

AIMS Mathematics, 9(5): 12315–12322. DOI: 10.3934/math.2024602 Received: 02 December 2023 Revised: 08 March 2024 Accepted: 12 March 2024 Published: 28 March 2024

http://www.aimspress.com/journal/Math

Research article

On graded weakly *J_{gr}*-semiprime submodules

Malak Alnimer, Khaldoun Al-Zoubi* and Mohammed Al-Dolat

Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan

* Correspondence: Email: kfzoubi@just.edu.jo.

Abstract: Let Γ be a group, \mathcal{A} be a Γ -graded commutative ring with unity 1, and \mathcal{D} a graded \mathcal{A} module. In this paper, we introduce the concept of graded weakly J_{gr} -semiprime submodules as a generalization of graded weakly semiprime submodules. We study several results concerning of graded weakly J_{gr} -semiprime submodules. For example, we give a characterization of graded weakly J_{gr} -semiprime submodules. Also, we find some relations between graded weakly J_{gr} -semiprime submodules and graded weakly semiprime submodules. In addition, the necessary and sufficient condition for graded submodules to be graded weakly J_{gr} -semiprime submodules are investigated. A proper graded submodule U of \mathcal{D} is said to be a graded weakly J_{gr} -semiprime submodule of \mathcal{D} if whenever $r_g \in h(\mathcal{A}), m_h \in h(\mathcal{D})$ and $n \in \mathbb{Z}^+$ with $0 \neq r_g^n m_h \in U$, then $r_g m_h \in U + J_{gr}(\mathcal{D})$, where $J_{gr}(\mathcal{D})$ is the graded Jacobson radical of \mathcal{D} .

Keywords: graded weakly J_{gr} -semiprime submodule; graded J_{gr} -semiprime submodule; graded weakly semiprime submodule

Mathematics Subject Classification: 13A02, 16W50

1. Introduction

Throughout this work, we assume that \mathcal{A} is a commutative Γ -graded ring with identity and \mathcal{D} is a unitary graded *A*-module.

The study of graded rings and modules has attracted the attentions of many researchers for a long time due to their important applications in many fields in such as geometry and physics. For example, graded Lie algebra plays a significant role in differential geometry, such as with Frolicher-Nijenhuis, as well as the Nijenhuis-Richardson bracket (see [12]). In addition, they solve many physical problems related to supermanifolds, supersymmetries and quantizations of systems with symmetry (see [6, 17]). Recently, some classical notions and definitions have been extended and generalized. For instance: the concepts of graded weakly semiprime ideals have been extended to the concepts of graded weakly semiprime submodules (see [2, 9, 10, 13, 18]). The main goal of this paper is to study the theory of graded modules over graded commutative rings. In particular, we introduce graded weakly J_{gr} -semiprime submodules, which are a generalization of graded weakly semiprime submodules. Also, several results concerning graded weakly J_{gr} -semiprime submodules will be given.

Let Γ be a group. A ring \mathcal{A} is said to be a Γ -graded ring if there exist additive subgroups \mathcal{A}_g of \mathcal{A} indexed by the elements $g \in \Gamma$ with $\mathcal{A} = \bigoplus_{g \in \Gamma} \mathcal{A}_g$ and $\mathcal{A}_g \mathcal{A}_h \subseteq \mathcal{A}_{gh}$ for all $g, h \in \Gamma$. We set $h(\mathcal{A}) := \bigcup_{g \in \Gamma} \mathcal{A}_g$. If $t \in \mathcal{A}$, then t can be written uniquely as $\sum_{g \in \Gamma} t_g$, where t_g is called a homogeneous component of t in \mathcal{A}_g . Let $\mathcal{A} = \bigoplus_{g \in \Gamma} \mathcal{A}_g$ be a Γ -graded ring. An ideal L of \mathcal{A} is said to be a graded ideal if $L = \bigoplus_{g \in \Gamma} (L \cap \mathcal{A}_g) := \bigoplus_{g \in \Gamma} L_g$. By $L \leq_{\Gamma}^{id} \mathcal{A}$, we mean that L is a graded ideal of \mathcal{A} . Also, by $L <_{\Gamma}^{id} \mathcal{A}$, we mean that L is a proper graded ideal of \mathcal{A} . Let \mathcal{A} be a Γ -graded ring, and \mathcal{D} an \mathcal{A} -module. Then, \mathcal{D} is a Γ -graded \mathcal{A} -module if there exists a family of additive subgroups $\{\mathcal{D}_g\}_{g\in\Gamma}$ of \mathcal{D} with $\mathcal{D} = \bigoplus_{g\in\Gamma} \mathcal{D}_g$ and $\mathcal{R}_g \mathcal{D}_h \subseteq \mathcal{D}_{gh}$ for all $g, h \in \Gamma$. We set $h(\mathcal{D}) := \bigcup_{g\in\Gamma} \mathcal{D}_g$. Let $\mathcal{D} = \bigoplus_{g \in \Gamma} \mathcal{D}_g$ be a graded \mathcal{A} -module. A submodule U of \mathcal{D} is said to be a graded submodule of M if $U = \bigoplus_{g \in \Gamma} (U \cap \mathcal{D}_g) := \bigoplus_{g \in \Gamma} U_g$. By $U \leq_{\Gamma}^{sub} \mathcal{D}$, we mean that U is a Γ -graded submodule of \mathcal{D} . Also, by $U <_{\Gamma}^{sub} \mathcal{D}$, we mean that U is a proper Γ -graded submodule of \mathcal{D} . These basic properties and more information on graded rings and modules can be found in [11, 14–16]. A $<_{\Gamma}^{sub} \mathcal{D}$ is said to be a *Gr-maximal* if there is a $L \leq_{\Gamma}^{sub} \mathcal{D}$ with $U \subseteq L \subseteq \mathcal{D}$, and then U = L or $L = \mathcal{D}$ (see [16]). The graded Jacobson radical of a graded module \mathcal{D} , denoted by $J_{gr}(\mathcal{D})$, is defined to be the intersection of all Gr-maximal submodules of \mathcal{D} (if \mathcal{D} has no Gr-maximal submodule then we shall take, by definition, $J_{gr}(\mathcal{D}) = \mathcal{D}$, (see [16]). A $U <_{\Gamma}^{sub} \mathcal{D}$ is called a graded semiprime (briefly, Gr-semiprime) submodule if, whenever $t_g \in h(\mathcal{A})$, $m_h \in h(\mathcal{D})$ and $n \in \mathbb{Z}^+$ with $t_g^n m_h \in U$, then $t_g m_h \in U$ (see [10]). A $U <_{\Gamma}^{sub} \mathcal{D}$ is called a graded weakly semiprime (briefly, Gr-W-semiprime) submodule if whenever $t_g \in h(\mathcal{A})$, $m_h \in h(\mathcal{D})$ and $n \in \mathbb{Z}^+$ with $0 \neq t_g^n m_h \in U$, then $t_g m_h \in U$ (see [18]). It is shown in [4, Lemma 2.11] that if $U \leq_{\Gamma}^{sub} \mathcal{D}$, then $(U :_{\mathcal{A}} \mathcal{D}) = \{r \in \mathcal{A} : rU \subseteq \mathcal{D}\}$ is a graded ideal of \mathcal{A} . Let $N \leq_{\Gamma}^{sub} \mathcal{D}$ and $I \leq_{\Gamma}^{id} \mathcal{A}$. We use the notation $(N :_{\mathcal{D}} I)$ to denote the graded submodule $\{m \in \mathcal{D} : Im \subseteq N\}$ of \mathcal{D} .

2. Results

Definition 2.1. A proper graded submodule U of \mathcal{D} is said to be a graded weakly J_{gr} -semiprime (briefly, Gr-W- J_{gr} -semiprime) submodule of \mathcal{D} if, whenever $0 \neq r_g^n m_h \in U$ where $r_g \in h(\mathcal{A}), m_h \in h(\mathcal{D})$ and $n \in \mathbb{Z}^+$, then $r_g m_h \in U + J_{gr}(\mathcal{D})$. In particular, a graded ideal L of \mathcal{A} is said to be a graded weakly J_{gr} -semiprime ideal of \mathcal{A} if L is a graded weakly J_{gr} -semiprime submodule of the graded \mathcal{A} -module \mathcal{A} .

It is clear that every Gr-W-semiprime submodule is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} , but the converse is not true in general. This is clear from the following examples.

Example 2.2. Let $\Gamma = \mathbb{Z}_2$ and $\mathcal{A} = \mathbb{Z}$ be a Γ -graded ring with $\mathcal{A}_0 = \mathbb{Z}$, $\mathcal{A}_1 = \{0\}$. Then $\mathcal{D} = \mathbb{Z}_{24}$ is a graded \mathcal{A} -module with $\mathcal{D}_0 = \mathbb{Z}_{24}$ and $\mathcal{D}_1 = \{\overline{0}\}$. Let $U = \{\overline{0}, \overline{8}, \overline{16}\} \leq_{\Gamma}^{sub} \mathbb{Z}_{24}$. Since $J_{gr}(\mathbb{Z}_{24}) = \langle \overline{2} \rangle \cap \langle \overline{3} \rangle = \langle \overline{6} \rangle = \{\overline{0}, \overline{6}, \overline{12}, \overline{18}\}$, and whenever $0 \neq r^k m \in U$ for $r \in h(\mathbb{Z})$, $m \in h(\mathbb{Z}_{24})$ and $k \in \mathbb{Z}^+$ implies that $rm \in U + J_{gr}(\mathbb{Z}_{24}) = \{\overline{0}, \overline{8}, \overline{16}\} + \{\overline{0}, \overline{6}, \overline{12}, \overline{18}\} = \langle \overline{2} \rangle$, we have U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} . However, U is not aGr-W-semiprime submodule of \mathcal{D} since there exist $2 \in h(\mathbb{Z})$, $\overline{2} \in h(\mathbb{Z}_{24})$, and $2 \in \mathbb{Z}^+$ such that $0 \neq 2^2 \cdot \overline{2} = \overline{8} \in U$, but $2 \cdot \overline{2} = \overline{4} \notin U$.

AIMS Mathematics

Example 2.3. Let $G = \mathbb{Z}_2$ and $R = \mathbb{Z}$ be a *G*-graded ring with $R_0 = \mathbb{Z}$ and $R_1 = \{0\}$. Let $M = \mathbb{Z}_{p^{\infty}} = \{\frac{a}{p^n} + \mathbb{Z} : a, n \in \mathbb{Z}, n \ge 0\}$ be a graded *R*-module with $M_0 = \mathbb{Z}_{p^{\infty}}$ and $M_1 = \{0_{\mathbb{Z}_{p^{\infty}}}\} = \{\mathbb{Z}\}$, where *p* is a fixed prime number. Consider the graded submodule $N = \langle \frac{1}{p^3} + \mathbb{Z} \rangle$ of *M*. Then *N* is not a *Gr*-*W*-semiprime submodule of *M*, since $0 \neq p^l(\frac{1}{p^{3+l}} + \mathbb{Z}) = \frac{1}{p^3} + \mathbb{Z} \in N$ but $p(\frac{1}{p^{3+l}} + \mathbb{Z}) \notin N$, where $1 \neq l \in \mathbb{Z}^+$. However, easy computations show that *N* is a *Gr*-*W*-*J*_{gr}-semiprime submodule of *M*.

Following are theorems that give some equivalent characterizations of the $Gr-W-J_{gr}$ -semiprime submodule.

Theorem 2.4. Let $U <_{\Gamma}^{sub} \mathcal{D}$. Then the following statements are equivalent.

- (i) U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} .
- (ii) $(U :_{\mathcal{D}} \langle r_{\sigma}^{n} \rangle) \subseteq (\langle 0 \rangle :_{\mathcal{D}} \langle r_{\sigma}^{n} \rangle) \cup (U + J_{gr}(\mathcal{D}) :_{\mathcal{D}} \langle r_{g} \rangle), \text{ for each } r_{g} \in h(\mathcal{A}).$

(iii) Either $(U :_{\mathcal{D}} \langle r_g^n \rangle) \subseteq (\langle 0 \rangle :_{\mathcal{D}} \langle r_g^n \rangle)$ or $(U :_{\mathcal{D}} \langle r_g^n \rangle) \subseteq (U + J_{gr}(\mathcal{D}) :_{\mathcal{D}} \langle r_g \rangle)$, for each $r_g \in h(\mathcal{A})$.

Proof. (*i*) \rightarrow (*ii*): Let $r_g \in h(\mathcal{A})$ and $m_h \in (U :_{\mathcal{D}} \langle r_g^n \rangle) \cap h(\mathcal{D})$. Then $\langle r_g^n \rangle m_h \subseteq U$, and hence $r_g^n m_h \in U$. If $r_g^n m_h \neq 0$, then $r_g m_h \in U + J_{gr}(\mathcal{D})$ as U is a $Gr - W - J_{gr}$ -semiprime submodule of \mathcal{D} . Hence, $\langle r_g \rangle m_h \subseteq U + J_{gr}(\mathcal{D})$, and it follows that $m_h \in (U + J_{gr}(\mathcal{D}) :_{\mathcal{D}} \langle r_g \rangle)$. Thus, $m_h \in (\langle 0 \rangle :_{\mathcal{D}} \langle r_g^n \rangle) \cup (U + J_{gr}(\mathcal{D}) :_{\mathcal{D}} \langle r_g \rangle)$. If $r_g^n m_h \equiv 0$, then $\langle r_g^n \rangle m_h \subseteq \{0\}$, and so $m_h \in (\langle 0 \rangle :_{\mathcal{D}} \langle r_g^n \rangle)$. Hence, $m_h \in (\langle 0 \rangle :_{\mathcal{D}} \langle r_g^n \rangle) \cup (U + J_{gr}(\mathcal{D}) :_{\mathcal{D}} \langle r_g \rangle)$. Therefore, $(U :_{\mathcal{D}} \langle r_g^n \rangle) \subseteq (\langle 0 \rangle :_{\mathcal{D}} \langle r_g^n \rangle) \cup (U + J_{gr}(\mathcal{D}) :_{\mathcal{D}} \langle r_g \rangle)$.

 $(ii) \rightarrow (iii)$: It is clear.

 $(iii) \rightarrow (i)$: Let $r_g \in h(\mathcal{A}), m_h \in h(\mathcal{D})$, and $n \in \mathbb{Z}^+$ with $0 \neq r_g^n m_h \in U$. Then $\{0\} \neq \langle r_g^n \rangle m_h \subseteq U$, which implies that $m_h \in (U : \langle r_g^n \rangle)$ and $m_h \notin (\langle 0 \rangle :_{\mathcal{D}} \langle r_g^n \rangle)$. Now, by (iii), we get $m_h \in (U + J_{gr}(\mathcal{D}) :_{\mathcal{D}} \langle r_g \rangle)$ and so $r_g m_h \in U + J_{gr}(\mathcal{D})$. Therefore, U is a Gr-W-J_{gr}-semiprime submodule of \mathcal{D} . \Box

Theorem 2.5. Let $U <_{\Gamma}^{sub} \mathcal{D}$. Then the following statements are equivalent.

(i) U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} .

(ii) For every $K \leq_{\Gamma}^{sub} \mathcal{D}$, $r_g \in h(\mathcal{A})$, and $n \in \mathbb{Z}^+$ with $\{0\} \neq \langle r_g \rangle^n K \subseteq U$, then $\langle r_g \rangle K \subseteq U + J_{gr}(\mathcal{D})$.

Proof. (*i*) \Rightarrow (*ii*) Let $K \leq_{\Gamma}^{sub} \mathcal{D}$, $r_g \in h(\mathcal{A})$, and $n \in \mathbb{Z}^+$ with $\{0\} \neq \langle r_g \rangle^n K \subseteq U$. This implies that, $K \subseteq (U :_{\mathcal{D}} \langle r_g^n \rangle)$ and $K \not\subseteq (\langle 0 \rangle :_{\mathcal{D}} \langle r_g^n \rangle)$. Since U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} , by Theorem 2.4 we have $K \subseteq (U :_{\mathcal{D}} \langle r_g^n \rangle) \subseteq (U + J_{gr}(\mathcal{D}) :_{\mathcal{D}} \langle r_g \rangle)$, hence $\langle r_g \rangle K \subseteq U + J_{gr}(\mathcal{D})$.

 $(ii) \Rightarrow (i)$ Let $0 \neq r_g^n m_h \in U$ where $r_g \in h(\mathcal{A})$, $m_h \in h(\mathcal{D})$, and $n \in \mathbb{Z}^+$. Then $\{0\} \neq \langle r_g \rangle^n \langle m_h \rangle \subseteq U$. Now, by (ii), we have $\langle r_g \rangle \langle m_h \rangle \subseteq U + J_{gr}(\mathcal{D})$, and it follows that $r_g m_h \in U + J_{gr}(\mathcal{D})$. Therefore, U is a *Gr-W-J_{gr}*-semiprime submodule of \mathcal{D} .

The following corollaries follow directly from Theorem 2.5.

Corollary 2.6. Let $U <_{\Gamma}^{sub} \mathcal{D}$. Then U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} if and only if for every $r_g \in h(\mathcal{A})$, and $n \in \mathbb{Z}^+$ with $\{0\} \neq \langle r_g^n \rangle \mathcal{D} \subseteq U$, then $\langle r_g \rangle \mathcal{D} \subseteq U + J_{gr}(\mathcal{D})$.

Corollary 2.7. Let $U <_{\Gamma}^{sub} \mathcal{D}$. Then U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} if and only if for every $r_g \in h(\mathcal{A}), K \leq_{\Gamma}^{sub} \mathcal{D}$ and $n \in \mathbb{Z}^+$ with $\{0\} \neq r_g^n K \subseteq U$, then $r_g K \subseteq U + J_{gr}(\mathcal{D})$.

Theorem 2.8. Let U be a Gr-W-J_{gr}-semiprime submodule of \mathcal{D} with $J_{gr}(\mathcal{D}) \subseteq U$. Then U is a Gr-W-semiprime submodule of \mathcal{D} .

Proof. Let $r_g \in h(\mathcal{A})$, $m_h \in h(\mathcal{D})$, and $n \in \mathbb{Z}^+$ with $0 \neq r_g^n m_h \in U$. Since U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} and $J_{gr}(\mathcal{D}) \subseteq U$, we have $r_g m_h \in U + J_{gr}(\mathcal{D}) = U$. Therefore, U is a Gr-W-semiprime submodule of \mathcal{D} .

Let \mathcal{A} be a Γ -graded ring and \mathcal{D} , \mathcal{D}' be two graded \mathcal{A} -modules. Let $\varphi : \mathcal{D} \to \mathcal{D}'$ be an \mathcal{A} -module homomorphsim. Then, φ is said to be a graded homomorphsim if $\varphi(\mathcal{D}_g) \subseteq \mathcal{D}'_g$ for all $g \in \Gamma$, see [16].

Theorem 2.9. Let $U <_{\Gamma}^{sub} \mathcal{D}$. If $J_{gr}(\mathcal{D}/U) = \{U\}$, then $J_{gr}(\mathcal{D}) \subseteq U$.

Proof. Define $\varphi : \mathcal{D} \to \mathcal{D}/U$ as a graded homeomorphism given by $\varphi(x) = x + U$ for all $x \in h(\mathcal{D})$; by [3, Theorem 2.12 (i)], $\varphi(J_{gr}(\mathcal{D})) \subseteq J_{gr}(\mathcal{D}/U)$. Since $J_{gr}(\mathcal{D}/U) = \{U\}$, then $\{U\} \subseteq \varphi(J_{gr}(\mathcal{D})) \subseteq \{U\}$, so we have $\varphi(J_{gr}(\mathcal{D})) = \{U\}$, thus $J_{gr}(\mathcal{D}) \subseteq Ker\varphi = U$.

Corollary 2.10. Let U be a Gr-W-J_{gr}-semiprime submodule of \mathcal{D} with $J_{gr}(\frac{\mathcal{D}}{U}) = \{U\}$. Then U is a Gr-W-semiprime submodule of \mathcal{D} .

Proof. This is clear by Theorems 2.9 and 2.8.

A graded \mathcal{A} -module \mathcal{D} is a graded semisimple (*Gr*-semisimple) if and only if every graded submodule U of \mathcal{D} is a direct summand. That is \mathcal{D} is a *Gr*-semisimple if and only if for every graded submodule U of \mathcal{D} there exists L, a graded submodule of \mathcal{D} such that $\mathcal{D} = U \oplus L$.

A graded submodule U is called a graded small (Gr-small) if $\mathcal{D} = U + V$ for $V \leq_{\Gamma}^{sub} \mathcal{D}$ implies that $V = \mathcal{D}$, see [1].

Theorem 2.11. Let \mathcal{D} be a Gr-semisimple \mathcal{A} -module and U be a Gr-W-J_{gr}-semiprime submodule of \mathcal{D} . Then U is a Gr-W-semiprime submodule of \mathcal{D} .

Proof. Let \mathcal{D} be a *Gr*-semisimple \mathcal{A} -module. Then every graded submodule of \mathcal{D} is a direct summand. Thus, the only *Gr*-small sumodule of \mathcal{D} is {0}, and it follows that $J_{gr}(\mathcal{D}) = \sum \{S : S \text{ is a } Gr\text{-small submodule of } \mathcal{D} \} = \{0\} \subseteq U$ by [3, Theorem 2.10]. Since *U* is a *Gr*-*W*-*J*_{gr}-semiprime submodule of \mathcal{D} , by Theorem 2.8, then *U* is a *Gr*-*W*-semiprime submodule of \mathcal{D} .

Recall from [4] that a graded module \mathcal{D} is said to be a graded torsion (*Gr*-torsion) free \mathcal{A} -module if, whenever $r_g m_h = 0$ where $r_g \in h(\mathcal{A})$ and $m_h \in h(\mathcal{D})$, then either $m_h = 0$ or $r_g = 0$.

Theorem 2.12. Let \mathcal{D} be a Gr-torsion free \mathcal{A} -module, and $U \leq_{\Gamma}^{sub} \mathcal{D}$ with $J_{gr}(\frac{\mathcal{D}}{U}) = \{U\}$. Then U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} if and only if for any nonzero $L \leq_{\Gamma}^{id} \mathcal{A}$, $(U :_{\mathcal{D}} L)$ is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} .

Proof. (\Longrightarrow) Let $0 \neq L \leq_{\Gamma}^{id} \mathcal{A}, m_h \in h(\mathcal{D}), r_g \in h(\mathcal{A}), \text{ and } n \in \mathbb{Z}^+$ with $0 \neq r_g^n m_h \in (U :_{\mathcal{D}} L)$. Then $\{0\} \neq \langle r_g^n \rangle m_h \subseteq (U :_{\mathcal{D}} L)$, and hence $\langle r_g^n \rangle (Lm_h) \subseteq U$. If $\langle r_g^n \rangle (Lm_h) = \{0\}$, so there exists $0 \neq i \in L \cap h(\mathcal{A})$ with $\langle r_g^n \rangle im_h = \{0\}$, so $i \cdot r_g^n m_h = 0$. Hence, $r_g^n m_h = 0$ as \mathcal{D} is a *Gr*-torsion free \mathcal{A} -module, which is a contradiction. So, assume that $\langle r_g \rangle^n (Lm_h) = \langle r_g^n \rangle (Lm_h) \neq \{0\}$. Since U is a *Gr*-*W*-*J*_{gr}-semiprime submodule of \mathcal{D} , by Theorem 2.5, $\langle r_g \rangle (Lm_h) \subseteq U + J_{gr}(\mathcal{D})$. But, $J_{gr}(\frac{\mathcal{D}}{U}) = \{U\}$, and by Theorem 2.9, we have $J_{gr}(\mathcal{D}) \subseteq U$ so $\langle r_g \rangle (Lm_h) \subseteq U$. This implies that, $\langle r_g \rangle m_h \subseteq (U :_{\mathcal{D}} L) \subseteq (U :_{\mathcal{D}} L) + J_{gr}(\mathcal{D})$ and hence $r_g m_h \in (U :_{\mathcal{D}} L) \subseteq (U :_{\mathcal{D}} L) + J_{gr}(\mathcal{D})$. Therefore, $(U :_{\mathcal{D}} L)$ is a *Gr*-*W*-*J*_{gr}-semiprime submodule of \mathcal{D} .

(⇐) Assume that $(U :_{\mathcal{D}} L)$ is a $Gr-W-J_{gr}$ -semiprime submodule of \mathcal{D} for any nonzero $L \leq_{\Gamma}^{id} \mathcal{A}$. Put $\mathcal{A} = L$, then $U = (U :_{\mathcal{D}} \mathcal{A})$ is a $Gr-W-J_{gr}$ -semiprime submodule of \mathcal{D} .

Recall from [7] that a graded \mathcal{A} -module \mathcal{D} is called a graded multiplication module (*Gr*multiplication module) if for every $U \leq_{\Gamma}^{sub} \mathcal{D}$ there exists a $K \leq_{\Gamma}^{id} \mathcal{A}$ such that $U = K\mathcal{D}$. If \mathcal{D} is a *Gr*-multiplication \mathcal{A} -module, $U = (U :_{\mathcal{A}} \mathcal{D})\mathcal{D}$ for every $U \leq_{\Gamma}^{sub} \mathcal{D}$.

The set of all homogeneous zero divisors of \mathcal{A} is $G - Z(\mathcal{A}) = \{r \in h(\mathcal{A}) : rs = 0 \text{ for some } 0 \neq s \in h(\mathcal{A})\}$, and the set of all homogeneous regular elements is $G - C(\mathcal{A}) = \{c \in h(\mathcal{A}) : c \notin G - Z(\mathcal{A})\} = \{c \in h(\mathcal{A}) : cr \neq 0 \text{ for all } 0 \neq r \in h(\mathcal{A})\}$. It is clear that \mathcal{D} is a *Gr*-torsion free if and only if $cm \neq 0$ for all $c \in G - C(\mathcal{A})$ and $0 \neq m \in h(\mathcal{D})$.

Theorem 2.13. Every faithful Gr-multiplication A-module is a Gr-torsion free.

Proof. Suppose that, \mathcal{D} is not *Gr*-torsion free. Hence, there exist $c \in G$ - $C(\mathcal{A})$ and $0 \neq m \in h(\mathcal{D})$ with cm = 0. Since \mathcal{D} is a faithful *Gr*-multiplication \mathcal{A} -module, there exists an $L \leq_{\Gamma}^{id} \mathcal{A}$ with $\mathcal{A}m = L\mathcal{D}$, and so $\mathcal{A}cm = cL\mathcal{D}$. This implies that $(cL)\mathcal{D} = \{0\}$. Since \mathcal{D} is a faithful, $cL = \{0\}$. Hence, $c \in G$ - $Z(\mathcal{A})$ since $L \neq 0$, and so $c \notin G$ - $C(\mathcal{A})$, which is a contradiction. Therefore, \mathcal{D} is *Gr*-torsion free. \Box

Corollary 2.14. Let \mathcal{D} be a faithful Gr-multiplication \mathcal{A} -module and $U \leq_{\Gamma}^{sub} \mathcal{D}$, with $J_{gr}(\frac{\mathcal{D}}{U}) = \{U\}$. Then, U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} if and only if for any nonzero $L \leq_{\Gamma}^{id} \mathcal{A}$, $(U :_{\mathcal{D}} L)$ is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} .

Proof. Follows by Theorems 2.13 and 2.12.

Theorem 2.15. Let U be Gr-small submodule of \mathcal{D} with $J_{gr}(\mathcal{D})$ a Gr-W-semiprime submodule of \mathcal{D} . Then, U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} .

Proof. Let $r_g \in h(\mathcal{A})$, $m_h \in h(\mathcal{D})$, and $n \in \mathbb{Z}^+$ with $0 \neq r_g^n m_h \in U$. Since U is a Gr-small submodule of \mathcal{D} , then by [3, Theorem 2.10], $U \subseteq J_{gr}(\mathcal{D}) = \sum \{A : A \text{ is a } Gr\text{-small submodule of } \mathcal{D}\}$, so $0 \neq r_g^n m_h \in J_{gr}(\mathcal{D})$, since $J_{gr}(\mathcal{D})$ is a Gr-W-semiprime submodule of \mathcal{D} , then $r_g m_h \in J_{gr}(\mathcal{D}) \subseteq U + J_{gr}(\mathcal{D})$. Therefore U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} .

Recall from [16] that graded \mathcal{A} -module \mathcal{D} is said to be a graded finitely generated (*Gr*-finitely generated) if $\mathcal{D} = \mathcal{A}a_{g1} + \dots + \mathcal{A}a_{gn}$ for some $a_{g1}, a_{g2}, \dots, a_{gn} \in h(\mathcal{D})$.

Theorem 2.16. Let \mathcal{D} be a Gr-finitely generated Gr-multiplication \mathcal{A} -module and L be a Gr-W- J_{gr} -semiprime ideal of \mathcal{A} with $ann_{\mathcal{A}}(\mathcal{D}) \subseteq L$. Then $L\mathcal{D}$ is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} .

Proof. Let $r_g \in h(\mathcal{A}), m_h \in h(\mathcal{D})$, and $k \in \mathbb{Z}^+$ with $0 \neq r_g^k m_h \in L\mathcal{D}$. Then $\{0\} \neq r_g^k \langle m_h \rangle \subseteq L\mathcal{D}$. Since \mathcal{D} is a *Gr*-multiplication, $\langle m_h \rangle = J\mathcal{D}$ for some $J \leq_{\Gamma}^{id} \mathcal{A}$, and hence $\{0\} \neq r_g^k J\mathcal{D} \subseteq L\mathcal{D}$. This implies that $\{0\} \neq r_g^k J \subseteq L + ann_{\mathcal{A}}(\mathcal{D})$ by [5, Lemma 3.9]. Since $ann_{\mathcal{A}}(\mathcal{D}) \subseteq L$, and it follows that $\{0\} \neq r_g^k J \subseteq L$. Hence, $r_g J \subseteq L + J_{gr}(\mathcal{A})$ as L is a Gr-*W*- J_{gr} -semiprime ideal of \mathcal{A} . Thus, $r_g J\mathcal{D} \subseteq L\mathcal{D} + J_{gr}(\mathcal{A})\mathcal{D} \subseteq L\mathcal{D} + J_{gr}(\mathcal{D})$, and so $r_g m_h \in r_g \langle m_h \rangle \subseteq L\mathcal{D} + J_{gr}(\mathcal{D})$. Therefore, $L\mathcal{D}$ is a Gr-*W*- J_{gr} -semiprime submodule of \mathcal{D} .

The following example shows that the residual of the $Gr-W-J_{gr}$ -semiprime submodule is not necessarily a $Gr-W-J_{gr}$ -semiprime ideal.

Example 2.17. Let $\Gamma = \mathbb{Z}_2$ and $\mathcal{A} = \mathbb{Z}$ be a Γ -graded ring such that $\mathcal{A}_0 = \mathbb{Z}$ and $\mathcal{A}_1 = \{0\}$. Let $\mathcal{D} = \mathbb{Z}_8$ be a graded \mathcal{A} -module such that $\mathcal{D}_0 = \mathbb{Z}_8$ and $\mathcal{D}_1 = \{\overline{0}\}$. Let $U = \{\overline{0}, \overline{4}\} = \langle \overline{4} \rangle \leq_{\Gamma}^{sub} \mathcal{D}$. Thus, it is a *Gr-W- J*_{gr}-semiprime submodule of \mathcal{D} where $J_{gr}(\mathcal{D}) = \langle \overline{2} \rangle$. However $(U :_{\mathcal{A}} \mathcal{D}) = 4\mathbb{Z}$ is not a *Gr-W-J*_{gr}-semiprime ideal of \mathcal{A} , since $0 \neq 2^2 \cdot 1 \in (U :_{\mathcal{A}} \mathcal{D})$ where 2, $1 \in h(\mathcal{A})$, but $2 \cdot 1 \notin (U :_{\mathcal{A}} \mathcal{D}) + J_{gr}(\mathcal{A}) = 4\mathbb{Z} + (0) = 4\mathbb{Z}$.

The following theorems show that the residual of a $Gr-W-J_{gr}$ -semiprime submodule is a $Gr-W-J_{gr}$ -semiprime ideal with under conditions.

Theorem 2.18. Let \mathcal{D} be a Gr-faithful \mathcal{A} -module, and $U \leq_{\Gamma}^{sub} \mathcal{D}$ with $J_{gr}(\mathcal{D}/U) = \{U\}$ and $J_{gr}(\mathcal{A}) \subseteq (U :_{\mathcal{A}} \mathcal{D})$. Then U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} if and only if $(U :_{\mathcal{A}} \mathcal{D})$ is a Gr-W- J_{gr} -semiprime ideal of \mathcal{A} .

Proof. (\Rightarrow) Let $a_g, b_h \in h(\mathcal{A})$ and $k \in \mathbb{Z}^+$ with $0 \neq a_g^k b_h \in (U :_{\mathcal{A}} \mathcal{D})$. Hence, $\{0\} \neq a_g^k b_h \mathcal{D} \subseteq U$. Since U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} , by Corollary 2.7, we have $a_g b_h \mathcal{D} \subseteq U + J_{gr}(\mathcal{D})$. By Theorem 2.9, we have $J_{gr}(\mathcal{D}) \subseteq U$ since $J_{gr}(\mathcal{D}/U) = \{U\}$. This implies that $a_g b_h \mathcal{D} \subseteq U$. Thus, $a_g b_h \in (U :_{\mathcal{A}} \mathcal{D}) \subseteq (U :_{\mathcal{A}} \mathcal{D}) + J_{gr}(\mathcal{A})$. Therefore, $(U :_{\mathcal{A}} \mathcal{D})$ is a Gr-W- J_{gr} -semiprime ideal of \mathcal{A} .

(\Leftarrow) Let $r_g \in h(\mathcal{A})$ and $n \in \mathbb{Z}^+$ with $\{0\} \neq \langle r_g \rangle^n \mathcal{D} \subseteq U$. Hence, $\{0\} \neq \langle r_g \rangle^n \subseteq (U :_{\mathcal{A}} \mathcal{D})$ (if $\langle r_g \rangle^n = \{0\}$, then $\langle r_g \rangle^n \mathcal{D} = \{0\}$ as a contradiction), it follows that $0 \neq r_g^n$. $1 \in (U :_{\mathcal{A}} \mathcal{D})$. Hence, $r_g \cdot 1 \in (U :_{\mathcal{A}} \mathcal{D}) + J_{gr}(\mathcal{A})$ as $(U :_{\mathcal{A}} \mathcal{D})$ is a Gr-W- J_{gr} -semiprime ideal of \mathcal{A} . Since $J_{gr}(\mathcal{A}) \subseteq (U :_{\mathcal{A}} \mathcal{D})$, we have $r_g \in (U :_{\mathcal{A}} \mathcal{D})$, and it follows that $\langle r_g \rangle \subseteq (U :_{\mathcal{A}} \mathcal{D})$. This yields that $\langle r_g \rangle \mathcal{D} \subseteq U \subseteq U + J_{gr}(\mathcal{D})$. Thus; U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} by Corollary 2.6.

Recall that a graded \mathcal{A} -module \mathcal{D} is said to be a graded cancellation (*Gr*-cancellation) if for any graded ideals *K* and *L* of \mathcal{A} , $K\mathcal{D} = L\mathcal{D}$, we have K = L, see [8].

Theorem 2.19. Let \mathcal{D} be a Gr-finitely generated faithful Gr-multiplication \mathcal{A} -module and $U <_{\Gamma}^{sub} \mathcal{D}$. Then U is a Gr-W-J_{gr}-semiprime submodule of \mathcal{D} if and only if $(U :_{\mathcal{A}} \mathcal{D})$ is a Gr-W-J_{gr}-semiprime ideal of \mathcal{A} .

Proof. (\Rightarrow) Let $a_g, b_h \in h(\mathcal{A})$ and $k \in \mathbb{Z}^+$ with $0 \neq a_g^k b_h \in (U :_{\mathcal{A}} \mathcal{D})$. Hence, $\{0\} \neq a_g^k b_h \mathcal{D} \subseteq U$. (if $a_g^k b_h \mathcal{D} = \{0\}$, then $a_g^k b_h = 0$ since \mathcal{D} is a faithful as a contradiction). Since U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} , by Corollary 2.7 we get $a_g b_h \mathcal{D} \subseteq U + J_{gr}(\mathcal{D})$. This implies that $a_g b_h \mathcal{D} \subseteq (U :_{\mathcal{A}} \mathcal{D})\mathcal{D} + J_{gr}(\mathcal{D})$ as \mathcal{D} is a Gr-multiplication module. Since $J_{gr}(\mathcal{D}) = J_{gr}(\mathcal{A})\mathcal{D}$, we have $a_g b_h \mathcal{D} \subseteq (U :_{\mathcal{A}} \mathcal{D})\mathcal{D} + J_{gr}(\mathcal{A})\mathcal{D} = ((U :_{\mathcal{A}} \mathcal{D}) + J_{gr}(\mathcal{A}))\mathcal{D}$, so $\langle a_g b_h \rangle \mathcal{D} \subseteq ((U :_{\mathcal{A}} \mathcal{D}) + J_{gr}(\mathcal{A}))\mathcal{D}$. Since \mathcal{D} is a Gr-finitely generated faithful Gr-multiplication by [8, Theorem 2.10], we get $\langle a_g b_h \rangle \subseteq (U :_{\mathcal{A}} \mathcal{D})$ $\mathcal{D} + J_{gr}(\mathcal{A})$. Hence, $\langle a_g b_h \rangle \subseteq (U :_{\mathcal{A}} \mathcal{D}) + J_{gr}(\mathcal{A})$, so $a_g b_h \in (U :_{\mathcal{A}} \mathcal{D}) + J_{gr}(\mathcal{A})$. Therefore, $(U :_{\mathcal{A}} \mathcal{D})$ is a Gr-W- J_{gr} -semiprime ideal of \mathcal{A} .

(\Leftarrow) Let $\{0\} \neq r_g^n K \subseteq U$ where $r_g \in h(\mathcal{A})$ and $K \leq_{\Gamma}^{sub} \mathcal{D}$. Since \mathcal{D} is a *Gr*-multiplication \mathcal{A} -module, then there exists nonzero $L \leq_{\Gamma}^{id} \mathcal{A}$ with $K = L\mathcal{D}$, and it follows that $\{0\} \neq r_g^n L\mathcal{D} \subseteq U$, hence $\{0\} \neq r_g^n L \subseteq (U :_{\mathcal{A}} \mathcal{D})$. So, $r_g L \subseteq (U :_{\mathcal{A}} \mathcal{D}) + J_{gr}(\mathcal{A})$ as $(U :_{\mathcal{A}} \mathcal{D})$ is a *Gr*-*W*-*J*_{gr}-semiprime ideal of \mathcal{A} . Hence, $r_g L\mathcal{D} \subseteq (U :_{\mathcal{A}} \mathcal{D})\mathcal{D} + J_{gr}(\mathcal{A})\mathcal{D} \subseteq (U :_{\mathcal{A}} \mathcal{D})\mathcal{D} + J_{gr}(\mathcal{D})$. This implies that, $r_g K \subseteq U + J_{gr}(\mathcal{D})$ as \mathcal{D} is a *Gr*-multiplication \mathcal{A} -module. Thus, U is a *Gr*-*W*-*J*_{gr}-semiprime submodule of \mathcal{D} by Corollary 2.7.

Theorem 2.20. Let \mathcal{D} be a Gr-finitely generated faithful Gr-multiplication \mathcal{A} -module and $U <_{\Gamma}^{sub} \mathcal{D}$. Then the following statements are equivalent:

- (i) U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} .
- (ii) $(U :_{\mathcal{A}} \mathcal{D})$ is a Gr-W-J_{gr}-semiprime ideal of \mathcal{A} .
- (iii) $U = L\mathcal{D}$ for some a Gr-W-J_{gr}-semiprime ideal L of \mathcal{A} .

 $(i) \Rightarrow (ii)$. By Theorem 2.19,

[(ii) \Rightarrow (iii)] Since \mathcal{D} is a *Gr*-multiplication \mathcal{A} -module, $U = (U :_{\mathcal{A}} \mathcal{D})\mathcal{D}$, where $(U :_{\mathcal{A}} \mathcal{D})$ is a *Gr*-*W*- J_{gr} -semiprime ideal of \mathcal{A} .

[(iii) \Rightarrow (i)] Let $U = L\mathcal{D}$ for some Gr-W- J_{gr} -semiprime ideal L of \mathcal{A} . Let $\{0\} \neq \langle r_g \rangle^n \mathcal{D} \subseteq U$ where $r_g \in h(\mathcal{A})$ and $n \in \mathbb{Z}^+$, then $\{0\} \neq \langle r_g \rangle^n \mathcal{D} \subseteq L\mathcal{D}$. Since \mathcal{D} is a Gr-finitely generated faithful Gr-multiplication, by [8, Theorem 2.10], \mathcal{D} is a Gr-cancellation. Thus, $\{0\} \neq \langle r_g \rangle^n \subseteq L$. Since L is a Gr-W- J_{gr} -semiprime ideal of \mathcal{A} , $\langle r_g \rangle \subseteq L + J_{gr}(\mathcal{A})$, and it follows that $\langle r_g \rangle \mathcal{D} \subseteq L\mathcal{D} + J_{gr}(\mathcal{A})\mathcal{D}$. This yields that $\langle r_g \rangle \mathcal{D} \subseteq U + J_{gr}(\mathcal{D})$ since $J_{gr}(\mathcal{D}) = J_{gr}(\mathcal{A})\mathcal{D}$. Therefore, U is a Gr-W- J_{gr} -semiprime submodule of \mathcal{D} .

3. Conclusions

In this paper, we introduced the concept of graded weakly J_{gr} -semiprime submodules of a graded module over a commutative graded ring, which is a generalization of graded weakly semiprime submodules. Also, we proved several properties as well as characterizations of graded weakly J_{gr} semiprime submodules. Finally, we established the necessary and sufficient condition for graded submodules to be graded weakly J_{gr} -semiprime submodules.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors wish to thank sincerely the referees for their valuable comments and suggestions.

Conflict of interest

The authors declare no conflict of interest.

References

- K. Al-Zoubi, A. Al-Qderat, Some properties of graded comultiplication modules, *Open Math.*, 15 (2017), 187–192. https://doi.org/10.1515/math-2017-0016
- 2. K. Al-Zoubi, R. Abu-Dawwas, I. Al-Ayyoub, Graded semiprime submodules and graded semi-radical of graded submodules in graded modules, *Ricerche Math.*, **66** (2017), 449–455. https://doi.org/10.1007/s11587-016-0312-x
- 3. K. Al-Zoubi, S. Alghueiri, On graded J_{gr}-semiprime submodules, *Ital. J. Pure Appl. Math.*, **46** (2021), 361–369.
- 4. S. E. Atani, On graded prime submodules, Chiang Mai J. Sci., 33 (2006), 3-7.
- 5. S. E. Atani, R. E. Atani, Graded multiplication modules and the graded ideal $\theta_g(M)$, *Turk. J. Math.*, **33** (2009), 1–9.

- 6. P. Deligne, *Quantum fields and strings: A course for mathematicians*, American Mathematical Society, 1999.
- 7. J. Escoriza, B. Torrecillas, Multiplication objects in commutative grothendieck categories, *Comm. Alge.*, **26** (1998), 1867–1883. https://doi.org/10.1080/00927879808826244
- 8. F. Farzalipour, On graded almost semiprime submodules, J. Algebra Relat. Topics, 1 (2013), 41-55.
- 9. F. Farzalipour, P. Ghiasvand, On graded semiprime and graded weakly semiprime ideals, *Int. Electron. J. Algebra*, **13** (2013), 15–22.
- 10. F. Farzalipour, P. Ghiasvand, On graded semiprime submodules, Int. J. Math. Comput. Sci., 6 (2012), 694–697.
- 11. R. Hazrat, Graded rings and graded grothendieck groups, Cambridge University Press, 2016.
- 12. I. Kolar, P. W. Michor, J. Slovak, *Natural operations in differential geometry*, Springer Science Business Media, 2013.
- S. C. Lee, R. Varmazyar, Semiprime submodules of Graded multiplication modules, J. Korean Math. Soc, 49 (2012), 435–447. http://dx.doi.org/10.4134/JKMS.2012.49.2.435
- 14. C. Nastasescu, F. Van Oystaeyen, Graded and filtered rings and modules, Berlin: Springer, 1979
- 15. C. Nastasescu, F. Van Oystaeyen, Graded ring theory, Amsterdam: Mathematical Library, 1982.
- C. Nastasescu, F. Van Oystaeyen, *Methods of graded rings*, Berlin-Heidelberg: Springer-Verlag, 2004. http://dx.doi.org/10.1007/b94904
- 17. A. Rogers, Supermanifolds: Theory and applications, World Scientific, 2007.
- H. A. Tavallaee, M. Zolfaghari, Graded weakly semiprime submodules of graded multiplication modules, *Lobachevskii J. Math.*, 34 (2013), 61–67. http://dx.doi.org/ 10.1134/S1995080213010113

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)