Research article

A Generalization of Lieb concavity theorem

  • Received: 25 December 2023 Revised: 08 February 2024 Accepted: 23 February 2024 Published: 28 March 2024
  • MSC : 15A15

  • Lieb concavity theorem, successfully solved the Wigner-Yanase-Dyson conjecture, which is a very important theorem, and there are many proofs of it. Generalization of the Lieb concavity theorem has been obtained by Huang, which implies that it is jointly concave for any nonnegative matrix monotone function $ f(x) $ over $ \left(\operatorname{Tr}\left[\wedge^{k}(A^{\frac{qs}{2}}K^{\ast}B^{sp}KA^{\frac{sq}{2}})^{\frac{1}{s}}\right]\right)^{\frac{1}{k}} $. In this manuscript, we obtained $ \left(\operatorname{Tr}\left[\wedge^{k}(f(A^{\frac{qs}{2}})K^{\ast}f(B^{sp})Kf(A^{\frac{sq}{2}}))^{\frac{1}{s}}\right]\right)^{\frac{1}{k}} $ was jointly concave for any nonnegative matrix monotone function $ f(x) $ by using Epstein's theorem, and some more general results were obtained.

    Citation: Qiujin He, Chunxia Bu, Rongling Yang. A Generalization of Lieb concavity theorem[J]. AIMS Mathematics, 2024, 9(5): 12305-12314. doi: 10.3934/math.2024601

    Related Papers:

  • Lieb concavity theorem, successfully solved the Wigner-Yanase-Dyson conjecture, which is a very important theorem, and there are many proofs of it. Generalization of the Lieb concavity theorem has been obtained by Huang, which implies that it is jointly concave for any nonnegative matrix monotone function $ f(x) $ over $ \left(\operatorname{Tr}\left[\wedge^{k}(A^{\frac{qs}{2}}K^{\ast}B^{sp}KA^{\frac{sq}{2}})^{\frac{1}{s}}\right]\right)^{\frac{1}{k}} $. In this manuscript, we obtained $ \left(\operatorname{Tr}\left[\wedge^{k}(f(A^{\frac{qs}{2}})K^{\ast}f(B^{sp})Kf(A^{\frac{sq}{2}}))^{\frac{1}{s}}\right]\right)^{\frac{1}{k}} $ was jointly concave for any nonnegative matrix monotone function $ f(x) $ by using Epstein's theorem, and some more general results were obtained.



    加载中


    [1] E. P. Wigner, M. M. Yanase, On the positive definite nature of certain matrix expressions, Cunud. J. Math., 16 (1964), 397–406. https://doi.org/10.4153/CJM-1964-041-x doi: 10.4153/CJM-1964-041-x
    [2] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Alge. Appl., 26 (1979), 203–241. https://doi.org/10.1016/0024-3795(79)90179-4 doi: 10.1016/0024-3795(79)90179-4
    [3] J. S. Aujla, A simple proof of Lieb concavity theorem, J. Math. Phys., 52 (2011), 043505. https://doi.org/10.1063/1.3573594 doi: 10.1063/1.3573594
    [4] B. Bhatia, Positive definite matrices, Princeton University Press, 2007. https://doi.org/10.1515/9781400827787
    [5] E. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. Math., 11 (1973), 267–288. https://doi.org/10.1016/0001-8708(73)90011-X doi: 10.1016/0001-8708(73)90011-X
    [6] R. Bhatia, Matrix Analysis, Springer, 1997. https://doi.org/10.1007/978-1-4612-0653-8
    [7] E. G. Effros, A matrix convexity approach to some celebrated quantum inequalities, Proc. Natl. Acad. Sci., 106 (2009), 1006–1008. https://doi.org/10.1073/pnas.0807965106 doi: 10.1073/pnas.0807965106
    [8] I. Nikoufar, A. Ebadian, M. E. Gordji, The simplest proof of Lieb concavity theorem, Adv. Math., 248 (2013), 531–533. https://doi.org/10.1016/j.aim.2013.07.019 doi: 10.1016/j.aim.2013.07.019
    [9] D. Huang, Generalizing Lieb's concavity theorem via operator interpolation, arXiv, 03304. https://doi.org/10.1016/j.aim.2020.107208
    [10] F. Zhang, Matrix theory: Basic results and techniques, Springer, 1999. https://doi.org/10.1007/978-1-4614-1099-7
    [11] B. Simon, Trace ideals and their applications, 2 Eds., American Mathematical Soc., 2005. https://doi.org/10.1090/surv/120
    [12] E. F. Beckenbach, R. Bellman, Inequalities, Springer Science, 1961. https://doi.org/10.1007/978-3-642-64971-4
    [13] R. Bellman, Introduction to matrix analysis, Classics in Applied Mathematics, 1960. https://doi.org/10.1137/1.9781611971170
    [14] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of majorization and its applications, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-68276-1
    [15] E. Carlen, Trace inequalities and quantum entropy: An introductory course, Hill Center, 2010. https://doi.org/10.1090/conm/529/10428
    [16] C. Davis, Notions generalizing convexity for functions defined on spaces of matrices, Amer. Math. Sot., 1963,187–201.
    [17] F. Hansen, Correction to: Trace functions with applications in quantum physics, J. Stat. Phys., 188 (2022). https://doi.org/10.1007/s10955-022-02929-z
    [18] H. Epstein, Remarks on two theorems of E. Lieb, Comm. Math. Phys., 31 (1973), 317–325. https://doi.org/10.1007/BF01646492 doi: 10.1007/BF01646492
    [19] W. Donogue, Monotone matrix functions and analytic continuution, New York: Springer, 1974. https://doi.org/10.1007/978-3-642-65755-9
    [20] D. Huang, A generalized Lieb's theorem and its applications to spectrum estimates for a sum of random matrices, Linear Algebra Appl., 579 (2019), 419–448. https://doi.org/10.1016/j.laa.2019.06.013 doi: 10.1016/j.laa.2019.06.013
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(710) PDF downloads(43) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog