Research article Special Issues

Exponential inequalities and a strong law of large numbers for END random variables under sub-linear expectations

  • Received: 10 March 2023 Revised: 17 April 2023 Accepted: 23 April 2023 Published: 27 April 2023
  • MSC : 60F15

  • The focus of our work is to investigate exponential inequalities for extended negatively dependent (END) random variables in sub-linear expectations. Through these exponential inequalities, we were able to establish the strong law of large numbers with convergence rate $ O\left(n^{-1/2}\ln^{1/2}n\right) $. Our findings in sub-linear expectation spaces have extended the corresponding results previously established in probability space.

    Citation: Haiye Liang, Feng Sun. Exponential inequalities and a strong law of large numbers for END random variables under sub-linear expectations[J]. AIMS Mathematics, 2023, 8(7): 15585-15599. doi: 10.3934/math.2023795

    Related Papers:

  • The focus of our work is to investigate exponential inequalities for extended negatively dependent (END) random variables in sub-linear expectations. Through these exponential inequalities, we were able to establish the strong law of large numbers with convergence rate $ O\left(n^{-1/2}\ln^{1/2}n\right) $. Our findings in sub-linear expectation spaces have extended the corresponding results previously established in probability space.



    加载中


    [1] S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, In: Stochastic analysis and applications, Berlin, Heidelberg: Springer, 2007,541–567. http://doi.org/10.1007/978-3-540-70847-6_25
    [2] S. G. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Proc. Appl., 118 (2008), 2223–2253. http://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015
    [3] S. G. Peng, A new central limit theorem under sublinear expectations, arXiv: 0803.2656.
    [4] L. X. Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations, arXiv: 1608.00710.
    [5] L. X. Zhang, Self-normalized moderate deviation and laws of the iterated logarithm under G-expectation, Commun. Math. Stat., 4 (2016), 229–263. https://doi.org/10.1007/s40304-015-0084-8 doi: 10.1007/s40304-015-0084-8
    [6] L. X. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1
    [7] L. X. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59 (2016), 751–768. http://doi.org/10.1007/s11425-015-5105-2 doi: 10.1007/s11425-015-5105-2
    [8] Q. Y. Wu, Y. Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2017), 252–270. http://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053
    [9] T. S. Kim, H. C. Kim, On the exponential inequality for negative dependent sequence, Commun. Korean Math. Soc., 22 (2007), 315–321. https://doi.org/10.4134/CKMS.2007.22.2.315 doi: 10.4134/CKMS.2007.22.2.315
    [10] H. J. Nooghabi, H. A. Azarnoosh, Exponential inequality for negatively associated random variables, Stat. Pap., 50 (2009), 419–428. https://doi.org/10.1007/s00362-007-0081-4 doi: 10.1007/s00362-007-0081-4
    [11] G. D. Xing, S. C. Yang, A. L. Liu, X. P. Wang, A remark on the exponential inequality for negatively associated random variables, J. Konrean Stat. Soc., 38 (2009), 53–57. https://doi.org/10.1016/j.jkss.2008.06.005 doi: 10.1016/j.jkss.2008.06.005
    [12] S. H. Sung, An exponential inequality for negatively associated random variables, J. Inequal. Appl., 2009 (2009), 649427. https://doi.org/10.1155/2009/649427 doi: 10.1155/2009/649427
    [13] T. C. Christofides, M. Hadjikyriakou, Exponential inequalities for N-demimartingales and negatively associated random variables, Stat. Probabil. Lett., 79 (2009), 2060–2065. https://doi.org/10.1016/j.spl.2009.06.013 doi: 10.1016/j.spl.2009.06.013
    [14] X. J. Wang, S. H. Hu, A. T. Shen, W. Z. Yang, An exponential inequality for a NOD sequence and a strong law of large numbers, Appl. Math. Lett., 24 (2011), 219–223. https://doi.org/10.1016/j.aml.2010.09.007 doi: 10.1016/j.aml.2010.09.007
    [15] X. F. Tang, X. J. Wang, Y. Wu, Exponential inequalities under sub-linear expectations with applications to strong law of large numbers, Filomat, 33 (2019), 2951–2961. https://doi.org/10.2298/FIL1910951T doi: 10.2298/FIL1910951T
    [16] H. Liu, S. Ma, Determining a random source in a Schrödinger equation involving an unknown potential, arXiv: 2005.04984.
    [17] H. Liu, C. Mou, S. Zhang, Inverse problems for mean field games, arXiv: 2205.11350.
    [18] J. Li, H. Liu, S. Ma, Determining a random Schrödinger operator: both potential and source are random, Commun. Math. Phys., 381 (2021), 527–556. https://doi.org/10.1007/s00220-020-03889-9 doi: 10.1007/s00220-020-03889-9
    [19] J. Li, H. Liu, S. Ma, Determining a random Schrödinger equation with unknown source and potential, SIAM J. Math. Anal., 51 (2019), 3465–3491. https://doi.org/10.1137/18M1225276 doi: 10.1137/18M1225276
    [20] Y.-T. Chow, Y. Deng, Y. He, H. Liu, X. Wang, Surface-localized transmission eigenstates, super-resolution imaging and pseudo surface plasmon modes, SIAM J. Imaging Sci., 14 (2021), 946–975. https://doi.org/10.1137/20M1388498 doi: 10.1137/20M1388498
    [21] Y. Deng, H. Liu, X. Wang, W. Wu, On geometrical properties of electromagnetic transmission eigenfunctions and artificial mirage, SIAM J. Appl. Math., 82 (2022), 1–24. https://doi.org/10.1137/21M1413547 doi: 10.1137/21M1413547
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1151) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog