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Abstract: Let Γ be a group, A be a Γ-graded commutative ring with unity 1, and D a graded A-
module. In this paper, we introduce the concept of graded weakly Jgr-semiprime submodules as
a generalization of graded weakly semiprime submodules. We study several results concerning of
graded weakly Jgr-semiprime submodules. For example, we give a characterization of graded weakly
Jgr-semiprime submodules. Also, we find some relations between graded weakly Jgr-semiprime
submodules and graded weakly semiprime submodules. In addition, the necessary and sufficient
condition for graded submodules to be graded weakly Jgr-semiprime submodules are investigated.
A proper graded submodule U of D is said to be a graded weakly Jgr-semiprime submodule of D if
whenever rg ∈ h(A), mh ∈ h(D) and n ∈ Z+ with 0 , rn

gmh ∈ U, then rgmh ∈ U + Jgr(D), where Jgr(D)
is the graded Jacobson radical ofD.
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1. Introduction

Throughout this work, we assume that A is a commutative Γ-graded ring with identity and D is a
unitary gradedA-module.

The study of graded rings and modules has attracted the attentions of many researchers for a long
time due to their important applications in many fields in such as geometry and physics. For example,
graded Lie algebra plays a significant role in differential geometry, such as with Frolicher-Nijenhuis,
as well as the Nijenhuis-Richardson bracket (see [12]). In addition, they solve many physical problems
related to supermanifolds, supersymmetries and quantizations of systems with symmetry (see [6, 17]).
Recently, some classical notions and definitions have been extended and generalized. For instance:
the concepts of graded weakly semiprime ideals have been extended to the concepts of graded weakly
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semiprime submodules (see [2, 9, 10, 13, 18]). The main goal of this paper is to study the theory
of graded modules over graded commutative rings. In particular, we introduce graded weakly Jgr-
semiprime submodules, which are a generalization of graded weakly semiprime submodules. Also,
several results concerning graded weakly Jgr-semiprime submodules will be given.

Let Γ be a group. A ring A is said to be a Γ-graded ring if there exist additive subgroups Ag of
A indexed by the elements g ∈ Γ with A =

⊕
g∈ΓAg and AgAh ⊆ Agh for all g, h ∈ Γ. We set

h(A) := ∪g∈ΓAg. If t ∈ A, then t can be written uniquely as
∑

g∈Γ tg, where tg is called a homogeneous
component of t in Ag. Let A =

⊕
g∈ΓAg be a Γ-graded ring. An ideal L of A is said to be a

graded ideal if L =
⊕

g∈Γ(L ∩ Ag) :=
⊕

g∈Γ Lg. By L ≤id
Γ
A, we mean that L is a graded ideal of

A. Also, by L <id
Γ
A, we mean that L is a proper graded ideal of A. Let A be a Γ-graded ring,

and D an A-module. Then, D is a Γ-graded A-module if there exists a family of additive subgroups
{Dg}g∈Γ of D with D =

⊕
g∈ΓDg and AgDh ⊆ Dgh for all g, h ∈ Γ. We set h(D) := ∪g∈Γ Dg. Let

D =
⊕

g∈ΓDg be a graded A-module. A submodule U of D is said to be a graded submodule of M
if U =

⊕
g∈Γ(U ∩ Dg) :=

⊕
g∈Γ Ug. By U ≤sub

Γ
D, we mean that U is a Γ-graded submodule of D.

Also, by U <sub
Γ
D, we mean that U is a proper Γ-graded submodule ofD. These basic properties and

more information on graded rings and modules can be found in [11, 14–16]. A <sub
Γ
D is said to be a

Gr-maximal if there is a L ≤sub
Γ
D with U ⊆ L ⊆ D, and then U = L or L = D (see [16]). The graded

Jacobson radical of a graded module D, denoted by Jgr(D), is defined to be the intersection of all
Gr-maximal submodules of D (if D has no Gr-maximal submodule then we shall take, by definition,
Jgr(D) = D), (see [16]). A U <sub

Γ
D is called a graded semiprime (briefly, Gr-semiprime) submodule

if, whenever tg ∈ h(A), mh ∈ h(D) and n ∈ Z+ with tn
gmh ∈ U, then tgmh ∈ U (see [10]). A U <sub

Γ
D

is called a graded weakly semiprime (briefly, Gr-W-semiprime) submodule if whenever tg ∈ h(A),
mh ∈ h(D) and n ∈ Z+ with 0 , tn

gmh ∈ U, then tgmh ∈ U (see [18]). It is shown in [4, Lemma 2.11]
that if U ≤sub

Γ
D, then (U :A D) = {r ∈ A : rU ⊆ D} is a graded ideal ofA. Let N ≤sub

Γ
D and I ≤id

Γ
A.

We use the notation (N :D I) to denote the graded submodule {m ∈ D : Im ⊆ N} ofD.

2. Results

Definition 2.1. A proper graded submodule U of D is said to be a graded weakly Jgr-semiprime
(briefly, Gr-W-Jgr-semiprime) submodule of D if, whenever 0 , rn

gmh ∈ U where rg ∈ h(A), mh ∈

h(D) and n ∈ Z+, then rgmh ∈ U + Jgr(D). In particular, a graded ideal L of A is said to be a graded
weakly Jgr-semiprime ideal of A if L is a graded weakly Jgr-semiprime submodule of the graded
A-moduleA.

It is clear that every Gr-W-semiprime submodule is a Gr-W-Jgr-semiprime submodule of D, but
the converse is not true in general. This is clear from the following examples.

Example 2.2. Let Γ = Z2 and A = Z be a Γ-graded ring with A0 = Z, A1 = {0}. Then D = Z24

is a graded A-module with D0 = Z24 and D1 = {0}. Let U = {0, 8, 16} ≤sub
Γ
Z24. Since Jgr(Z24) =

〈2〉 ∩ 〈3〉 = 〈6〉 = {0, 6, 12, 18}, and whenever 0 , rkm ∈ U for r ∈ h(Z), m ∈ h(Z24) and k ∈ Z+

implies that rm ∈ U + Jgr(Z24) = {0, 8, 16} + {0, 6, 12, 18} = 〈2〉, we have U is a Gr-W-Jgr-semiprime
submodule of D. However, U is not aGr-W-semiprime submodule of D since there exist 2 ∈ h(Z),
2 ∈ h(Z24), and 2 ∈ Z+ such that 0 , 22 · 2 = 8 ∈ U, but 2 · 2 = 4 < U.
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Example 2.3. Let G = Z2 and R = Z be a G-graded ring with R0 = Z and R1 = {0}. Let M = Zp∞ =

{ a
pn + Z : a, n ∈ Z, n > 0} be a graded R-module with M0 = Zp∞ and M1 = {0Zp∞ } = {Z}, where p is

a fixed prime number. Consider the graded submodule N = 〈 1
p3 + Z〉 of M. Then N is not a Gr-W-

semiprime submodule of M, since 0 , pl( 1
p3+l +Z) = 1

p3 +Z ∈ N but p( 1
p3+l +Z) < N, where 1 , l ∈ Z+.

However, easy computations show that N is a Gr-W-Jgr-semiprime submodule of M.

Following are theorems that give some equivalent characterizations of the Gr-W-Jgr-
semiprime submodule.

Theorem 2.4. Let U <sub
Γ
D. Then the following statements are equivalent.

(i) U is a Gr-W-Jgr-semiprime submodule ofD.

(ii) (U :D 〈rn
g〉) ⊆ (〈0〉 :D 〈rn

g〉) ∪ (U + Jgr(D) :D 〈rg〉), for each rg ∈ h(A).

(iii) Either (U :D 〈rn
g〉) ⊆ (〈0〉 :D 〈rn

g〉) or (U :D 〈rn
g〉) ⊆ (U + Jgr(D) :D 〈rg〉), for each rg ∈ h(A).

Proof. (i)→ (ii): Let rg ∈ h(A) and mh ∈ (U :D 〈rn
g〉)∩h(D). Then 〈rn

g〉mh ⊆ U, and hence rn
gmh ∈ U. If

rn
gmh , 0, then rgmh ∈ U+Jgr(D) as U is a Gr-W-Jgr-semiprime submodule ofD. Hence, 〈rg〉mh ⊆ U+

Jgr(D), and it follows that mh ∈ (U + Jgr(D) :D 〈rg〉). Thus, mh ∈ (〈0〉 :D 〈rn
g〉)∪ (U + Jgr(D) :D 〈rg〉). If

rn
gmh = 0, then 〈rn

g〉mh ⊆ {0}, and so mh ∈ (〈0〉 :D 〈rn
g〉). Hence, mh ∈ (〈0〉 :D 〈rn

g〉)∪(U + Jgr(D) :D 〈rg〉).
Therefore, (U :D 〈rn

g〉) ⊆ (〈0〉 :D 〈rn
g〉) ∪ (U + Jgr(D) :D 〈rg〉).

(ii)→ (iii): It is clear.
(iii) → (i): Let rg ∈ h(A), mh ∈ h(D), and n ∈ Z+ with 0 , rn

gmh ∈ U. Then {0} , 〈rn
g〉mh ⊆ U,

which implies that mh ∈ (U : 〈rn
g〉) and mh < (〈0〉 :D 〈rn

g〉). Now, by (iii), we get mh ∈ (U + Jgr(D) :D
〈rg〉) and so rgmh ∈ U + Jgr(D). Therefore, U is a Gr-W-Jgr-semiprime submodule ofD. �

Theorem 2.5. Let U <sub
Γ
D. Then the following statements are equivalent.

(i) U is a Gr-W-Jgr-semiprime submodule ofD.

(ii) For every K ≤sub
Γ
D, rg ∈ h(A), and n ∈ Z+ with {0} , 〈rg〉

nK ⊆ U, then 〈rg〉K ⊆ U + Jgr(D).

Proof. (i) ⇒ (ii) Let K ≤sub
Γ
D, rg ∈ h(A), and n ∈ Z+ with {0} , 〈rg〉

nK ⊆ U. This implies that,
K ⊆ (U :D 〈rn

g〉) and K * (〈0〉 :D 〈rn
g〉). Since U is a Gr-W-Jgr-semiprime submodule of D, by

Theorem 2.4 we have K ⊆ (U :D 〈rn
g〉) ⊆ (U + Jgr(D) :D 〈rg〉), hence 〈rg〉K ⊆ U + Jgr(D).

(ii) ⇒ (i) Let 0 , rn
gmh ∈ U where rg ∈ h(A), mh ∈ h(D), and n ∈ Z+. Then {0} , 〈rg〉

n〈mh〉 ⊆ U.
Now, by (ii), we have 〈rg〉〈mh〉 ⊆ U + Jgr(D), and it follows that rgmh ∈ U + Jgr(D). Therefore, U is a
Gr-W-Jgr-semiprime submodule ofD. �

The following corollaries follow directly from Theorem 2.5.

Corollary 2.6. Let U <sub
Γ
D. Then U is a Gr-W-Jgr-semiprime submodule ofD if and only if for every

rg ∈ h(A), and n ∈ Z+ with {0} , 〈rn
g〉D ⊆ U, then 〈rg〉D ⊆ U + Jgr(D).

Corollary 2.7. Let U <sub
Γ
D. Then U is a Gr-W-Jgr-semiprime submodule ofD if and only if for every

rg ∈ h(A), K ≤sub
Γ
D and n ∈ Z+ with {0} , rn

gK ⊆ U, then rgK ⊆ U + Jgr(D).

Theorem 2.8. Let U be a Gr-W-Jgr-semiprime submodule of D with Jgr(D) ⊆ U. Then U is a Gr-W-
semiprime submodule ofD.
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Proof. Let rg ∈ h(A), mh ∈ h(D), and n ∈ Z+ with 0 , rn
gmh ∈ U. Since U is a Gr-W-Jgr-semiprime

submodule ofD and Jgr(D) ⊆ U, we have rgmh ∈ U + Jgr(D) = U. Therefore, U is a Gr-W-semiprime
submodule ofD. �

Let A be a Γ-graded ring and D, D
′

be two graded A-modules. Let ϕ : D → D
′

be an A-module
homomorphsim. Then, ϕ is said to be a graded homomorphsim if ϕ(Dg) ⊆ D

′

g for all g ∈ Γ, see [16].

Theorem 2.9. Let U <sub
Γ
D. If Jgr(D/U) = {U}, then Jgr(D) ⊆ U.

Proof. Define ϕ : D → D/U as a graded homeomorphism given by ϕ(x) = x + U for all x ∈ h(D);
by [3, Theorem 2.12 (i)], ϕ(Jgr(D)) ⊆ Jgr(D/U). Since Jgr(D/U) = {U}, then {U} ⊆ ϕ(Jgr(D)) ⊆ {U},
so we have ϕ(Jgr(D)) = {U}, thus Jgr(D) ⊆ Kerϕ = U. �

Corollary 2.10. Let U be a Gr-W-Jgr-semiprime submodule of D with Jgr(DU ) = {U}. Then U is a
Gr-W-semiprime submodule ofD.

Proof. This is clear by Theorems 2.9 and 2.8. �

A graded A-module D is a graded semisimple (Gr-semisimple) if and only if every graded
submodule U of D is a direct summand. That is D is a Gr-semisimple if and only if for every
graded submodule U ofD there exists L, a graded submodule ofD such thatD = U ⊕ L.

A graded submodule U is called a graded small (Gr-small) ifD = U + V for V ≤sub
Γ
D implies that

V = D, see [1].

Theorem 2.11. Let D be a Gr-semisimple A-module and U be a Gr-W-Jgr-semiprime submodule of
D. Then U is a Gr-W-semiprime submodule ofD.

Proof. LetD be a Gr-semisimpleA-module. Then every graded submodule ofD is a direct summand.
Thus, the only Gr-small sumodule of D is {0}, and it follows that Jgr(D) =

∑
{S : S is a Gr-small

submodule of D} = {0} ⊆ U by [3, Theorem 2.10]. Since U is a Gr-W-Jgr-semiprime submodule of
D, by Theorem 2.8, then U is a Gr-W-semiprime submodule ofD. �

Recall from [4] that a graded module D is said to be a graded torsion (Gr-torsion) free A-module
if, whenever rgmh = 0 where rg ∈ h(A) and mh ∈h(D), then either mh = 0 or rg = 0.

Theorem 2.12. Let D be a Gr-torsion free A-module, and U ≤sub
Γ
D with Jgr(DU ) = {U}. Then U is a

Gr-W-Jgr-semiprime submodule of D if and only if for any nonzero L ≤id
Γ
A, (U :D L) is a Gr-W-Jgr-

semiprime submodule ofD.

Proof. (=⇒) Let 0 , L ≤id
Γ
A, mh ∈ h(D), rg ∈ h(A), and n ∈ Z+ with 0 , rn

gmh ∈ (U :D L). Then
{0} , 〈rn

g〉mh ⊆ (U :D L), and hence 〈rn
g〉(Lmh) ⊆ U. If 〈rn

g〉(Lmh) = {0}, so there exists 0 , i ∈ L∩h(A)
with 〈rn

g〉imh = {0}, so i · rn
gmh = 0. Hence, rn

gmh = 0 as D is a Gr-torsion free A-module, which
is a contradiction. So, assume that 〈rg〉

n(Lmh) = 〈rn
g〉(Lmh) , {0}. Since U is a Gr-W-Jgr-semiprime

submodule of D, by Theorem 2.5, 〈rg〉(Lmh) ⊆ U + Jgr(D). But, Jgr(DU ) = {U}, and by Theorem 2.9,
we have Jgr(D) ⊆ U so 〈rg〉(Lmh) ⊆ U. This implies that, 〈rg〉mh ⊆ (U :D L) ⊆ (U :D L) + Jgr(D) and
hence rgmh ∈ (U :D L) ⊆ (U :D L)+ Jgr(D, ). Therefore, (U :D L) is a Gr-W-Jgr-semiprime submodule
ofD.

(⇐=) Assume that (U :D L) is a Gr-W-Jgr-semiprime submodule of D for any nonzero L ≤id
Γ
A.

PutA = L, then U = (U :D A) is a Gr-W-Jgr-semiprime submodule ofD. �
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Recall from [7] that a graded A-module D is called a graded multiplication module (Gr-
multiplication module) if for every U ≤sub

Γ
D there exists a K ≤id

Γ
A such that U = KD. If D is a

Gr-multiplicationA-module, U = (U :A D)D for every U ≤sub
Γ
D.

The set of all homogeneous zero divisors of A is G-Z(A) = {r ∈ h(A) : rs = 0 for some 0 ,
s ∈ h(A)}, and the set of all homogeneous regular elements is G-C(A) = {c ∈ h(A) : c < G-
Z(A)} = {c ∈ h(A) : cr , 0 for all 0 , r ∈ h(A)}. It is clear that D is a Gr-torsion free if and only if
cm , 0 for all c ∈ G-C(A) and 0 , m ∈ h(D).

Theorem 2.13. Every faithful Gr-multiplicationA-module is a Gr-torsion free.

Proof. Suppose that, D is not Gr-torsion free. Hence, there exist c ∈ G-C(A) and 0 , m ∈ h(D) with
cm = 0. SinceD is a faithful Gr-multiplicationA-module, there exists an L ≤id

Γ
AwithAm = LD, and

so Acm = cLD. This implies that (cL)D = {0}. Since D is a faithful, cL = {0}. Hence, c ∈ G-Z(A)
since L , 0, and so c < G-C(A), which is a contradiction. Therefore,D is Gr -torsion free. �

Corollary 2.14. Let D be a faithful Gr-multiplication A-module and U ≤sub
Γ
D, with Jgr(DU ) = {U}.

Then, U is a Gr-W-Jgr-semiprime submodule of D if and only if for any nonzero L ≤id
Γ
A, (U :D L) is

a Gr-W-Jgr-semiprime submodule ofD.

Proof. Follows by Theorems 2.13 and 2.12. �

Theorem 2.15. Let U be Gr-small submodule of D with Jgr(D) a Gr-W-semiprime submodule of D.
Then, U is a Gr-W-Jgr-semiprime submodule ofD.

Proof. Let rg ∈ h(A), mh ∈ h(D), and n ∈ Z+ with 0 , rn
gmh ∈ U. Since U is a Gr-small submodule

of D, then by [3, Theorem 2.10], U ⊆ Jgr(D) =
∑
{A : A is a Gr-small submodule of D}, so 0 ,

rn
gmh ∈ Jgr(D), since Jgr(D) is a Gr-W-semiprime submodule ofD, then rgmh ∈ Jgr(D) ⊆ U + Jgr(D).

Therefore U is a Gr-W-Jgr-semiprime submodule ofD. �

Recall from [16] that graded A-module D is said to be a graded finitely generated (Gr-finitely
generated) ifD = Aag1+···+Aagn for some ag1, ag2, ..., agn ∈ h(D).

Theorem 2.16. Let D be a Gr-finitely generated Gr-multiplication A-module and L be a Gr-W-Jgr-
semiprime ideal ofA with annA(D) ⊆ L. Then LD is a Gr-W-Jgr-semiprime submodule ofD.

Proof. Let rg ∈ h(A), mh ∈ h(D), and k ∈ Z+ with 0 , rk
gmh ∈ LD. Then {0} , rk

g〈mh〉 ⊆ LD.
Since D is a Gr-multiplication, 〈mh〉 = JD for some J ≤id

Γ
A, and hence {0} , rk

gJD ⊆ LD. This
implies that {0} , rk

gJ ⊆ L + annA(D) by [5, Lemma 3.9]. Since annA(D) ⊆ L, and it follows
that {0} , rk

gJ ⊆ L. Hence, rgJ ⊆ L + Jgr(A) as L is a Gr-W-Jgr-semiprime ideal of A. Thus,
rgJD ⊆ LD + Jgr(A)D ⊆ LD + Jgr(D), and so rgmh ∈ rg〈mh〉 ⊆ LD + Jgr(D). Therefore, LD is a
Gr-W-Jgr-semiprime submodule ofD. �

The following example shows that the residual of the Gr-W-Jgr-semiprime submodule is not
necessarily a Gr-W-Jgr-semiprime ideal.

Example 2.17. Let Γ = Z2 and A = Z be a Γ-graded ring such that A0 = Z and A1 = {0}. Let
D = Z8 be a graded A-module such that D0 = Z8 and D1 = {0}. Let U = {0, 4} = 〈4〉 ≤sub

Γ
D.

Thus, it is a Gr-W- Jgr-semiprime submodule of D where Jgr(D) = 〈2〉. However (U :A D) = 4Z
is not a Gr-W-Jgr-semiprime ideal of A, since 0 , 22 · 1 ∈ (U :A D) where 2, 1 ∈ h(A), but
2 · 1 < (U :A D) + Jgr(A) = 4Z + (0) = 4Z.
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The following theorems show that the residual of a Gr-W-Jgr-semiprime submodule is a Gr-W-Jgr-
semiprime ideal with under conditions.

Theorem 2.18. Let D be a Gr-faithful A-module, and U ≤sub
Γ
D with Jgr(D/U) = {U} and Jgr(A) ⊆

(U :A D). Then U is a Gr-W-Jgr-semiprime submodule of D if and only if (U :A D) is a Gr-W-Jgr-
semiprime ideal ofA.

Proof. (⇒) Let ag, bh ∈ h(A) and k ∈ Z+ with 0 , ak
gbh ∈ (U :A D). Hence, {0} , ak

gbhD ⊆ U.
Since U is a Gr-W-Jgr-semiprime submodule of D, by Corollary 2.7, we have agbhD ⊆ U + Jgr(D).
By Theorem 2.9, we have Jgr(D) ⊆ U since Jgr(D/U) = {U}. This implies that agbhD ⊆ U. Thus,
agbh ∈ (U :A D) ⊆ (U :A D) + Jgr(A). Therefore, (U :A D) is a Gr-W-Jgr-semiprime ideal ofA.

(⇐) Let rg ∈ h(A) and n ∈ Z+ with {0} , 〈rg〉
nD ⊆ U. Hence, {0} , 〈rg〉

n ⊆ (U :A D) (if
〈rg〉

n = {0}, then 〈rg〉
nD = {0} as a contradiction), it follows that 0 , rn

g.1 ∈ (U :A D). Hence.
rg · 1 ∈ (U :A D) + Jgr(A) as (U :A D) is a Gr-W-Jgr-semiprime ideal ofA. Since Jgr(A) ⊆ (U :A D),
we have rg ∈ (U :A D), and it follows that 〈rg〉 ⊆ (U :A D). This yields that 〈rg〉D ⊆ U ⊆ U + Jgr(D).
Thus¡ U is a Gr-W Jgr-semiprime submodule ofD by Corollary 2.6. �

Recall that a graded A-module D is said to be a graded cancellation (Gr-cancellation) if for any
graded ideals K and L ofA, KD = LD, we have K = L, see [8].

Theorem 2.19. Let D be a Gr-finitely generated faithful Gr-multiplication A-module and U <sub
Γ
D.

Then U is a Gr-W-Jgr-semiprime submodule of D if and only if (U :A D) is a Gr-W-Jgr-semiprime
ideal ofA.

Proof. (⇒) Let ag, bh ∈ h(A) and k ∈ Z+ with 0 , ak
gbh ∈ (U :A D). Hence, {0} , ak

gbhD ⊆ U.
( if ak

gbhD = {0}, then ak
gbh = 0 since D is a faithful as a contradiction). Since U is a Gr-W-

Jgr-semiprime submodule of D, by Corollary 2.7 we get agbhD ⊆ U + Jgr(D). This implies that
agbhD ⊆ (U :A D)D + Jgr(D) asD is a Gr-multiplication module. Since Jgr(D) = Jgr(A)D, we have
agbhD ⊆ (U :A D)D+ Jgr(A)D = ((U :A D) + Jgr(A))D, so 〈agbh〉D ⊆ ((U :A D) + Jgr(A))D. Since
D is a Gr-finitely generated faithful Gr-multiplication by [8, Theorem 2.10], we get 〈agbh〉 ⊆ (U :A
D) + Jgr(A). Hence, 〈agbh〉 ⊆ (U :A D) + Jgr(A), so agbh ∈ (U :A D) + Jgr(A). Therefore, (U :A D)
is a Gr-W-Jgr-semiprime ideal ofA.

(⇐) Let {0} , rn
gK ⊆ U where rg ∈ h(A) and K ≤sub

Γ
D. Since D is a Gr-multiplication A-

module, then there exists nonzero L ≤id
Γ
A with K = LD, and it follows that {0} , rn

gLD ⊆ U,
hence {0} , rn

gL ⊆ (U :A D). So, rgL ⊆ (U :A D) + Jgr(A) as (U :A D) is a Gr-W-Jgr-semiprime
ideal of A. Hence, rgLD ⊆ (U :A D)D + Jgr(A)D ⊆ (U :A D)D + Jgr(D). This implies that,
rgK ⊆ U+Jgr(D) asD is a Gr-multiplicationA-module. Thus, U is a Gr-W-Jgr-semiprime submodule
ofD by Corollary 2.7. �

Theorem 2.20. Let D be a Gr-finitely generated faithful Gr-multiplication A-module and U <sub
Γ
D.

Then the following statements are equivalent:

(i) U is a Gr-W-Jgr-semiprime submodule ofD.

(ii) (U :A D) is a Gr-W-Jgr-semiprime ideal ofA.

(iii) U = LD for some a Gr-W-Jgr-semiprime ideal L ofA.
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(i)⇒(ii). By Theorem 2.19,

[(ii)⇒(iii)] SinceD is a Gr-multiplicationA-module, U = (U :A D)D, where (U :A D) is a Gr-W-
Jgr-semiprime ideal ofA.

[(iii)⇒(i)] Let U = LD for some Gr-W-Jgr-semiprime ideal L of A. Let {0} , 〈rg〉
nD ⊆ U where

rg ∈ h(A) and n ∈ Z+, then {0} , 〈rg〉
nD ⊆ LD. Since D is a Gr-finitely generated faithful Gr-

multiplication, by [8, Theorem 2.10], D is a Gr-cancellation. Thus, {0} , 〈rg〉
n ⊆ L. Since L is

a Gr-W-Jgr-semiprime ideal of A, 〈rg〉 ⊆ L + Jgr(A), and it follows that 〈rg〉D ⊆ LD + Jgr(A)D.
This yields that 〈rg〉D ⊆ U + Jgr(D) since Jgr(D) = Jgr(A)D. Therefore, U is a Gr-W-Jgr-semiprime
submodule ofD. �

3. Conclusions

In this paper, we introduced the concept of graded weakly Jgr-semiprime submodules of a graded
module over a commutative graded ring, which is a generalization of graded weakly semiprime
submodules. Also, we proved several properties as well as characterizations of graded weakly Jgr-
semiprime submodules. Finally, we established the necessary and sufficient condition for graded
submodules to be graded weakly Jgr-semiprime submodules.
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