Research article

Single wave solutions of the fractional Landau-Ginzburg-Higgs equation in space-time with accuracy via the beta derivative and mEDAM approach

  • Received: 18 November 2024 Revised: 28 December 2024 Accepted: 30 December 2024 Published: 13 January 2025
  • MSC : 65F10, 65H10, 90C30, 90C33

  • The nonlinear wave behavior in the tropical and mid-latitude troposphere has been simulated using the space-time fractional Landau-Ginzburg-Higgs model. These waves are the consequence of interactions between equatorial and mid-latitude waves, fluid flow in dynamic systems, weak scattering, and extended linkages. The mEDAM method has been used to obtain new and extended closed-form solitary wave solutions of the previously published nonlinear fractional partial differential equation via the beta derivative. A wave transformation converts the fractional-order equation into an ordinary differential equation. Several soliton, single, kink, double, triple, anti-kink, and other soliton types are examples of known conventional wave shapes. The answers are displayed using the latest Python code, which enhances the usage of 2D and 3D plotlines, as well as contour plotlines, to emphasise the tangible utility of the solutions. The results of the study are clear, flexible, and easier to replicate.

    Citation: Ikram Ullah, Muhammad Bilal, Javed Iqbal, Hasan Bulut, Funda Turk. Single wave solutions of the fractional Landau-Ginzburg-Higgs equation in space-time with accuracy via the beta derivative and mEDAM approach[J]. AIMS Mathematics, 2025, 10(1): 672-693. doi: 10.3934/math.2025030

    Related Papers:

  • The nonlinear wave behavior in the tropical and mid-latitude troposphere has been simulated using the space-time fractional Landau-Ginzburg-Higgs model. These waves are the consequence of interactions between equatorial and mid-latitude waves, fluid flow in dynamic systems, weak scattering, and extended linkages. The mEDAM method has been used to obtain new and extended closed-form solitary wave solutions of the previously published nonlinear fractional partial differential equation via the beta derivative. A wave transformation converts the fractional-order equation into an ordinary differential equation. Several soliton, single, kink, double, triple, anti-kink, and other soliton types are examples of known conventional wave shapes. The answers are displayed using the latest Python code, which enhances the usage of 2D and 3D plotlines, as well as contour plotlines, to emphasise the tangible utility of the solutions. The results of the study are clear, flexible, and easier to replicate.



    加载中


    [1] L. Wei, Y. Yang, Optimal order finite difference/local discontinuous Galerkin method for variable-order time-fractional diffusion equation, J. Comput. Appl. Math., 383 (2021), 113129. https://doi.org/10.1016/j.cam.2020.113129 doi: 10.1016/j.cam.2020.113129
    [2] Y. Y. Wang, Y. P. Zhang, C. Q. Dai, Re-study on localized structures based on variable separation solutions from the modified tanh-function method, Nonlinear Dyn., 83 (2016), 1331–1339. https://doi.org/10.1007/s11071-015-2406-5 doi: 10.1007/s11071-015-2406-5
    [3] H. Zhang, X. Jiang, X. Yang, A time-space spectral method for the time-space fractional Fokker–Planck equation and its inverse problem, Appl. Math. Comput., 320 (2018), 302–318. https://doi.org/10.1016/j.amc.2017.09.040 doi: 10.1016/j.amc.2017.09.040
    [4] K. J. Wang, S. Li, Study on the local fractional (3+1)-dimensional modified Zakharov–Kuznetsov equation by a simple approach, Fractals, 32 (2024), 2450091. https://doi.org/10.1142/S0218348X24500919 doi: 10.1142/S0218348X24500919
    [5] K. Diethelm, N. J. Ford, The analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [6] X. Jiang, H. Qi, Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative, J. Phys. A: Math. Theor., 45 (2012), 485101. https://doi.org/10.1088/1751-8113/45/48/485101 doi: 10.1088/1751-8113/45/48/485101
    [7] M. T. Islam, M. A. Akter, Distinct solutions of nonlinear space–time fractional evolution equations appearing in mathematical physics via a new technique, PDE Appl. Math., 3 (2021), 100031. https://doi.org/10.1016/j.padiff.2021.100031 doi: 10.1016/j.padiff.2021.100031
    [8] B. Ghanbari, K. S. Nisar, M. Aldhaifallah, Abundant solitary wave solutions to an extended nonlinear Schrödinger's equation with conformable derivative using an efficient integration method, Adv. Differ. Equ., 2020 (2020), 328. https://doi.org/10.1186/s13662-020-02787-7 doi: 10.1186/s13662-020-02787-7
    [9] U. H. M. Zaman, M. A. Arefin, M. A. Akbar, M. H. Uddin, Study of the soliton propagation of the fractional nonlinear type evolution equation through a novel technique, PLos One, 18 (2023), e0285178. https://doi.org/10.1371/journal.pone.0285178 doi: 10.1371/journal.pone.0285178
    [10] H. C. Yaslan, A. Girgin, Exp-function method for the conformable space-time fractional STO, ZKBBM and coupled Boussinesq equations, Arab J. Basic Appl. Sci., 26 (2019), 163–170. https://doi.org/10.1080/25765299.2019.1580815 doi: 10.1080/25765299.2019.1580815
    [11] M. M. Khater, D. Kumar, New exact solutions for the time fractional coupled Boussinesq-Burger equation and approximate long water wave equation in shallow water, J. Ocean Eng. Sci., 2 (2017), 223–228. https://doi.org/10.1016/j.joes.2017.07.001 doi: 10.1016/j.joes.2017.07.001
    [12] S. X. Deng, X. X. Ge, Analytical solution to local fractional Landau-Ginzburg-Higgs equation on fractal media, Ther. Sci., 25 (2021), 4449–4455. https://doi.org/10.2298/TSCI2106449D doi: 10.2298/TSCI2106449D
    [13] S. Javeed, S. Saif, A. Waheed, D. Baleanu, Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers, Results Phys., 9 (2018), 1275–1281. https://doi.org/10.1016/j.rinp.2018.04.026 doi: 10.1016/j.rinp.2018.04.026
    [14] M. Khater, D. Lu, R. A. Attia, Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method, AIP Adv., 9 (2019), 025003. https://doi.org/10.1063/1.5087647 doi: 10.1063/1.5087647
    [15] Z. Z. Si, Y. Y. Wang, C. Q. Dai, Switching, explosion, and chaos of multi-wavelength soliton states in ultrafast fiber lasers, Sci. China Phys. Mech. Astronomy, 67 (2024), 1–9. https://doi.org/10.1007/s11433-023-2365-7 doi: 10.1007/s11433-023-2365-7
    [16] X. Lü, S. J. Chen, G. Z. Liu, W. X. Ma, Study on lump behavior for a new (3+1)-dimensional generalised Kadomtsev-Petviashvili equation, East Asian J. Appl. Math., 11 (2021), 594–603. https://doi.org/10.4208/eajam.101120.180221 doi: 10.4208/eajam.101120.180221
    [17] Z. Liang, Z. Li-Feng, L. Chong-Yin, Some new exact solutions of Jacobian elliptic function about the generalized Boussinesq equation and Boussinesq-Burgers equation, Chinese Phys. B, 17 (2008), 403. https://doi.org10.1088/1674-1056/17/2/009 doi: 10.1088/1674-1056/17/2/009
    [18] R. Ali, E. Tag-eldin, A comparative analysis of generalized and extended (G' G)-Expansion methods for travelling wave solutions of fractional Maccari's system with complex structure, Alex. Eng. J., 79 (2023), 508–530. https://doi.org/10.1016/j.aej.2023.08.007 doi: 10.1016/j.aej.2023.08.007
    [19] S. Guo, L. Mei, Y. Li, Y. Sun, The improved fractional sub-equation method and its applications to the space–time fractional differential equations in fluid mechanics, Phys. Lett. A, 376 (2012), 407–411. https://doi.org/10.1016/j.physleta.2011.10.056 doi: 10.1016/j.physleta.2011.10.056
    [20] K. J. Wang, S. Li, Complexiton, complex multiple kink soliton and the rational wave solutions to the generalized (3+1)-dimensional kadomtsev-petviashvili equation, Phys. Scripta, 99 (2024), 075214. https://doi.org10.1088/1402-4896/ad5062 doi: 10.1088/1402-4896/ad5062
    [21] S. S. Ray, R. K. Bera, Analytical solution of a fractional diffusion equation by Adomian decomposition method, Appl. Math. Comput., 174 (2006), 329–336. https://doi.org/10.1016/j.amc.2005.04.082 doi: 10.1016/j.amc.2005.04.082
    [22] M. Dehghan, J. Manafian, A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Meth. PDE: Int. J., 26 (2010), 448–479. https://doi.org/10.1002/num.20460 doi: 10.1002/num.20460
    [23] M. A. Khatun, M. A. Arefin, M. A. Akbar, M. H. Uddin, Numerous explicit soliton solutions to the fractional simplified Camassa-Holm equation through two reliable techniques, Ain Shams Eng. J., 14 (2023), 102214. https://doi.org/10.1016/j.asej.2023.102214 doi: 10.1016/j.asej.2023.102214
    [24] V. K. Srivastava, M. K. Awasthi, S. Kumar, Analytical approximations of two and three dimensional time-fractional telegraphic equation by reduced differential transform method, Egypt. J. Basic Appl. Sci., 1 (2014), 60–66. https://doi.org/10.1016/j.ejbas.2014.01.002 doi: 10.1016/j.ejbas.2014.01.002
    [25] V. Ala, U. Demirbilek, K. R. Mamedov, An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation, AIMS Math., 5 (2020), 3751–3761. https://doi:10.3934/math.2020243 doi: 10.3934/math.2020243
    [26] I. Ullah, K. Shah, T. Abdeljawad, S. Barak, Pioneering the plethora of soliton for the (3+1)-dimensional fractional heisenberg ferromagnetic spin chain equation, Phys. Scripta, 99 (2024), 095229. https://doi.org/10.1088/1402-4896/ad6ae6 doi: 10.1088/1402-4896/ad6ae6
    [27] U. H. M. Zaman, M. A. Arefin, M. A. Akbar, M. H. Uddin, Analyzing numerous travelling wave behavior to the fractional-order nonlinear Phi-4 and Allen-Cahn equations throughout a novel technique, Results Phys., 37 (2022), 105486. https://doi.org/10.1016/j.rinp.2022.105486 doi: 10.1016/j.rinp.2022.105486
    [28] U. H. M. Zaman, M. A. Arefin, M. A. Akbar, M. H. Uddin, Solitary wave solution to the space-time fractional modified Equal Width equation in plasma and optical fiber systems, Results Phys., 52 (2023), 106903. https://doi.org/10.1016/j.rinp.2023.106903 doi: 10.1016/j.rinp.2023.106903
    [29] R. M. Zulqarnain, W. X. Ma, K. B. Mehdi, I. Siddique, A. M. Hassan, S. Askar, Physically significant solitary wave solutions to the space-time fractional Landau-Ginsburg-Higgs equation via three consistent methods, Front. Phys., 11 (2023), 1205060. https://doi.org/10.3389/fphy.2023.1205060 doi: 10.3389/fphy.2023.1205060
    [30] I. Ullah, K. Shah, T. Abdeljawad, Study of traveling soliton and fronts phenomena in fractional Kolmogorov-Petrovskii-Piskunov equation, Phys. Scripta, 99 (2024), 055259. https://doi.org/10.1088/1402-4896/ad3c7e doi: 10.1088/1402-4896/ad3c7e
    [31] M. Bilal, J. Iqbal, I. Ullah, K. Shah, T. Abdeljawad, Using extended direct algebraic method to investigate families of solitary wave solutions for the space-time fractional modified benjamin bona mahony equation, Phys. Scripta, 100 (2024), 015283. https://doi.org/10.1088/1402-4896/ad96e9 doi: 10.1088/1402-4896/ad96e9
    [32] I. Ullah, K. Shah, T. Abdeljawad, M. M. Alam, A. S. Hendy, S. Barak, Dynamics behaviours of kink solitons in conformable Kolmogorov-Petrovskii-Piskunov equation, Qual. Theory Dyn. Syst., 23 (2024), 268. https://doi.org/10.1007/s12346-024-01119-4 doi: 10.1007/s12346-024-01119-4
    [33] M. Bilal, J. Iqbal, R. Ali, F. A. Awwad, E. A. Ismail, Exploring families of solitary wave solutions for the fractional coupled Higgs system using modified extended direct algebraic method, Fractal Fract., 7 (2023), 653. https://doi.org/10.3390/fractalfract7090653 doi: 10.3390/fractalfract7090653
    [34] M. Bilal, J. Iqbal, I. Ullah, K. Shah, T. Abdeljawad, Using extended direct algebraic method to investigate families of solitary wave solutions for the space-time fractional modified benjamin bona mahony equation, Phys. Scripta, 100 (2024), 015283. https://doi.org/10.1088/1402-4896/ad96e9 doi: 10.1088/1402-4896/ad96e9
    [35] A. Khan, I. Ullah, J. Iqbal, K. Shah, M. Bilal, An innovative method for solving the nonlinear fractional diffusion reaction equation with quadratic nonlinearity analysis, Phys. Scripta, 100 (2024), 015209. https://doi.org/10.1088/1402-4896/ad952b doi: 10.1088/1402-4896/ad952b
    [36] I. Ullah, M. Bilal, A. Sharma, H. Khan, S. Bhardwaj, S. K. Sharma, A novel approach is proposed for obtaining exact travelling wave solutions to the space-time fractional Phi-4 equation, AIMS Math., 9 (2024), 32674–32695. https://doi.org/10.3934/math.20241564 doi: 10.3934/math.20241564
    [37] I. Ullah, Dynamics behaviours of N-kink solitons in conformable Fisher-Kolmogorov-Petrovskii-Piskunov equation, Eng. Comput., 41 (2024), 2404–2426. https://doi.org/10.1108/EC-04-2024-0358 doi: 10.1108/EC-04-2024-0358
    [38] M. Bilal, J. Iqbal, K. Shah, B. Abdalla, T. Abdeljawad, I. Ullah, Analytical solutions of the space-time fractional Kundu-Eckhaus equation by using modified extended direct algebraic method, PDE Appl. Math., 11 (2024), 100832. https://doi.org/10.1016/j.padiff.2024.100832 doi: 10.1016/j.padiff.2024.100832
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(63) PDF downloads(14) Cited by(0)

Article outline

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog