
http://www.aimspress.com/journal/Math

AIMS Mathematics, 10(1): 694–704.
DOI:10.3934/math.2025031
Received: 29 November 2024
Revised: 31 December 2024
Accepted: 06 January 2025
Published: 13 January 2025

Research article

Some new oscillation results for second-order differential equations with
neutral term

Abdullah Mohammed Alomair1,∗ and Ali Muhib2,3,∗

1 Department of Quantitative Methods, School of Business, King Faisal University, Al-Ahsa 31982,
Saudi Arabia

2 Department of Mathematics, Faculty of Applied and Educational Sciences, Al-Nadera, Ibb
University, Ibb, Yemen

3 Jadara Research Center, Jadara University, Irbid 21110, Jordan

* Correspondence: Email: ama.alomair@kfu.edu.sa; muhib39@yahoo.com.

Abstract: In this paper, we study the oscillatory behavior of second-order differential equations.
Using the comparison method, we obtain new oscillation criteria that improve the relevant results in
the literature. Additionally, an example is given to illustrate the importance of the obtained oscillation
criteria.

Keywords: oscillation criteria; comparison method; neutral; second-order
Mathematics Subject Classification: 34C10, 34K11

1. Introduction

In this paper, we will study the oscillation behavior of the following differential equations (DEs):

P′′ (s) + q (s) x (β (s)) = 0. (1.1)

We assume the following:

(I) P (s) = x (s) + µ (s) x (α (s)) , µ ∈ C ([s0,∞) , [0, 1)), α ∈ C1 ([s0,∞), (0,∞)), α (s) ≤ s, α′ (s) > 0
and lims→∞ α (s) = ∞;

(II) β ∈ C1 ([s0,∞), (0,∞)) , β (s) ≤ s, β′ (s) > 0, and lims→∞ β (s) = ∞ and
(III) q ∈ C1 ([s0,∞)) and q (s) > 0.

By a solution of (1.1), we mean a function x ∈ C[su,∞), with su := min {β (sb) , α (sb)} for some
sb ≥ s0,which has the propertyP′ (s) ∈ C1 ([su,∞),R) , and satisfies (1.1) on [sb,∞). We only consider
those nontrivial solutions x of (1.1), which are defined on some half-line [sb,∞).
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As is customary, a solution x of (1.1) is said to be oscillatory if it has arbitrarily large zeros;
otherwise, it is said to be nonoscillatory. The equation itself is called oscillatory if all its solutions
oscillate.

Recently, there has been a lot of interest in the oscillatory properties of solutions to diverse types of
functional DEs. The oscillation of neutral DEs was a special focus of several authors. We direct the
reader to the articles [1–3], monographs [4–6], and the references listed within. The fact that neutral
DEs appear in several practical issues in the natural sciences, control, and engineering [7] explains one
of the primary causes of this interest.

For second-order equations, Agarwal et al. [8], Kusano et al. [9], Sun and Meng [10], and Dzurina
and Stavroulakis [11] derived oscillation criteria for the DE(

λ (s) |x′ (s)|ψ−1 x′ (s)
)′

+ q (s) |x (β (s))|ψ−1 x (β (s)) = 0,

where λ (s) ∈ C1 ([s0,∞),R) , λ (s) > 0, and ψ > 0. Baculikova [12] established some oscillatory
properties of the DE (

λ (s) x′ (s)
)′

+ q (s) x (β (s)) = 0.

Their results complement and improve on the results of [13, 14].
We briefly discuss the relevant findings that inspired our work in the remaining portion of this

section.
Some oscillation criteria for the functional DE of neutral type(
λ (s)

∣∣∣(x (s) + µ (s) x (α (s)))′
∣∣∣ψ−1

(x (s) + µ (s) x (α (s)))′
)′

+ q (s) |x (β (s))|φ−1 x (β (s)) = 0, (1.2)

where λ (s) ∈ C1 ([s0,∞),R) , λ (s) > 0, λ′ (s) ≥ 0, ψ > 0, and φ > 0 are established by Wu et al. [15].
They proved that the DE (1.2) is oscillatory if∫ ∞

s0

[
ρ (s) q (s) (1 − µ (β (s)))φ −

(ρ′ (s))κ+1 λ (% (s))
(κ + 1)κ+1 (mρ (s) β′ (s))κ

]
ds = ∞, (1.3)

where κ = min {ψ, φ} ,

% (s) =

{
β (s) , ψ ≤ φ,

s, ψ > φ,

and

m =

{
1, ψ = φ,

0 < m ≤ 1, ψ , φ.

Using the Riccati substitution technique and comparing with first-order delay equations, Moaaz [16]
derived oscillation criteria for the DE(

λ (s)
(
(x (s) + µ (s) x (α (s)))′

)ψ)′
+ f (s, x (β (s))) = 0, (1.4)

where | f (s, x)| ≥ q (s) |x|φ , ψ and φ are quotients of odd positive integers, λ (s) ∈ C ([s0,∞),R) ,
λ (s) > 0, and

∫ ∞
λ−1/ψ (ς) dς = ∞. They proved that the DE (1.4) is oscillatory if ψ ≥ φ and

lim inf
s→∞

∫ s

β(s)
I (ν)

(
Θ̂ (β (ν))

)φ
dν >

1
e
, (1.5)
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where
I (s) = q (s) (1 − µ (β (s)))φ ,

η (s, ς) =

∫ s

ς

λ−1/ψ (u) du,

Θ̂ (s) = η (s, s1) +
Cφ−ψ

ψ

∫ s

s1

η (ν, s1) η (β (ν) , s1)I (ν) dν,

and C is a positive real constant.
Comparing the DE with either first-order delay DEs or inequalities, whose oscillatory behavior

is known beforehand, is one of the fundamental methods in the oscillation theory for acquiring the
criteria. Using the comparison method, this study aims to develop some oscillation criteria for the
(1.1) solutions. The results obtained here improve some of the established results in the literature.

2. Main results

We begin by mentioning an important lemma that we will need to prove our results.

Lemma 2.1. [17] Let x be a positive solution of (1.1). Then,

P (s) > 0, P′ (s) > 0, and P′′ (s) ≤ 0, (2.1)

for all sufficiently large s.

Theorem 2.1. If ∫ ∞

s0

β (ς) q (ς) (1 − µ (β (ς))) dς = ∞, (2.2)

and

lim inf
s→∞

∫ s

β(s)

1
u2

∫ u

0
ςq (ς) β (ς) (1 − µ (β (ς))) dςdu >

1
e
, (2.3)

then (1.1) is oscillatory.

Proof. Let (1.1) have a positive solution. It is clear that

−

(
s2

(
P (s)

s

)′)′
= −

(
sP′ (s) − P (s)

)′
= sq (s) x (β (s)) . (2.4)

Integrating (2.4) from s0 to∞, we obtain

− s2
(
P (s)

s

)′
= P (s0) − s0P

′ (s0) +

∫ s

s0

ςq (ς) x (β (ς)) dς = k +

∫ s

s0

ςq (ς) x (β (ς)) dς, (2.5)

where k = P (s0) − s0P
′ (s0). Since P (s) = x (s) + µ (s) x (α (s)), we obtain

x (s) = P (s) − µ (s) x (α (s)) ≥ P (s) − µ (s)P (α (s)) ≥ (1 − µ (s))P (s) . (2.6)

Substituting (2.6) in (2.5), we find

− s2
(
P (s)

s

)′
≥ k +

∫ s

s0

ςq (ς) (1 − µ (β (ς)))P (β (ς)) dς, (2.7)
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since P′ (s) > 0, and using (2.2), we see that

− s2
(
P (s)

s

)′
≥ k + P (β (s0))

∫ s

s0

ςq (ς) (1 − µ (β (ς))) dς → ∞ as s→ ∞. (2.8)

Hence
P (s)

s
is decreasing, (2.9)

which also implies that k > 0 for a large enough s0.
Therefore, we expect

lim
s→∞

P (s)
s

= n = 0. (2.10)

If lims→∞P (s) /s = n > 0. From (2.7), we get

z′ (s) +
1
s2

∫ s

s0

ςq (ς) (1 − µ (β (ς))) β (ς) z (β (ς)) dς ≤ −
k
s2 < 0. (2.11)

Integrating (2.11) from s0 to∞, we obtain

z (s0) − n ≥ n
∫ s

s0

1
u2

∫ u

s0

ςq (ς) (1 − µ (β (ς))) β (ς) z (β (ς)) dςdu

= n
∫ ∞

s0

β (ς) q (ς) (1 − µ (β (ς))) dς,

which contradicts (2.2); therefore, we find that n = 0.
Now, from (2.11), we find

0 ≥ z′ (s) +
1
s2

(
z (β (s))

∫ s

s0

ςq (ς) (1 − µ (β (ς))) β (ς) dς + k
)

= z′ (s) +
1
s2

(
z (β (s))

∫ s

0
ςq (ς) (1 − µ (β (ς))) β (ς) dς +k − z (β (s))

∫ s0

0
ςq (ς) (1 − µ (β (ς))) β (ς) dς

)
.

Since z′ (s) < 0 and lims→∞ z (s) = 0, we find that

z′ (s) +

(
1
s2

∫ s

0
ςq (ς) (1 − µ (β (ς))) β (ς) dς

)
z (β (s)) ≤ 0 (2.12)

has a positive solution z (s) , which contradicts (2.3). End of proof. �

Lemma 2.2. Let (2.2) hold. Then

z (s)ψ% (s) is decreasing, (2.13)

where

ψ% (s) = eφ%(s), φ′% (s) = θ% (s) and θ% (s) =
1
s2

∫ s

0
ςq (ς) (1 − µ (β (ς))) β (ς) dς.
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Proof. Let (1.1) have a positive solution. From (2.12), we get

z′ (s) + θ% (s) z (s) ≤ 0. (2.14)

Therefore, (
z (s)ψ% (s)

)′
= z′ (s) eφ%(s) + z (s) eφ%(s)θ% (s) .

Using (2.14), we see that (
z (s)ψ% (s)

)′
≤ 0.

End of proof. �

Theorem 2.2. Let (2.2) hold. If

lim inf
s→∞

∫ s

β(s)

ψ% (β (u))
u2

∫ u

s0

ςq (ς) (1 − µ (β (ς))) β (ς)
ψ% (β (ς))

dςdu >
1
e
, (2.15)

then (1.1) is oscillatory, where ψ% (s) is defined as in Lemma 2.2.

Proof. Let (1.1) have a positive solution. From (2.11), we find

0 ≥ z′ (s) +
1
s2

∫ s

s0

ςq (ς) (1 − µ (β (ς))) β (ς)ψ% (β (ς))
ψ% (β (ς))

z (β (ς)) dς.

Using (2.13), we have

z′ (s) +

(
ψ% (β (s))

s2

∫ s

s0

ςq (ς) (1 − µ (β (ς))) β (ς)
ψ% (β (ς))

dς
)

z (β (s)) ≤ 0 (2.16)

which a positive solution z (s) , and contradicts (2.15). End of proof. �

Corollary 2.1. Let (2.2) hold and lims→∞ ψ% (β (s)) /s = 0. If

lim inf
s→∞

∫ s

β(s)

ψ% (β (u))
u2

∫ u

0

ςq (ς) (1 − µ (β (ς))) β (ς)
ψ% (β (ς))

dςdu >
1
e
, (2.17)

then (1.1) is oscillatory, where ψ% (s) is defined as in Lemma 2.2.

Proof. This is similar to the proof of Theorem 2.1, and thus we omit it. �

Lemma 2.3. Let (2.2) hold. Then

x (β (s))ψ2 (s) is increasing, (2.18)

where
ψ2 (s) = q (s) e−φ2(s), φ′2 (s) = θ2 (s) ,

and

θ2 (s) =
(q (s) (1 − µ (β (s))))′

q (s)
+
β′ (s) (1 − µ (β (s)))

β (s)

∫ s

β(s)
q (ς) (1 − µ (β (ς))) β (ς) dς

+β′ (s) (1 − µ (β (s)))
∫ ∞

s
q (ς) (1 − µ (β (ς))) dς.
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Proof. Let (1.1) have a positive solution. From (1.1) and (2.6), we obtain

P′′ (s) + q (s) (1 − µ (β (s)))P (β (s)) ≤ 0. (2.19)

Differentiating (2.19), we find

P′′′ (s) + (q (s) (1 − µ (β (s))))′P (β (s)) + q (s) (1 − µ (β (s))) β′ (s)P′ (β (s)) ≤ 0. (2.20)

Since P (s) ≥ x (s) , we see that (2.20) becomes

P′′′ (s) + (q (s) (1 − µ (β (s))))′ x (β (s)) + q (s) (1 − µ (β (s))) β′ (s)P′ (β (s)) ≤ 0. (2.21)

Integrating (2.19) from β (s) to∞, we have

P′ (β (s)) ≥
∫ s

β(s)
q (ς) (1 − µ (β (ς))) β (ς)

P (β (ς))
β (ς)

dς +

∫ ∞

s
q (ς) (1 − µ (β (ς)))P (β (ς)) dς

≥
P (β (s))
β (s)

∫ s

β(s)
q (ς) (1 − µ (β (ς))) β (ς) dς + P (β (s))

∫ ∞

s
q (ς) (1 − µ (β (ς))) dς,

(2.22)

where we used (2.1) and (2.9). Since P (s) ≥ x (s) , we see that (2.22) becomes

P′ (β (s)) ≥
x (β (s))
β (s)

∫ s

β(s)
q (ς) (1 − µ (β (ς))) β (ς) dς + x (β (s))

∫ ∞

s
q (ς) (1 − µ (β (ς))) dς. (2.23)

By using (2.21) and (2.23), we obtain

0 ≥ P′′′ (s) + q (s) x (β (s)) θ2 (s) .

From (1.1) and the above inequality, we see that

0 ≥ P′′′ (s) − P′′ (s) θ2 (s) .

Consequently,(
e−φ2(s)

P′′ (s)
)′

= e−φ2(s) (−θ2 (s))P′′ (s) + e−φ2(s)
P′′′ (s) = e−φ2(s) [

−θ2 (s)P′′ (s) + P′′′ (s)
]
≤ 0;

hence, e−φ2(s)P′′ (s) is decreasing. In addition, we see that

(ψ2 (s) x (β (s)))′ =

(
q (s) e−φ2(s)

(
−
P′′ (s)
q (s)

))′
=

(
e−φ2(s) (

−P′′ (s)
))′
≥ 0.

End of proof. �

Lemma 2.4. Let (2.2) hold. Then,

P (s) ≥ s
∫ ∞

s
q (ς) x (β (ς)) dς +

∫ s

s0

ςq (ς) x (β (ς)) dς. (2.24)

Proof. The proof is similar to that of [18, Lemma 3.2]. Therefore, it has been omitted. �
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Theorem 2.3. Let (2.2) hold. If

lim sup
s→∞

[
(1 − µ (β (s)))

(
β (s)ψ2 (s)

∫ ∞

s

q (ς)
ψ2 (ς)

dς + ψ% (β (s))
∫ s

β(s)

q (ς) (1 − µ (β (ς))) β (ς)
ψ% (β (ς))

dς

+
ψ% (β (s))
β (s)

∫ β(s)

s0

ςq (ς) (1 − µ (β (ς)))
β (ς)

ψ% (β (ς))
dς

)]
> 1, (2.25)

then (1.1) is oscillatory, where ψ% (s) and ψ2 (s) are defined as in Lemmas 2.2 and 2.3, respectively.

Proof. Let (1.1) have a positive solution. From (2.24), we have

P (β (s)) ≥ β (s)
∫ ∞

β(s)
q (ς) x (β (ς)) dς +

∫ β(s)

s0

ςq (ς) x (β (ς)) dς

≥ β (s)
∫ ∞

s
q (ς) x (β (ς)) dς + β (s)

∫ s

β(s)
q (ς) x (β (ς)) dς +

∫ β(s)

s0

ςq (ς) x (β (ς)) dς.
(2.26)

Using (2.6) in (2.26), we get

P (β (s)) ≥ β (s)
∫ ∞

s
q (ς) x (β (ς)) dς + β (s)

∫ s

β(s)
q (ς) (1 − µ (β (ς)))P (β (ς)) dς

+

∫ β(s)

s0

ςq (ς) (1 − µ (β (ς)))P (β (ς)) dς.

Since β (s) ≤ s, β′ (s) > 0, and using (2.18) and (2.13), we find

P (β (s)) ≥ x (β (s))
(
β (s)ψ2 (s)

∫ ∞

s

q (ς)
ψ2 (ς)

dς + ψ% (β (s))
∫ s

β(s)

q (ς) (1 − µ (β (ς))) β (ς)
ψ% (β (ς))

dς

+
ψ% (β (s))
β (s)

∫ β(s)

s0

ςq (ς) (1 − µ (β (ς))) β (ς)
ψ% (β (ς))

dς
)
.

Using (2.6), we get

x (β (s)) ≥ x (β (s)) (1 − µ (β (s)))
(
β (s)ψ2 (s)

∫ ∞

s

q (ς)
ψ2 (ς)

dς + ψ% (β (s))
∫ s

β(s)

(1 − µ (β (ς))) β (ς)
q−1 (ς)ψ% (β (ς))

dς

+
ψ% (β (s))
β (s)

∫ β(s)

s0

ςq (ς) (1 − µ (β (ς))) β (ς)
ψ% (β (ς))

dς
)
,

which contradicts (2.26). End of proof. �

Example 2.1. Consider the following equation:

(x (s) + µ0x (δs))′′ +
q0

s2 x (γs) = 0, (2.27)

where q (s) = q0/s2, q0 > 0, µ (s) = µ0, µ0 ∈ [0, 1) , β (s) = γs, and α (s) = δs. Now, we see that the
condition (2.2) is satisfied,

θ% (s) =
1
s

q0 (1 − µ0) γ, φ% (s) = q0 (1 − µ0) γ ln s, ψ% (s) = sq0(1−µ0)γ,
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θ2 (s) =
− (1 − µ0) 2 + γq0 (1 − µ0)2 ln 1

γ
+ γq0 (1 − µ0)2

s
,

φ2 (s) =

(
− (1 − µ0) 2 + γq0 (1 − µ0)2 ln

1
γ

+ γq0 (1 − µ0)2
)

ln s,

and
ψ2 (s) = q0s(1−µ0)2−γq0(1−µ0)2 ln 1

γ−γq0(1−µ0)2−2.

Thus, we find lims→∞ ψ% (β (s)) /s = 0.
From Corollary 2.1, we find that (2.27) is oscillatory if

q0 (1 − µ0) γ
1 − q0 (1 − µ0) γ

>
1

e ln 1
γ

. (2.28)

From Theorem 2.3, we find that (2.27) is oscillatory if

1 < (1 − µ0)

 γq0

(1 − µ0) 2 − γq0 (1 − µ0)2 ln 1
γ
− γq0 (1 − µ0)2

− 1
+

(
γ−q0(1−µ0)γ − 1

)
+

(1 − µ0) q0γ
1−q0(1−µ0)γ

1 − q0 (1 − µ0) γ

)
. (2.29)

Figure 1 shows some numerical oscillatory solutions to (2.27).

Figure 1. Some numerical oscillatory solutions to Eq (2.27).

Remark 2.1. Let (
x (s) +

1
10

x
(
1
2

s
))′′

+
(1.05)

s2 x
(
1
5

s
)

= 0 (2.30)

be a special case of the Eq (2.27), where q0 = (1.05) , µ0 = 1/10, δ = 1/2, and γ = 1/5.
Let ρ (s) = s. By applying Theorem 1 in [15], we find that the condition (1.3) is not satisfied, where

(−0.305)
∫ ∞

s0

1
s

ds , ∞.
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Thus, Theorem 1 in [15] fails to study the oscillation of Eq (2.30).
By applying Corollary 2.2 in [16], we find that the condition (1.5) is not satisfied, where

0.361 67 ≯
1
e
.

Thus, Corollary 2.2 in [16] fails to study the oscillation of Eq (2.30).
Now, we see that the condition (2.28) becomes

(1.05)
(
1 − 1

10

)
1
5

1 − (1.05)
(
1 − 1

10

)
1
5

>
1

e ln 5
.

By using Corollary 2.1, we find that (2.30) is oscillatory.
Additionally, condition (2.29) becomes

1 <
(

9
10

) 
(1.05)

5(
9

10

)
2 − (1.05)

5

(
9
10

)2
ln 5 − (1.05)

5

(
9
10

)2
− 1

+

(1
5

)− (1.05)
5 ( 9

10 )
− 1

 +

(
9

10

)
(1.05)

(
1
5

)1− (1.05)
5 ( 9

10 )

1 − (1.05)
5

(
9

10

)
 .

By using Theorem 2.3, we find that (2.30) is oscillatory.
Hence, and through the above, we find that the criteria we obtained produces results for the

oscillation of Eq (2.30), while previous studies failed to study the oscillation of Eq (2.30).

3. Conclusions

In this paper, the oscillatory behavior of (1.1) was studied. We succeeded in establishing new
monotonic properties for the positive solutions of (1.1); from them, we obtained new oscillation criteria
for (1.1). In addition, we provided an example and compared the results we obtained with some
previous studies to show that the results we obtained improved these studies. As future work, we will
try to extend our proposed results to third-order DEs.
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