof. Assume that p = 1 or, for n ∈ J, αn is a constant function, then the condition of Theorem 1.1 is
reduced to sψn(x) − ψ̂n(px) = 0. Using Eq (1.3), we get

cn =
∆yn−1 + αn(x0)y0 − αn(xN)yN

xN − x0
, dn = yn − cnxN − αn(xN)yN ,

and
ĉn =

s∆yn−1 + sαn(x0)y0 − sαn(xN)yN

xN − x0
, d̂n = syn − ĉnxN − sαn(xN)yN .

It follows, for all n ∈ J, that ĉn = scn and d̂n = sdn, which implies that ψ̂n(x) = sψn(x) as required. □

Example 2.1. (αn are not constant functions) Let ∆ =
{
(0, 0), (0.25, 0.5), (0.5, 0.2), (0.75, 0.4), (1, 0.5)

}
and G be the attractor of the following IFS:

S =

Ln(x) = 0.25x + xn−1,

Fn(x, y) = 0.5 sin(x)y + cnx + dn,

AIMS Mathematics Volume 9, Issue 7, 16848–16862.
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n ∈ J = {1, . . . , 4}, where cn and dn are determined by the condition (1.3). Then G is the
graph of the function f interpolating ∆. First, we consider the cases p = 1 and s = 2, so that
∆̂ =

{
(0, 0), (0.25, 1), (0.5, 0.4), (0.75, 0.8), (1, 1)

}
. Now, let the FIF f̂ interpolates ∆̂ and define using

the following IFS:

Ŝ =

L̂n(x) = ânx + ên,

F̂n(x, y) = 0.5 sin(x)y + ĉnx + d̂n,

n ∈ J, where, ân and ên are determined by (1.2), and the condition (1.3) holds. In Figure 1, we plot
the FIFs of the systems S and Ŝ constructed by using the Chaos Game algorithm [31]. As we can see,
we have ω(G) = Ĝ. In Figure 2, we plot the FIFs f and f̂ when p = s = 2. It is clear that these
graphs differ from each other (ω(G) , Ĝ), which is expected since the condition of Corollary 2.1 is not
satisfied (p , 1).

Figure 1. FIF with p = 1, s = 2.

Figure 2. FIF with p = s = 2.
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Example 2.2. (αn are constant functions) In this example, we consider the case when αn are constant
functions. Let ∆ =

{
(0, 0), (0.25, 0.5), (0.5, 0.2), (0.75, 0.4), (1, 0.5)

}
and G be the attractor of the

following IFS:

S =

Ln(x) = 0.25x + xn−1,

Fn(x, y) = αny + cnx + dn,

n ∈ J = {1, . . . , 4},where cn and dn are determined by the condition (1.3). Now, let the FIF f̂ interpolate
∆̂ and define using the following IFS:

Ŝ =

L̂n(x) = ânx + ên,

F̂n(x, y) = αny + ĉnx + d̂n,

n ∈ J, where ân and ên are determined by (1.2), and the condition (1.3) holds. Let p = s = 2, then we
have ω(G) = Ĝ (see Figure 3 for αn = 0.5 and Figure 4 for α1 = α2 = 0.2, α3 = α4 = 0.6).

Figure 3. FIF with p = s = 2 and αn = 0.5.

Figure 4. FIF with p = s = 2, α1 = α2 = 0.2, α3 = α4 = 0.6.
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3. Proof of Corollary 1.1

Since αn are constant functions or p = 1, then

s
[
αn(x) − αn(px)

]
y + sψn(x) − ψ̂n(px)

= sh ◦ Ln(x) − sαn(x)b(h)(x) − ĥ ◦ L̂n(px) + αn(x)b̂(ĥ)(px)
= αn(x)

[
b̂(ĥ)(px) − sb(h)(x)

]
+ sh ◦ Ln(x) − ĥ ◦ L̂n(px).

On the interval In = [xn, xn+1], we have

h(x) =
∆yn

∆xn
x +

ynxn+1 − xnyn+1

∆xn

and

ĥ(x) =
s
p
∆yn

∆xn
x + s

ynxn+1 − xnyn+1

∆xn
.

Note that for all x ∈ In, we have ĥ(px) − sh(x) = 0, and, in particular

s
[
αn(x) − αn(px)

]
y + sψn(x) − ψ̂n(px)

= αn(x)
[
b̂(sh)(x) − sb(h)(x)

]
+ sh(anx + en) − ĥ

(
ân px + ên)

= αn(x)
[
b̂(sh)(x) − sb(h)(x)

]
+ sh(anx + en) − ĥ

(
an px + pen)

= 0.

Example 3.1. In this example, we consider ∆ =
{
(0, 0), (0.25, .5), (0.5, .2), (0.75, .4), (1, 1)

}
and let h

be the linear interpolation of the data ∆. Let b : C(I,R) −→ C(I,R) be defined by b(g) = g2 for all
g ∈ C(I,R). Since h(0) = 0 and h(1) = 1, then

b(h)(0) = h(0) = 0 and b(h)(1) = h(1) = 1.

Now, let G be the attractor of the following IFS:

S =

Ln(x) = 0.25x + xn−1,

Fn(x, y) = 0.5y + h ◦ Ln(x) − 0.5b(h)(x),

n ∈ J = {1, . . . , 4}, where cn and dn are determined by the condition (1.3). Then G is the
graph of the function f interpolating ∆. We consider the case p = s = 2, so that ∆̂ ={
(0, 0), (0.5, 1), (1, .4), (1.5, .8), (2, 2)

}
. Let ĥ be the linear interpolation of the data ∆̂ and let b̂ :

C(I,R) −→ C(I,R) be defined by b̂(g) = g2/s for all g ∈ C(I,R). Since ĥ(0) = 0 and ĥ(2) = 2,
we get

b̂(ĥ)(0) = h(0) = 0 and b̂(ĥ)(2) = h(2) = 2.

We consider the FIF f̂ interpolating ∆̂ defined using the following IFS:

Ŝ =

L̂n(x) = ânx + ên,

F̂n(x, y) = 0.5y + ĥ ◦ L̂n(x) − 0.5b̂(ĥ)(x),
(3.1)
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n ∈ J, where ân and ên are determined by (1.2), and the condition (1.3) holds. In Figure 5, we plot
the FIFs constructed through S and Ŝ. Moreover, since b̂(sh)(x) = sb(h)(x), the condition (1.10) is
satisfied, and ω(G) = Ĝ by Corollary 1.1.

Figure 5. FIF with p = s = 2 and b̂(g) = g2/s.

Remark 3.1. Take, in Example 3.1, the linear operator b̂ : C(I,R) −→ C(I,R) defined by b̂(g) =
√

2|g|
for all g ∈ C(I,R). Clearly, we have b̂(ĥ)(0) = ĥ(0) = 0 and b̂(ĥ)(2) = ĥ(2) = 2.

We consider the FIF f̂ interpolating ∆̂ defined using the following IFS:

Ŝ =

L̂n(x) = ânx + ên,

F̂n(x, y) = 0.5y + ĥ ◦ L̂n(x) − 0.5b̂(ĥ)(x),

n ∈ J, where ân and ên are determined by (1.2), and the condition (1.3) holds. In Figure 6, we plot the
FIFs constructed through S and Ŝ. Here, we have ω(G) , Ĝ which is expected since the condition of
Corollary 1.1 is not satisfied : b̂(sh)(x) , sb(h)(x).

Figure 6. FIF with p = s = 2 and b̂(g) =
√

2|g|.
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Consider the notation of Corollary 1.1 and assume, for n ∈ J, that αn is a constant function. Let J
be the set of continuous functions g : I −→ R, such that g(x0) = x0 and g(xN) = xN . It is well known
that (J , ρ) is a complete metric space, where ρ is a metric defined as ρ(g, h) = ∥g−h∥∞ for all g, h ∈ J .
We define on J the Read-Bajraktarevic operator T by

T
(
g(x)
)
= Fn

(
L−1

n (x), g
(
L−1

n (x)
))
,

for all x ∈ In, n ∈ J. We can prove easily that T is a contraction mapping; that is,

∥T( f ) − T(g)∥ ≤ α∥ f − g∥∞,

where α := maxn |αn|. Thus, T possesses a unique fixed-point f on J . Moreover, f is the unique
function satisfying, for x ∈ In, n ∈ J,

f (x) = Fn

(
L−1

n (x), f
(
L−1

n (x)
))
. (3.2)

In the next section, we will compare the definite integrals
∫

I
f (x)dx and

∫
ω(I)

f̂ (x)dx, where ω(I) =
{px, x ∈ I}.

Proposition 3.1. Assume that δ =
∑N

n=1 anαn, then

(1 − δ)
∫
ω(I)

f̂ (x)dx − ps(1 − δ)
∫

I
f (x)dx =

∫
I

p s δ b(h)(x) − p δ b̂
(
sh
)
(x)dx.

In particular, if δ = 0, then
∫
ω(I)

f̂ (x)dx = ps
∫

I
f (x)dx.

Proof. Using (3.2), we obtain f (x) = h(x) + αn
[
f − b(h)

](
L−1

n (x)
)
, and then∫ xN

x0

f (x)dx =
∫ xN

x0

h(x)dx +
N∑

n=1

∫ xn

xn−1

αn(x)
[
f − b(h)

](
L−1

n (x)
)
dx.

Letting z = L−1
n (x), we get∫ xN

x0

f (x)dx =
∫ xN

x0

h(x)dx + δ
∫ xN

x0

[
f − b(h)

]
(z)dz.

It follows that
(1 − δ)

∫ xN

x0

f (x)dx =
∫ xN

x0

h(x)dx − δ
∫ xN

x0

b(h)(z)dz.

Similarly, we have ∫ pxN

px0

f̂ (x)dx =
∫ pxN

px0

ĥ(x)dx + δ
∫ pxN

px0

[
f̂ − b̂(ĥ)

]
(z)dz,

and then
(1 − δ)

∫ pxN

px0

f̂ (x)dx =
∫ pxN

px0

ĥ(x)dx − δ
∫ pxN

px0

b̂(ĥ)(z)dz.

Note that, for all x ∈ In, we have ĥ(px) − sh(x) = 0. It follows that
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(1 − δ)
∫ pxN

px0

f̂ (x)dx = ps
∫ xN

x0

h(z)dz − δ
∫ pxN

px0

b̂(ĥ)(z)dz

= ps(1 − δ)
∫ xN

x0

f (x)dx + psδ
∫ xN

x0

b(h)(z)dz − δ
∫ pxN

px0

b̂(ĥ)(z)dz

= ps(1 − δ)
∫ xN

x0

f (x)dx + psδ
∫ xN

x0

b(h)(z)dz − pδ
∫ xN

x0

b̂(ĥ)(px)dx

= ps(1 − δ)
∫ xN

x0

f (x)dx + psδ
∫ xN

x0

b(h)(x)dx − pδ
∫ xN

x0

b̂
(
sh
)
(x)dx,

as required. □

Remark 3.2. (1) Clearly, if p = 1, then the result can be deduced immediately from Corollary 1.1
and we have ∫

I
f̂ (x)dx = s

∫
I

f (x)dx.

(2) Consider the case when
∑N

n=1 αn = 0. Then, for any uniform partition, that is ∆xn is constant for
all n, we get δ = 0, and then

∫
ω(I)

f̂ (x)dx = ps
∫

I
f (x)dx.

4. Additivity property

We will prove it with Theorem 1.2 for m = 1. First, note that the conditions (1.3) and (1.4) hold,
and then the function f s interpolates the data ∆S . We define the Hutchinson operatorsW andW1 by

W(A) =
N⋃

n=1

Wn(A) and W1(A) =
N⋃

n=1

W1,n(A)

for all A ∈ H(K), where W1,n(x, y) = (Ln(x), F1,n(x, y)). Let A0 and A′0 be the polygonal interpolation
of ∆ and ∆1, respectively, and consider the sequences (Ak) and (A′k) defined by Ak = W(Ak−1) and
A′k =W1(A′k−1), for all k ≥ 1, respectively. It follows that

G∆ = lim
k→∞

Ak and G∆1 = lim
k→∞

A′k.

Now, we define Sn(x, y) = (Ln(x), Fn(x, y) + F1,n(x, y)), for all n ∈ J, and the sequence (S k) as S 0 =

A0 + A′0 =
{
(x, y + y′), x ∈ I, y ∈ A0, y′ ∈ A′

}
and for all k ≥ 1, S k =

⋃N
n=1 Sn(S k−1). It follows that

S 1 =

N⋃
n=1

Sn(S 0) =
N⋃

n=1

Sn(A0 + A′0)

=

N⋃
n=1

{(
Ln(x), Fn(x, y)), (x, y) ∈ A0

}
+
{
(Ln(x), F1,n(x, y)

)
, (x, y) ∈ A′0

}
= W(A0) +W′(A0) = A1 + A′1.
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Similarly, for all k ≥ 1, we have S k = Ak + A′k =W
k(A0) +Wk

1(A′0). Hence,

G∆+∆1 = lim
k→∞

S k = lim
k→∞
Wk(A0) +Wk

1(A′0) = G∆ +G∆1 ,

as required. Thus, the result of the theorem is acquired by induction.

Example 4.1. Let b : C(I,R) −→ C(I,R) be the operator defined by b(g) = g2 for all g ∈ C(I,R). We
consider the two data sets∆ =

{
(0, 0), (0.25, 0.5), (0.5, 0.2), (0.75, 0.4), (1, 1)

}
,

∆1 =
{
(0, 0), (0.25, 0.75), (0.5,−0.2), (0.75, 0.5), (1, 1)

}
,

and let h and h1 be the linear interpolations of ∆ and ∆1, respectively. We define the IFSs

S =

Ln(x) = 0.25x + xn−1,

Fn(x, y) = 0.5y + h ◦ Ln(x) − 0.5b(h)(x),
S1 =

Ln(x) = 0.25x + xn−1,

F1,n(x, y) = 0.5y + h1 ◦ Ln(x) − 0.5b(h1)(x),

where n ∈ J. In Figure 7, we plot G∆, G∆1 and G∆+∆1 .

Figure 7. G∆+∆1 = G∆ +G∆1 .

5. Conclusions

In this work, a class of generalized affine FIFs with variable parameters αn(x) is studied. Let S and
Ŝ be two IFSs with attractors, G∆ and G∆̂ respectively, where ∆ and ∆̂ are given data sets. Assume
that ∆̂ = ω(∆), where ω is some linear transformation, then we give a sufficient condition so that
Gω(∆) = ω(G∆). In addition, the definite integrals of the corresponding FIFs are considered, and the
additivity property is studied. Some examples are given highlighting the effectiveness of our results.
The findings presented in this paper suggest a compelling avenue for further investigation into the
characteristics of these systems, particularly in exploring the connection between smoothly perturbing
the systems’ parameters and their corresponding FIFs.
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