Processing math: 100%
Research article

Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations

  • Received: 19 April 2021 Accepted: 18 August 2021 Published: 24 August 2021
  • MSC : 60F15

  • Limit theorems of sub-linear expectations are challenging field that has attracted widespread attention in recent years. In this paper, we establish some results on complete integration convergence for weighted sums of arrays of rowwise extended negatively dependent random variables under sub-linear expectations. Our results generalize the complete moment convergence of the probability space to the sub-linear expectation space.

    Citation: Shuyan Li, Qunying Wu. Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations[J]. AIMS Mathematics, 2021, 6(11): 12166-12181. doi: 10.3934/math.2021706

    Related Papers:

    [1] Lunyi Liu, Qunying Wu . Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(9): 22319-22337. doi: 10.3934/math.20231138
    [2] Mingzhou Xu, Kun Cheng, Wangke Yu . Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2022, 7(11): 19998-20019. doi: 10.3934/math.20221094
    [3] Mingzhou Xu, Xuhang Kong . Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(4): 8504-8521. doi: 10.3934/math.2023428
    [4] Mingzhou Xu . Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(8): 19442-19460. doi: 10.3934/math.2023992
    [5] He Dong, Xili Tan, Yong Zhang . Complete convergence and complete integration convergence for weighted sums of arrays of rowwise $ m $-END under sub-linear expectations space. AIMS Mathematics, 2023, 8(3): 6705-6724. doi: 10.3934/math.2023340
    [6] Mingzhou Xu . Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(7): 17067-17080. doi: 10.3934/math.2023871
    [7] Chengcheng Jia, Qunying Wu . Complete convergence and complete integral convergence for weighted sums of widely acceptable random variables under the sub-linear expectations. AIMS Mathematics, 2022, 7(5): 8430-8448. doi: 10.3934/math.2022470
    [8] Xiaocong Chen, Qunying Wu . Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations. AIMS Mathematics, 2022, 7(6): 9694-9715. doi: 10.3934/math.2022540
    [9] Mingzhou Xu . On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2024, 9(2): 3369-3385. doi: 10.3934/math.2024165
    [10] Haiye Liang, Feng Sun . Exponential inequalities and a strong law of large numbers for END random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(7): 15585-15599. doi: 10.3934/math.2023795
  • Limit theorems of sub-linear expectations are challenging field that has attracted widespread attention in recent years. In this paper, we establish some results on complete integration convergence for weighted sums of arrays of rowwise extended negatively dependent random variables under sub-linear expectations. Our results generalize the complete moment convergence of the probability space to the sub-linear expectation space.



    The study of sub-linear expectation is a new direction of probability limit theory and has attracted great attention in the field in recent years. Probability limit theory is mainly good at dealing with those situations where the corresponding probability model can be determined by mathematical statistical methods and data analysis. However, most random variables in the real world have different degrees of uncertainty. How to analyze and calculate the financial and economic problems under uncertainty has become an important concern at present. Compared with the classical linear model, sub-linear expectation theory is more complex and more challenging. By relaxing the linear property of classical expectation to sub-additivity and positive homogeneity, we can obtain many interesting properties. Peng [1,2] first introduced the concept and framework of sub-linear expectation, and provided the corresponding basic properties. Under the sub-linear expectation, Peng [3,4] developed the law of weak large numbers and the central limit theorem for independent identically distributed random variables. Subsequently, Zhang [5,6,7] did a series of studies on the basis of the framework established by Peng, proved the exponential inequality and Rosenthal's inequality, and obtained Kolmogorov's strong law of larger numbers and Hartman-Wintner's law of iterated logarithm. Zhang's work provides us with a powerful tool for studying theorems under sub-linear expectations.

    Complete convergence and complete moment convergence are two very important ideas in probability limit theory. Chow [8] first proposed the concept of complete convergence for sequences of independent random variables. Complete moment convergence is a more accurate convergence than complete convergence. A large number of scholars have studied the theorems of complete moment convergence for random variable sequences, and obtained many related results in the classical probability space. Wang [9,10] studied the complete moment convergence of difference sequences and random variables satisfying the Rosenthal-type inequality. Qiu [11] and Yi [12] extended the sequence suitable for the complete moment convergence again, and both obtained the complete moment convergence of END sequence. In recent years, Some scholars have also begun to study the complete integral convergence, but the results are relatively few. Lu [13] proved the complete integral convergence of wise widely negative dependent random variables under sub-linear expectation. Zhong and Wu [14] studied the complete integral convergence of the weighted sum of the END variable under sub-linear expectation space context. Liang and Wu [15] extend complete integral convergence theorems for END sequences of random variables. Li and Wu [16] discuss the property of complete integral convergence and obtain the result of q-th integral convergence of arrays of rowwise extended negatively dependent random variables under sub-linear expectation. Based on the above results, the study of complete integral convergence needs to be improved.

    The content of this article is as follows. In Section 2, we introduce some basic notation, concepts and related properties. In Section 3, complete integral convergence theorems for weighted sums of arrays of rowwise extended negatively dependent random variables are established. Our results generalize Ge's [17] conclusions from probability space to sub-linear expectation. In Section 4, we give lemmas that are useful for proving the main results, and use these lemmas to prove the main results of this paper.

    We use the framework and notions of Peng [1,2]. Let (Ω,F) be a given measurable space and let H be a linear space of real functions defined on (Ω,F) such that if X1,X2,,XnH then φ(X1,,Xn)H for each φCl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of (local Lipschitz) functions φ satisfying

    |φ(x)φ(y)|c(1+|x|m+|y|m)|xy|,  x,yRn,

    for some c>0, mN depending on φ. H is considered as a space of random variables. In this case we denote XH.

    Definition 2.1. A sub-linear expectation ˆE on H is a function ˆE:HˉR satisfying the following properties: for all X,YH, we have

    (a) Monotonicity: If XY then ˆEXˆEY;

    (b) Constant preserving: ˆEc=c;

    (c) Sub-additivity: ˆE(X+Y)ˆEX+ˆEY; whenever ˆEX+ˆEY is not of the form + or +;

    (d) Positive homogeneity: ˆE(λX)=λˆEX,λ0.

    Here ˉR=[,]. The triple (Ω,H,ˆE) is called a sub-linear expectation space.

    Given a sub-linear expectation ˆE, let us denote the conjugate expectation ˆε of ˆE by

    ˆε(X):=ˆE(X), XH.

    From the definition, it is easily shown that for all X,YH,

    ˆεXˆEX, ˆE(X+c)=ˆEX+c,
    |ˆE(XY)|ˆE|XY| and ˆE(XY)ˆEXˆEY.

    If ˆEY=ˆεY, then ˆE(X+aY)=ˆEX+aˆEY for any aR.

    Next, we consider the capacities corresponding to the sub-linear expectations. Let GF. A function V:G[0,1] is called a capacity if

    V()=0, V(Ω)=1 and V(A)V(B) for AB,A,BG.

    It is called to be sub-additive if V(AB)V(A)+V(B) for all A,BG with ABG. In the sub-linear space (Ω,H,ˆE), we denote a pair (V,V) of capacities by

    V(A):=inf{ˆEξ;I(A)ξ,ξH}, V(A):=1V(Ac), AF,

    where V(Ac) is the complement set of A. By definition of V and V, it is obvious that V is sub-additive, and

    VV, AF; V(A)=ˆE(I(A)), V(A)=ˆε(I(A)), if I(A)H,
    ˆEfV(A)ˆEg, ˆεfV(A)ˆεg, if fI(A)g, f,gH.

    Definition 2.2. We define the Choquet integrals/expectations (CV,CV) by

    CV(X):=0V(X>x)dx+0(V(X>x)1)dx,

    with V being replaced by V and V respectively.

    Definition 2.3. (i) (Identical distribution) Let X1 and X2 be two random variables defined severally in sub-linear expectation spaces (Ω1,H1,ˆE1) and (Ω2,H2,ˆE2). They are called identically distributed if

    ˆE1(φ(X1))=ˆE2(φ(X2)), φCl,Lip(R),

    whenever the sub-expectations are finite. A sequence {Xn;n1} of random variables is said to be identically distributed if Xi and X1 are identically distributed for each i1.

    (ii) (Extended negatively dependence) A sequence of random variables {Xn;n1} is said to be upper (resp.lower) extended negatively dependent if there is some dominating constant K1 such that

    ˆE(ni=1φi(Xi))Kni=1ˆE(φi(Xi)), n2,

    whenever the non-negative functions φi(x)Cl,Lip(R),i=1,2,, are all non-decreasing (resp. all non-increasing). They are said to be extended negatively dependent (END) if they are both upper extended negatively dependent and lower extended negatively dependent.

    It is obvious that, if {Xn;n1} is a sequence of END random variables and f1(x),f2(x),Cl,Lip(R) are non-descreasing (resp. non-increasing) functions, then {fn(Xn);n1} is also a sequence of END random variables.

    For 0<μ<1, let gμ(x)Cl,Lip(R) be an even function and it is decreasing in x>0 such that 0gμ(x)1 for all x, gμ(x)=1 if |x|μ, gμ(x)=0 if |x|>1. Then

    I(|x|μ)gμ(x)I(|x|1),I(|x|>1)1gμ(x)I(|x|>μ). (2.1)

    Let AnBn (AnBn) denote that there exists a constant c>0 such that AncBn (AncBn) for sufficiently large n, and the symbol I() will be used to signify the indicator function. {a}+ means max{a,0}.

    Theorem 3.1. Let {Xnj;1jbn,n1} be an array of rowwise END random variables, {anj,j1,n1} be an array of positive numbers, {bn,n1} be a non-decreasing sequence of positive integers and {cn,n1} be a non-decreasing sequence of positive numbers. Suppose that for any ε>0,

    n=1cnbnj=1V(|anjXnj|εb1/tn)<, (3.1)

    and

    n=1cnb2/tnbnj=1a2njˆE(Xnj)2gμ(anjXnjεb1/tn)<. (3.2)

    Then

    n=1cnV{bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))εb1/tn}<, (3.3)

    and

    n=1cnV{bnj=1anj(XnjˆεXnjgμ(anjXnjεb1/tn))<εb1/tn}<. (3.4)

    Particularly, if ˆEXnjgμ(anjXnjεb1/tn)=ˆεXnjgμ(anjXnjεb1/tn), then

    n=1cnV{|bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))|εb1/tn}<. (3.5)

    Further, if the following condition also hold:

    n=1cnb1/tnbnj=1|anj|CV(|Xnj|(1gμ(anjXnjεb1/tn)))<, (3.6)

    and

    n=1cnb2/tnbnj=1a2njˆE(Xnj)2(1gμ(anjXnjεb1/tn))<. (3.7)

    Then

    n=1cnCV{b1/tn|bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))|ε}+<. (3.8)

    Remark 3.1. The results obtained from Theorem 3.1 is very extensive, we can obtain different forms of complete integration convergence theorems by taking different forms of cn and bn.

    Taking cn=n2(α1), bn=n, t=1/α or cn=nα2h(n), bn=n, anj=1 in Theorem 3.1, h(n) be a slowly varying function here, then we obtain two complete integration convergence theorems such as Theorems 3.2 and 3.3.

    Theorem 3.2. Let {Xnj;j1,n1} be an array of rowwise END random variables, {anj;j1,n1} be an array of positive numbers satisfying ˆEXnjgμ(anjXnjεnα)=ˆεXnjgμ(anjXnjεnα), and

    nj=1a2njˆEX2nj=O(nδ)asn, for some  0<δ<1. (3.9)

    Then, for any ε>0,

    n=1n2(α1)CV{nα|nj=1anj(XnjˆEXnjgμ(anjXnjεnα))|ε}+<. (3.10)

    Particularly, if ˆEXnj=0 and α>δ/2, then

    n=1n2(α1)CV{nα|nj=1anjXnj|ε}+<. (3.11)

    Theorem 3.3. Let {X,Xnj;j1,n1} be an array of rowwise identically distributed END random variables with ˆEX=0, and h(x)>0 be a slowly varying function as x. If ˆEXnjgμ(Xnjεn1/t)=ˆεXnjgμ(Xnjεn1/t), ˆE(|X|αth(|X|t))CV(|X|αth(|X|t))< for α>1, 1<αt<2, then

    n=1nα2h(n)nj=1CV{n1t|nj=1Xnj|ε}+<. (3.12)

    Remark 3.2. Theorem 3.1 extends Theorem 2.1 of Ge [16] from the conventional probability space to sub-linear expectation space. Theorems 3.2 and 3.3 generalize Corollary 2.6 and Theorem 2.4 of Ge [16].

    Remark 3.3. Under sub-linear expectation, Li and Wu [16] study q-th integral convergence of arrays of rowwise extended negatively dependent random variables. Wu and Jiang [18] study complete convergence and complete integral convergence for negatively dependent random variables. Wu [19] establish precise asymptotics for complete integral convergence. In this paper, we study complete integral convergence of weighted sums, and the negatively dependent random variable expands to arrays of rowwise extended negatively dependent random variables.

    To prove our results, we need the following lemmas.

    Lemma 4.1. Zhong and Wu [14] suppose XH, α>0, t>0, and h(x) is a slow varying function.

    (i) Then

    CV(|X|αth(|X|t))<n=1nα1h(n)V(|X|>cn1/t)<,for c>0. (4.1)

    (ii) If CV(|X|αth(|X|t))<, then for c>0 and θ>1,

    k=1θkαh(θk)V(|X|>cθk/t)<. (4.2)

    Lemma 4.2. Zhang [5] Let X1,X2,,Xn be a sequence of upper extended negatively dependent random variables in with ˆE[Xk]0. Set Sn=nk=1Xk, then

    V(Snx)(1+Ke)nk=1ˆEX2kx2,x>0. (4.3)

    Proof of Theorem 3.1. For array of rowwise END random variables {Xnj;1jbn, n1}, we need that truncated function belong to Cl,Lip(R) and is non-decreasing to make the truncated random variables are also END. For any c>0,1jbn,n1,

    Ynj=εb1/tnanjI(anjXnj<εb1/tn)+XnjI(|anjXnj|εb1/tn)+εb1/tnanjI(anjXnj>εb1/tn),
    Znj=(Xnj+εb1/tnanj)I(anjXnj<εb1/tn)+(Xnjεb1/tnanj)I(anjXnj>εb1/tn).

    There are Xnj=Ynj+Znj. Note that

    bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))=bnj=1anjZnj+bnj=1anj(YnjˆEYnj)+bnj=1anj(ˆEYnjˆEXnjgμ(anjXnjεb1/tn))=:I1+I2+I3.

    Hence, to prove (3.3), it suffices to verify that

    n=1cnV(Iiεb1/tn)<,i=1,2, and  b1/tn|I3|0  as  n.

    By (3.1), we have

    n=1cnV{I1>εb1/tn}=n=1cnV{bnj=1anjZnj>εb1/tn}n=1cnV{j:1jbn, such that  |anjXnj|>εb1/tn}n=1cnbnj=1V{|anjXnj|>εb1/tn}<. (4.4)

    For any r>0, combining the Cr inequality and (2.1),

    |Ynj|r|Xnj|rI(|Xnj|εb1/tnanj)+(εb1/tnanj)rI(|Xnj|>εb1/tnanj)|Xnj|rgμ(μanjXnjεb1/tn)+(εb1/tnanj)r(1gμ(anjXnjεb1/tn)),

    thus,

    ˆE(|Ynj|r)ˆE(|Xnj|rgμ(μanjXnjεb1/tn))+(εb1/tnanj)rˆE(1gμ(anjXnjεb1/tn))ˆE(|Xnj|rgμ(μanjXnjεb1/tn))+(εb1/tnanj)rV(|anjXnj|μεb1/tn). (4.5)

    Through definition 2.3 (ii), we know that {anj(YnjˆEYnj),1jbn,n1} is still END with ˆEanj(YnjˆEYnj)=0, by (4.3), (3.2) and (4.5), it is easy to prove that

    n=1cnV{I2>εb1/tn}=n=1cnV(bnj=1anj(YnjˆEYnj)>εb1/tn)n=1cnb2/tnbnj=1ˆEa2njY2njCn=1cnb2/tnbnj=1a2njˆEX2njgμ(μanjXnjεb1/tn)   +Cn=1cnbnj=1V(|anjXnj|>μεb1/tn)n=1cnb2/tnbnj=1a2njˆEX2njgμ(μanjXnjεb1/tn)<. (4.6)

    Next, we verify b1/tn|I3|0  as  n. We can obtain bnj=1V(|anjXnj|εb1/tn)0 as n from (3.1) and {cn,n1} is a non-decreasing sequence of positive numbers, then, by gμ(x) in x>0,

    b1/tn|I3|=b1/tn|bnj=1anj(ˆEYnjˆEXnjgμ(anjXnjεb1/tn))|b1/tnbnj=1anj|ˆEYnjˆEXnjgμ(anjXnjεb1/tn)|b1/tnbnj=1anjˆE|YnjXnjgμ(anjXnjεb1/tn)|b1/tnbnj=1anjˆE|εb1/tnanjI(Xnj<εb1/tnanj)+(XnjXnjgμ(anjXnjεb1/tn))   ×I(μεb1/tnanj<Xnjεb1/tnanj)+εb1/tnanjI(Xnj>εb1/tnanj)|b1/tnbnj=1anjˆE[εb1/tnanjI(|Xnj|>εb1/tnanj)+|Xnj|I(μεb1/tnanj<Xnjεb1/tnanj)]b1/tnbnj=1anjˆE[εb1/tnanjI(|Xnj|>εb1/tnanj)+εb1/tnanjI(|Xnj|>μεb1/tnanj)]bnj=1V(|anjXnj|μ2εb1/tn)0  as  n. (4.7)

    Combining (4.4), (4.6) and (4.7), we obtain (3.3). Obviously, {Xnj;1jbn,n1} also satisfies the conditions of Theorem 3.1, replacing {Xnj;1jbn,n1} by {Xnj;1jbn,n1} in (3.3), by gμ(x) is an even function, we obtain (3.4). According to the ˆEXnjgμ(anjXnjεb1/tn)=ˆεXnjgμ(anjXnjεb1/tn), (3.3) and (3.4), we get

    n=1cnV{|bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))|εb1/tn}n=1cnV{bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))εb1/tn}    +n=1cnV{bnj=1anj(XnjˆεXnjgμ(anjXnjεb1/tn))<εb1/tn}<. (4.8)

    Therefore (3.5) holds.

    Next, we prove (3.8). For ε>0,

    n=1cnCV{b1/tn|bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))|ε}+=n=1cn0V{b1/tn|bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))|ε>u}du=n=1cnε0V{b1/tn|bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))|ε>u}du    +n=1cnεV{b1/tn|bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))|ε>u}dun=1cnV{|bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))|>εb1/tn}    +n=1cnεV{|bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))|>ub1/tn}du=:H1+H2.

    By (3.5), we can get H1<. Furthermore, the proof of H2< is similar to the considerations in (4.8), by ˆEXnjgμ(anjXnjεb1/tn)=ˆεXnjgμ(anjXnjεb1/tn), we only need to prove

    H3=:n=1cnεV{bnj=1anj(XnjˆEXnjgμ(anjXnjεb1/tn))>ub1/tn}du<.

    For any 1jbn, uε, δ>0, let

    Ynj=ub1/tnanjI(anjXnj<ub1/tn)+XnjI(|anjXnj|ub1/tn)+ub1/tnanjI(anjXnj>ub1/tn),
    Znj=(Xnj+ub1/tnanj)I(anjXnj<ub1/tn)+(Xnjub1/tnanj)I(anjXnj>ub1/tn).

    There are Xnj=Ynj+Znj. Noting that

    H3n=1cnεV{bnj=1anjZnj>ub1/tn3}du    +n=1cnεV{bnj=1anj(YnjˆEYnj)>ub1/tn3}du    +n=1cnεV{bnj=1anj(ˆEYnjˆEXnjgμ(anjXnjεb1/tn))>ub1/tn3}du=:H31+H32+H33.

    By (3.6), we have

    H31=n=1cnεV{bnj=1anjZnj>ub1/tn3}dun=1cnεV{j:1jbn, such that  |anjXnj|>δub1/tn}dun=1cnεbnj=1V{|anjXnj|>δub1/tn}dun=1cnbnj=1CV(|anjXnj|δb1/tnI(|anjXnj|δb1/tn>ε))n=1cnb1tnbnj=1|anj|CV(|Xnj|(1gμ(|anjXnj|εδb1/tn)))<.

    The proof of is H32< similar to considerations in (4.6), by Lemma 4.2 we have

    H32n=1cnb2/tnεu2bnj=1ˆEa2njY2njduCn=1cnb2/tnεu2bnj=1a2njˆEX2njgμ(μanjXnjub1/tn)du    +Cn=1cnεbnj=1V(|anjXnj|>μub1/tn)duCn=1cnb2/tnεu2bnj=1a2njˆEX2njgμ(anjXnjεb1/tn)du    +Cn=1cnb2/tnεu2bnj=1a2njˆEX2nj(gμ(μanjXnjub1/tn)gμ(anjXnjεb1/tn))du    +Cn=1cnεbnj=1V(|anjXnj|>μub1/tn)du=:H321+H322+H323.

    By (3.2), we have

    H321n=1cnb2/tnbnj=1a2njˆEX2njgμ(anjXnjεb1/tn)εu2du<.

    By (3.7), we obtain

    H322n=1cnb2/tnεu2bnj=1a2njˆEX2nj(1gμ(anjXnjεb1/tn))dun=1cnb2/tnbnj=1a2njˆEX2nj(1gμ(anjXnjεb1/tn))εu2dun=1cnb2/tnbnj=1a2njˆEX2nj(1gμ(anjXnjεb1/tn))<.

    The proof of H323< is similar to the proof of the convergence of H31, by (3.6), we have

    H323n=1cnεbnj=1V(|anjXnj|>μub1/tn)dun=1cnbnj=1CV(|anjXnj|μb1/tnI(|anjXnj|μb1/tn>ε))n=1cnb1/tnbnj=1|anj|CV(|Xnj|(1gμ(|anjXnj|εμb1/tn)))<.

    Therefore, we get H32<. Next, we consider H33<. For u>ε, 1gμ(anjXnjμub1/tn)<1gμ(anjXnjμεb1/tn), the way is similar to the proof of (4.7), we have

    supu>ε(ub1/tn)1|bnj=1anj(ˆEYnjˆEXnjgμ(anjXnjεb1/tn))|0.

    Thereby, for sufficiently large n, we can get

    V{(ub1/tn)1bnj=1anj(ˆEYnjˆEXnjgμ(anjXnjεb1/tn))>13}=0. (4.9)

    By (4.9), we get H33<. Then H3<. The proof of Theorem 3.1 is completed.

    Proof of Theorem 3.2. In Theorem 3.1, let cn=n2(α1), bn=n, t=1/α, by (3.9) and 0<δ<1, we have

    n=1cnb2/tnbnj=1a2njˆE(Xnj)2gμ(anjXnjεb1/tn)n=1cnb2/tnbnj=1a2njˆE(Xnj)2Cn=1n2(α1)n2αnδn=1n2+δ<. (4.10)

    Similarly, we can obtain

    n=1cnb2/tnbnj=1a2njˆE(Xnj)2(1gμ(anjXnjεb1/tn))n=1n2+δ<. (4.11)

    And for c>0, we have

    n=1cnεbnj=1V(|anjXnj|>cub1/tn)dun=1cnεbnj=1ˆE|anjXnj|2u2b2/tndun=1cnb2/tnbnj=1ˆEa2njX2njεu2dun=1n2(α1)n2αnδ=n=1n2+δ<. (4.12)

    Hence, (4.10) and (4.11) satisfy conditions (3.2) and (3.7) of Theorem 3.1. By (4.12), we can get H31<, then we obtain (3.10). Finally, we show that (3.11). We only need to verify that

    I=:|nαnj=1anjˆEXnjgμ(anjXnjεnα)|0  as  n.

    For α>δ/2, by ˆEXnj=0, we have

    I=|nαnj=1anj(ˆEXnjˆEXnjgμ(anjXnjεnα))|nαnj=1anjˆE|XnjXnjgμ(anjXnjεnα)|=nαnj=1anjˆE|Xnj(1gμ(anjXnjεnα))|nαnj=1anjˆE|μanjX2njεnα|n2αnj=1a2njˆEX2njn2α+δ0   as  n.

    Therefore the proof of Theorem 3.2 is completed.

    Proof of Theorem 3.3. For j1, let gj(x)Cl,Lip(R) be an even function, such that 0gj(x)1 for all x; gj(x2j/t)=1 if 2(j1)/t<|x|2j/t and gj(x2j/t)=0 if |x|μ2(j1)/t or |x|>(1+μ)2j/t. Then

    gj(X2j/t)I(μ(2j1)1t<|X|(1+μ)2jt), (4.13)
    |X|qgμ(X2k/t)1+kj=1|X|qgj(X2j/t), (4.14)
    1gμ(X2k1/t)j=k1gj(X2j/t). (4.15)

    Let cn=nα2h(n), bn=n, anj=1. By Theorem 3.1, we can obtain

    n=1nα2h(n)CV{n1/t|nj=1(XnjˆEXnjgμ(Xnjεn1/t))|ε}+<. (4.16)

    By (4.2), (4.13), (4.14) and αt<2, we have

    n=1nα22th(n)nj=1ˆE(Xnj)2gμ(Xnjεn1/t)=n=1nα12th(n)ˆEX211gμ(Xεn1/t)=k=12k1n<2knα12th(n)ˆEX2gμ(X11εn1/t)k=1(2k)α2th(2k)ˆEX2gμ(Xε(2k)1/t)k=1(2k)α2th(2k)ˆE(1+kj=1X2gj(Xε2j/t))k=1(2k)α2th(2k)+k=1(2k)α2th(2k)kj=1ˆEX2gj(Xε2j/t)j=1k=j(2k)α2th(2k)ˆEX2gj(Xε2j/t)j=1(2j)α2th(2j)(2j)2tV(|X|>(2j1)1/t)=j=12jαh(2j)V(|X|>c2j/t)<.

    By (4.1), we have

    n=1nα21th(n)nj=1|anj|CV[|Xnj|(1gμ(anjXnjεn1/t))]=n=1nα11th(n)CV[|X|(1gμ(Xεn1/t))]n=1nα11th(n)0V{|X|I(|X|>μεn1/t)>x}dx=n=1nα11th(n)μεn1/t0V{|X|>μεn1/t}dx+n=1nα11th(n)μεn1/tV{|X|>x}dxn=1nα1h(n)V(|X|>μεn1/t)+n=1nα11th(n)j=n(j+1)1/tj1/tV(|X|>j1/t)dxn=1nα11th(n)j=nj1t1V(|X|>j1/t)j=1j1t1h(j)V(|X|>j1/t)njnα11tj=1jα1h(j)V(|X|>j1/t)<.

    And by (4.2), (4.13) and (4.15), we have

    n=1nα22th(n)nj=1ˆE(Xnj)2(1gμ(Xnjεn1/t))=n=1nα12th(n)ˆEX2(1gμ(Xεn1/t))=k=12k1n<2knα12th(n)ˆEX2(1gμ(Xεn1/t))k=1(2k)α2th(2k)ˆEX2(1gμ(Xε(2k1)1/t))k=1(2k)α2th(2k)j=k1ˆEX2gj(Xε2j/t)=j=1jk=1(2k)α2th(2k)ˆEX2gj(Xε2j/t)j=12jαh(2j)V(|X|>c2j/t)<.

    thus (3.2), (3.6), (3.7) are satisfied. In order to prove (3.12), it remain to show that n1/t|nj=1ˆEXnjgμ(Xnjεn1/t)|0 as n. First of all, by the properties of the slowly varying function, we obtain |X|αth(|X|t) when αt>1. By (2.1), αt>1, α>1 and |X|αth(|X|t), we can get

    |X|(1gμ(xεn1/t))|X|I(|X|>μεn1/t)|X||X|αt1h(|X|t)(μεn1/t)αt1h(μtεtn)nα+1/th1(cn)|X|αth(|X|t) (4.17)

    By ˆEX=0, (4.17), αt>1, α>1 and ˆE(|X|αth(|X|t))CV(|X|αth(|X|t))<, we have

    n1/t|nj=1ˆEXnjgμ(Xnjεn1/t)|=n11/t|ˆEXgμ(Xεn1/t)|=n11/t|ˆEXˆEXgμ(Xεn1/t)|n11/tˆE|XXgμ(Xεn1/t)|=n11/tˆE|X|(1gμ(Xεn1/t))n11/tˆE|X||X|αt1h(|X|t)(μεn1/t)αt1h(μtεtn)n1αh1(cn)ˆE(|X|αth(|X|t))0 as n. (4.18)

    Combining (4.16) and (4.18), we can get (3.12). Then Theorem 3.3 holds.

    This paper was supported by the National Natural Science Foundation of China (12061028), the Support Program of the Guangxi China Science Foundation (2018GXNSFAA281011), and Guangxi Colleges and Universities Key Laboratory of Applied Statistics.

    All authors declare no conflict of interest in this paper.



    [1] S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, Sto. Anal. Appl., 2 (2006), 541-567.
    [2] S. G. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Proc. Appl., 118 (2008), 2223-2253. doi: 10.1016/j.spa.2007.10.015
    [3] S. G. Peng, A new central limit theorem under sub-linear expectations, (2008), arXiv: 0803.2656.
    [4] S. G. Peng, Law of large numbers and central limit theorem under nonlinear expectations, Probab. Uncertain. Quant. Risk, 4 (2007), 4.
    [5] L. X. Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations, (2016), arXiv: 1608.00710.
    [6] L. X. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503-2526. doi: 10.1007/s11425-016-0079-1
    [7] L. X. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59 (2016), 751-768. doi: 10.1007/s11425-015-5105-2
    [8] Y. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sin., 16 (1988), 177-201.
    [9] X. J. Wang, S. H. Hu, Complete convergence and complete moment convergence for martingale difference sequence, Acta. Math. Sin. Eng. Ser., 30 (2014), 119-132.
    [10] X. J. Wang, Y. Wu, On complete convergence and complete moment convergence for a class of random variables, J. Korean Math. Soc., 54 (2017), 877-896. doi: 10.4134/JKMS.j160293
    [11] D. H. Qiu, P. Y. Chen, Complete moment convergence for product sums of sequence of extended negatively dependent random variables, J. Inequal. Appl., 2015 (2015), 1-15. doi: 10.1186/1029-242X-2015-1
    [12] D. W. Lu, Y. Meng, Complete moment convergence for weighted sums of extended negatively dependent random variables, Commun. Stat. Theory Methods, 46 (2017), 10189-10202. doi: 10.1080/03610926.2016.1231814
    [13] D. W. Lu, Y. Meng, Complete and complete integral convergence for arrays of row wise widely negative dependent random variables under the sub-linear expectations, Commun. Stat. Theory Methods, (2020), 1786585.
    [14] H. Y. Zhong, Q. Y. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl., 2017 (2017), 1-14. doi: 10.1186/s13660-016-1272-0
    [15] Z. W. Liang, Q. Y. Wu, Theorems of complete convergence and complete integral convergence for END random variables under sub-linear expectations, J. Inequal. Appl., 2019 (2019), 1-17. doi: 10.1186/s13660-019-1955-4
    [16] J. Li, Q. Y. Wu, Complete integral convergence for arrays of row-wise extended independent random variables under sub-linear expectations., Commun. Stat. Theory Methods, 49 (2020), 5613-5626. doi: 10.1080/03610926.2019.1620954
    [17] M. M. Ge, Z. X. Dai, Y. F. Wu, On complete moment convergence for arrays of rowwise pairwise negatively quadrant dependent random variables, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [18] Q. Y. Wu, Y. Y. Jiang, Complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations, Filomat, 34 (2020), 1093-1104. doi: 10.2298/FIL2004093W
    [19] Q. Y. Wu, Precise asymptotics for complete integral convergence under sublinear expectations, Math. Pro. Eng., 2020 (2020), 3145935.
  • This article has been cited by:

    1. Li Wang, Qunying Wu, Complete convergence and complete integral convergence for weighted sums of widely negative dependent random variables under the sub-linear expectations, 2022, 0361-0926, 1, 10.1080/03610926.2022.2158343
    2. Xiaocong Chen, Qunying Wu, Further research on complete integral convergence for moving average process of ND random variables under sub-linear expectations, 2024, 53, 0361-0926, 7102, 10.1080/03610926.2023.2258428
    3. Lunyi Liu, Qunying Wu, Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations, 2023, 8, 2473-6988, 22319, 10.3934/math.20231138
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2410) PDF downloads(80) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog