Research article

On graded weakly $ J_{gr} $-semiprime submodules

  • Received: 02 December 2023 Revised: 08 March 2024 Accepted: 12 March 2024 Published: 28 March 2024
  • MSC : 13A02, 16W50

  • Let $ \Gamma $ be a group, $ \mathcal{A} $ be a $ \Gamma $-graded commutative ring with unity $ 1, $ and $ \mathcal{D} $ a graded $ \mathcal{A} $-module. In this paper, we introduce the concept of graded weakly $ J_{gr} $-semiprime submodules as a generalization of graded weakly semiprime submodules. We study several results concerning of graded weakly $ J_{gr} $ -semiprime submodules. For example, we give a characterization of graded weakly $ J_{gr} $-semiprime submodules. Also, we find some relations between graded weakly $ J_{gr} $-semiprime submodules and graded weakly semiprime submodules. In addition, the necessary and sufficient condition for graded submodules to be graded weakly $ J_{gr} $-semiprime submodules are investigated. A proper graded submodule $ U $ of $ \mathcal{D} $ is said to be a graded weakly $ J_{gr} $-semiprime submodule of $ \mathcal{D} $ if whenever $ r_{g}\in h(\mathcal{A}), $ $ m_{h}\in h(\mathcal{D}) $ and $ n\in \mathbb{Z} ^{+} $ with $ 0\neq r_{g}^{n}m_{h}\in U $, then $ r_{g}m_{h}\in U+J_{gr}(\mathcal{D}) $, where $ J_{gr}(\mathcal{D}) $ is the graded Jacobson radical of $ \mathcal{D}. $

    Citation: Malak Alnimer, Khaldoun Al-Zoubi, Mohammed Al-Dolat. On graded weakly $ J_{gr} $-semiprime submodules[J]. AIMS Mathematics, 2024, 9(5): 12315-12322. doi: 10.3934/math.2024602

    Related Papers:

  • Let $ \Gamma $ be a group, $ \mathcal{A} $ be a $ \Gamma $-graded commutative ring with unity $ 1, $ and $ \mathcal{D} $ a graded $ \mathcal{A} $-module. In this paper, we introduce the concept of graded weakly $ J_{gr} $-semiprime submodules as a generalization of graded weakly semiprime submodules. We study several results concerning of graded weakly $ J_{gr} $ -semiprime submodules. For example, we give a characterization of graded weakly $ J_{gr} $-semiprime submodules. Also, we find some relations between graded weakly $ J_{gr} $-semiprime submodules and graded weakly semiprime submodules. In addition, the necessary and sufficient condition for graded submodules to be graded weakly $ J_{gr} $-semiprime submodules are investigated. A proper graded submodule $ U $ of $ \mathcal{D} $ is said to be a graded weakly $ J_{gr} $-semiprime submodule of $ \mathcal{D} $ if whenever $ r_{g}\in h(\mathcal{A}), $ $ m_{h}\in h(\mathcal{D}) $ and $ n\in \mathbb{Z} ^{+} $ with $ 0\neq r_{g}^{n}m_{h}\in U $, then $ r_{g}m_{h}\in U+J_{gr}(\mathcal{D}) $, where $ J_{gr}(\mathcal{D}) $ is the graded Jacobson radical of $ \mathcal{D}. $



    加载中


    [1] K. Al-Zoubi, A. Al-Qderat, Some properties of graded comultiplication modules, Open Math., 15 (2017), 187–192. https://doi.org/10.1515/math-2017-0016 doi: 10.1515/math-2017-0016
    [2] K. Al-Zoubi, R. Abu-Dawwas, I. Al-Ayyoub, Graded semiprime submodules and graded semi-radical of graded submodules in graded modules, Ricerche Math., 66 (2017), 449–455. https://doi.org/10.1007/s11587-016-0312-x doi: 10.1007/s11587-016-0312-x
    [3] K. Al-Zoubi, S. Alghueiri, On graded $J_gr$-semiprime submodules, Ital. J. Pure Appl. Math., 46 (2021), 361–369.
    [4] S. E. Atani, On graded prime submodules, Chiang Mai J. Sci., 33 (2006), 3–7.
    [5] S. E. Atani, R. E. Atani, Graded multiplication modules and the graded ideal $\theta _{g}(M)$, Turk. J. Math., 33 (2009), 1–9.
    [6] P. Deligne, Quantum fields and strings: A course for mathematicians, American Mathematical Society, 1999.
    [7] J. Escoriza, B. Torrecillas, Multiplication objects in commutative grothendieck categories, Comm. Alge., 26 (1998), 1867–1883. https://doi.org/10.1080/00927879808826244 doi: 10.1080/00927879808826244
    [8] F. Farzalipour, On graded almost semiprime submodules, J. Algebra Relat. Topics, 1 (2013), 41–55.
    [9] F. Farzalipour, P. Ghiasvand, On graded semiprime and graded weakly semiprime ideals, Int. Electron. J. Algebra, 13 (2013), 15–22.
    [10] F. Farzalipour, P. Ghiasvand, On graded semiprime submodules, Int. J. Math. Comput. Sci., 6 (2012), 694–697.
    [11] R. Hazrat, Graded rings and graded grothendieck groups, Cambridge University Press, 2016.
    [12] I. Kolar, P. W. Michor, J. Slovak, Natural operations in differential geometry, Springer Science Business Media, 2013.
    [13] S. C. Lee, R. Varmazyar, Semiprime submodules of Graded multiplication modules, J. Korean Math. Soc, 49 (2012), 435–447. http://dx.doi.org/10.4134/JKMS.2012.49.2.435 doi: 10.4134/JKMS.2012.49.2.435
    [14] C. Nastasescu, F. Van Oystaeyen, Graded and filtered rings and modules, Berlin: Springer, 1979
    [15] C. Nastasescu, F. Van Oystaeyen, Graded ring theory, Amsterdam: Mathematical Library, 1982.
    [16] C. Nastasescu, F. Van Oystaeyen, Methods of graded rings, Berlin-Heidelberg: Springer-Verlag, 2004. http://dx.doi.org/10.1007/b94904
    [17] A. Rogers, Supermanifolds: Theory and applications, World Scientific, 2007.
    [18] H. A. Tavallaee, M. Zolfaghari, Graded weakly semiprime submodules of graded multiplication modules, Lobachevskii J. Math., 34 (2013), 61–67. http://dx.doi.org/10.1134/S1995080213010113 doi: 10.1134/S1995080213010113
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(780) PDF downloads(53) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog