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1. Introduction

Uncertainty presents a primary challenge for financial and risk research institutes, which has led to
the classical probabilistic space theory being greatly challenged in this field. The tools of probability
and expectation additivity in probability space lose their effectiveness in nonlinear financial and risk
studies. As a solution to this problem of non-additivity, Peng [1-3] proposed a complete theoretical
framework and axiom system of sub-linear expectation space. This proposal has garnered the attention
of numerous scholars, who are eagerly studying and researching this topic. As a result, a series of new
theories in sub-linear expectation spaces have been continuously proven. For instance, Zhang [4-7]
has established the exponential inequality, Rosenthal’s type inequality, Kolmogorov’s type strong law
of large numbers, strong limit theorems, and the application of the law of iterated logarithm under
sub-linear expectations. Wu and Jiang [8] have also proven the strong law of numbers and Chover’s
law of the iterated logarithm under sub-linear expectations.

Exponential inequalities play a crucial role in the proof of strong limit theorems and provide


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2023795

15586

a useful tool for establishing the convergence rate of the strong law of numbers. All kinds of
exponential inequality theorems have been continuously proven in probabilistic space, such as those
by Kim and Kim [9], Nooghabi and Azarnoosh [10], Xing et al. [11], Sung [12], Christofides and
Hadjikyriakou [13], and Wang et al. [14]. The sub-linear expectation framework provides a good
solution to the non-additive probability problem and extends many properties of probability spaces to
sub-linear expectation spaces. Based on this theory, this paper establishes exponential inequalities
and a strong law of large numbers with a convergence rate O(n‘”2 In'/? n) for unbounded END
random variable sequences under sub-linear expectations. As a result, the corresponding results
obtained by Wang et al. [14] have been generalized to the sub-linear expectation space context.
Similarly, Tang et al. [15] have also established exponential inequalities for extended independent
random variables. However, the range of the extended negatively dependent random variables that we
studied is wider than that of Tang et al. [15] extended independent random variables. Furthermore, we
have obtained a conclusion that they do not include each other under weaker conditions, as shown in
literature [15]. We expect that our results may be applied to some practical inverse problems where
randomness plays an important role; see e.g., [16-21].

The remainder of the paper is organized as follows: In Section 2, we briefly introduce the conceptual
framework and properties under sub-linear expectations, as well as the necessary definitions and
lemmas required for this paper. Section 3 establishes the exponential inequalities and a strong law
of large numbers for unbounded END random variable sequences under sub-linear expectations. In
Section 4, we provide the proof of the main results of Section 3. Finally, Section 5 presents the
conclusion.

2. Preliminaries

We use the framework and notations of Peng [1-3]. Let (Q2, #) be a given measurable space and let
H be a linear space of real functions defined on (Q2, ¥) such that if Xi,..., X, € Hthen¢(X,,...,X,) €
‘H for each ¢ € Cyy;, (R,), where C;;, (R,) denotes the linear space of (local Lipschitz) functions ¢
satisfying
lp(x) — ()] < C(A + X" + [y[")Ix -y, VX,y € R,,

for some C > 0, m € N depending on ¢. H is considered as a space of “random variables”. In this case
we denote X € H is considered as a space of “random variables”. We also denote C1;, (R,) to be the
bounded Lipschitz functions ¢(x) satisfying

leX)| < C, lp(x) —@(y)l < CIx —y|, VX, y € R,,
for some C > 0, depending on ¢.

Definition 2.1. (Zhang [6]). A sub-linear expectation E on H is a function E : H — R satisfying the
following properties: for all X, Y € H, we have

(a) Monotonicity: If X > Y then EXx > By;

(b) Constant preserving: Bc = ¢;

(c) Sub-additivity: E(X + ¥) < EX + BY whenever EX + EY is not of the form +oo — co or —oo + o0;
(d) Positive homogeneity: B(1X) = ABX, 1 > 0.
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Here R = [—oo, +00]. The triple (Q, H, E) is called a sub-linear expectation space. Given a sub-
linear expectation E, let us denote the conjugate expectation & of I by

8X := —B(=X),VX € H.

From the definition, it is easily shown that £(X) < B(X),E(X +¢) = E(X) + cand E(X - ¥) < EX - EY

for all X,Y € H with EY being finite. Further, if E(|X]) is finite, then £X and EX are both finite.

It is called to be countably sub-additive if Bx < > BEX,, whenever X < > X, X,X, € H and
n=1

n=1
X>0,X,>0,n>1.
Next, we introduce the capacities corresponding to the sub-linear expectations. Let G € F. A
function V : G — [0, 1] is called a capacity if

V(@) =0, V(Q) =1 and V(A) < V(B) for VA C B,A,B€G.

It is called to be sub-additive if V(A U B) < V(A) + V(B)forall A,Be GwithAUB € G. Itis called
to be countably sub-additive if V ( UA ) Z V(A,),YA, € F.

n=1 n=1
Let (Q, H, E) be a sub-linear space, and & be the conjugate of E. We denote a pair (V,V) of
capacities by
V(A) = inf{B&; I, < &, € H), V(A) :=1-V(A°), VA e F,

where A€ is the complement set of A. Then
V(A) := B(Ly), V(A) := &,), if I, € H. 2.1)
For example, if A = @ then I, = 0 € H and if A = Q then I, = 1 € H. Further, we have
Bf <V(A) <Bg, 8f < V(A) < &g, iff<I,<g f.geH. (2.2)
It is obvious that V is sub-additive, but “V and & are not. However, we have
V(AU B) < V(A) + V(B) and (X + Y) < &X + EY. (2.3)

Due to the fact that V (A° N BY) = V(A° \ B) > V (A) — V(B) and BE(-X - Y) > E(-X) - Y.
Also, we define the Choquet integrals expectations (Cvy, Cq,) by

(o9 O
Cy(X) = f V(X > t)dt +f [V(X >1)—1]dt
0 —

(o)

with V being replaced by V and V respectively.

Remark 2.1. From (2.2), for VX € H,x > 0, p > 0, it emerges that V(|X| > y) < B(|X|P)/xP, which is
the well-known Markov’s inequality.

Definition 2.2. (Peng [1], Zhang [4]). (i) (Identical distribution). Let X; and X, be two random vectors
defined respectively in sub-linear expectation spaces (Q, H, E) They are called identically distributed,

denoted by X; 4 X5 if
EileX)] = Ex[p(X2)], Yo € Cprip (R),
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whenever the sub-linear expectation are finite. A sequence {X,,n > 1} of random variables is said to

be identically distributed if X; 4 X, foreachi > 1.

(i1) (Extended negatively dependent). A sequence of random variables {X,,n > 1} is named to be
upper (resp. lower) extended negatively dependent if there is some dominating constant K > 1 such
that . i

E[l_l SDi(Xi)] <K l_[ E(@i(X), Yn > 2,
i=1 i=1
whenever the non-negative functions ¢;(x) € Cp1;,(R),i = 1,2, ..., are all non-decreasing (resp. all
non-increasing). They are named extended negatively dependent (END) if they are both upper extended
negatively dependent and lower extended negatively dependent. It shall be noted that the extended
negatively dependence of {X,;n > 1} under E does not imply the extended negatively dependence
under &.

It is obvious that, let {X,,;; n > 1} be a sequence of extended negatively dependent random variables
and fi(x), fo(x),... € Ciip(R) are all non-decreasing (resp. all non-increasing) functions, then
{f.(X,); n > 1} is also a sequence of extended negatively dependent random variables.

In the following, let {X,;n > 1} be a sequence random variables in (Q, H, E), and /(-) denote an
indicator function. The symbol C stands for a generic positive constant which may differ from one
place to another.

To prove our results, we need the following three lemmas.

Lemma 2.1. Let {X,;n > 1} be a sequence of END random variables in (Q, H, E) with BX, < 0 for
each n > 1. If there exists a sequence of positive numbers {c,,n > 1} such that |X;| < c; for eachi > 1,

then foranyt > O andn > 1,

i=1

. . TN
Eexp {t Z Xi} < Cexp {5 Z e”"EXiZ} :
i=1

Proof. It is easy to check that for all x € R,e* < 1 + x + 1x%M. Thus, by BEX; < 0and |X/| < ¢, for each
i > 1, we have

) a0 1, 1.
tX; . -2 2 11Xl ~ 2 2 11Xl
Be™< 1+ BX; + 51 B(x7e™) <1+ ! B (x7e™1)
1, o 1, . -
<1+ Etze""]EXi2 < exp {Etze"‘EX?},

for any ¢ > 0. By Definition 2.2, we can see that

Eexp {t i Xl-} <C ﬁ Ee™ < Cexp {; i e""'EXl.z} .

i=1 i=1 i=1

This completes the proof of Lemma 2.1. O

Lemma 2.2. (Zhang [4], Theorem 3.1). Let {X, ..., X,,} be a sequence of END random variables in
(Q. H.B) with BX; < 0 Then
2

B
VS, >x) < C—;, Vx>0,
X

where S, = Y, X;, B2 =Y, EXI‘Z'
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Lemma 2.3. (Borel-Cantelli’s lemma, Zhang [6] Lemma 3.9). Let {A,;;n > 1} be a sequence of events
in F. Suppose that V is a countably sub-additive capacity. If ), V(A,) < oo, then
n=1

V(A,;i.0) =0, where {A,;i.0.) = ﬂ UAi.

n=1 i=n
3. Main results

This section presents the main results of this paper. First, we provide the exponential inequalities
for unbounded END random variable sequences. Then, we establish a strong law of large numbers
with convergence rate O (n‘” 21n'/? n)

3.1. Exponential inequalities

Let {X,;n > 1} be a sequence of random variables in (Q,?’( , ]E), and {c,;n > 1} be a sequence of
positive numbers. Define for 1 <i <n,n > 1,

Xl,i,n = _CnI(Xi < _Cn) + Xil(_cn < Xi < Cn) + CnI(Xi > Cn)a

X2,i,n = (Xl - Cn)I(Xi > Cn)a X3,i,n = (Xl + Cn)I(Xi < _Cn)- (31)

It is easy to check that X, + X5, + X3,, = X; for 1 <i<n,n>1and {X,,,;1 <i < n} are bounded
by ¢, for each fixed n > 1.

Let fi(x) = —cl(x < —c)+xl(—c<x<c)+clx>c), fr(x) =(x—c)(x>c), (x)=(x+0)(x <
—c) for any ¢ > 0, then {fi(x),i = 1,2,3} € C;1;, and {fi(x),i = 1,2,3} is non-decreasing. So, if
{X,;n > 1} are END random variables in (Q, H, E), then {X ., Xo.ins X305 1 < i < n}, are also END
random variables in (Q,ﬂ , E) for each fixed n > 1 due to the fact that {f;(x),i = 1,2,3} € C;1;, and
{fi(x),i = 1,2, 3} is non-decreasing.

Theorem 3.1. Let {X,,;n > 1} be a sequence of END random variables in (Q, H, E) and {Xy ;31 <i <
n,n > 1} be defined by (3.1). Define B> = Y. IAEXI.Z, n > 1. Then for any & > 0 such that £ < 2eB?/c, and
i=1

n>1,

v [Z (Xiin — BX11) > s) < Cexp {— 82;2} : (3.2)

i=1

\%

n 2
D K = 8X11) < —e) < Cexp {— SEB,%} . (3.3)

i=1

In particular, if X\ ;, = £X,,,, then
V [
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Corollary 3.1. Let {X,;n > 1} be a sequence of identically distributed END random variables in
(Q, H, E) and {Xy;,; 1 <i < n,n > 1} be defined by (3.1). Then for any & > 0 such that & < 2eEX]2/cn,

V[Zn: (X1in = BXy ) > ”8] < Cexp {_8:1;(2}’
1

i=1

- ne?
\% Xiin—EXyin) < —ne| < Cexpi——= .
[Z( b tia) } p{ 8eEXf}

i=1

In particular, if IAEXLM = &X1,iy, then

2
\Y >ne| <2Cexpq— nf .
8eEX]
Theorem 3.2. Let {X,;n > 1} be a sequence of identically distributed END random variables in
(Q, H, E) and {Xq’,-,n;l <i<nn> 1} ,q = 2,3 be defined by (3.1) with limc_mE[(Xl2 - c)*] = 0.

Assume that there exists a 6 > 0 satisfying sup,_; Be™l < My < co, where My is a positive constant
depending only on 6. Then for any € > 0 and t € (0, d],

n

(Xl,i,n - E)(l,i,n)

i=1

1 = A Mé‘ —tcy,
A\ [;l Z (Xq,i,n - EXq,i,n) > 8) < Cme , (35)
i=1
n A M(s i
A% (Z (Xq,i,n - SXqJ"n) < —8] < Cme n, (3.6)
i=1
In particular, if EXq,,-,n = EX,in, then
1 = A M(s —tcy,
V[;l D (Xgin = BXgia)| > s] <205 (3.7)
i=1

Corollary 3.2. Let {X,;n > 1} be a sequence of identically distributed END random variables
in (QHE) with limeoo B[(X2=c)*| = 0 and Be™ < o for some 6 > 0. Let

{Xgini 1 <i<n.n>1},q =23 be defined by (3.1). Then for any & > 0,
1< . Bednil
v (; > (Xgin — BXgia) > s] < Cmse ™,

\% (i (Xq,i,n - éXq,i,n) < _8] < CIES:: -

i=1

In particular, if EXq,,-,n = EXyin, then

V(% > (Xgin = BXy10)

i=1
AIMS Mathematics Volume 8, Issue 7, 15585-15599.
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Theorem 3.3. Let {X,;n > 1} be a sequence of identically distributed END random variables in
(Q, H, E) with lim,_. B [(X12 — c)*] = 0 and Be’™! < oo for some 6 > 0 and {c,;n > 1} be a sequence
of positive numbers such that

Ao 1/3
enEX;

20

O0<c, < ( forany n>ny, (3.8)

where ny is a positive integer. Define €, = /85eIAEXfc,, /n. Then for n > ny,

V|- X, —EX:)>3¢g,|<C|1 + —— |e ™9, 3.9

(” ;( ) ] ( s*eEXic, (3.9)

\% X; — X)) < -3¢, | < C(l + A—)e-&n. (3.10)
(; ] s elX?c,

In particular, if BX; = &X,, then

1
v(_
n

3.2. The strong law of large numbers

n

36~ 2x)

i=1

ZE o1Xi|
© )e_&”. G.11)

s*eEXe,

> 38,,] < 2C(1 +

Theorem 3.4. Let {X,;n > 1} be a sequence of identically distributed END random variables in
(Q, H, E) with lim._,. B [(Xf - c)*] = 0 and Be’™ < oo for some § > 1. Suppose V is countably
sub-additive, then

| & .
li “Na, (X —Ex) <0 sV, 3.12
s Qo (Xi—BX) <0 as o
1 n
liminf—Zan(Xi—éXl-)ZO as. V. (3.13)
n—oo N

i=1
In particular, if EX,- = &X;, then

Jim a,(Xi-EX))=0 as. V. (3.14)

i=1
where a, = O(n'*1In""? n).

Remark 3.1. Here, we extend the results of Tang et al. [15] for extended independent random variables
to the case of extended negatively dependent random variables. Our Theorem 3.2 to Theorem 3.4
weaken the condition of [15] from Bet < oo to Be™l < oo, Furthermore, in Theorem 3.3, we

nA 2
improves the results of [15] for 0 < ¢, < (e IZE;I

1/4
) to an arbitrary positive sequence satisfying (3.8)
only.
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4. Proof of main results

4.1. Proofs of the exponential inequalities
< 2¢, foreach 1 <i < n,n > 1. Noting that

Proof of Theorem 3.1. 1t is easily seen that |X Lin — Bx Lin
(@—b)* <2@+b) and BX}, <EX? for1 <i<n,
. . 2 . N 2 - .
B(Xiin - BX,1) < 2B (Xim + (BX1 1) ) < 4BX?,, < 4BX.
Therefore, by Lemma 2.1, we have that forany r > Oand n > 1,

Eexp {f Zn: (Xl,i,n - EXl,i,n)}

i=1
<exp {gezmn Z E (Xl,i,n - EXl,i,n)z}

i=1

<Cexp {thez’c" IAEXIZ}
=1

=C exp {ZZZGZIC”B,ZI} .

By Markov’s inequality, we have that for any ¢ > 0,

\Y% (Zn: (Xl,i,n — EXU"”) > 8)

i=1

<eEexp {t Zn: (Xl,[,n - EXl,i,n)}
P

<Cexp {—ts + 2t2e2’C”Bﬁ} :

Taking t = g/ (4eB,21), and noting that 2z¢, < 1, we get

v (Z (Xiin = BX1 1) > 8]

i=1

<Cexp {—ts + 2t2e2’C"Bi}
& &
“Cor|-i7 * |

82
=Cexp{ - .
i)

That is, (3.2) holds.
Obviously, {—X;,;n > 1} is a sequence of END random variables in (Q, H, E), and also satisfies

the conditions of Theorem 3.1. Considering {—X ;,;n > 1} instead of {X;;,;n > 1}in (3.2), we can get

\% [Zn: (—X],,-,n ~-E (—X],l-,,,)) > s) < Cexp {— 868;2} .

i=1
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By Xy, = —E(—Xl,,-,,,), we have
Vv (Z (X1 — EX1in) < —8)
i=1
=V (Z (_Xl,i,n -E (_Xl,i,n)) > 5]

i=1
&2
< - .
<Cexp { 863%}
That is, (3.3) holds.
In particular, if Bx Lin = EX1in, (3.4) follow from (3.2), (3.3), then

<V i (Xl,i,n - EXL,'J,) > 8) +V [i (Xl,i,n — EXl,i,n) < —8]

n

> (X - BX1)

i=1

\%

i=1

=V Zn] (X1in = BX 1) > s) +V

i=1

&2
<2C - .
- exp{ SeB};}
That completes the proof of Theorem 3.1.
Proof of Theorem 3.2. By Lemma 2.2 and (a — b)* < 2(a* + b*), we have

i=1

Z (Xl,i,n - éXl,i,n) < —8)

i=1

Therefore, it remains only to estimate EX; .- Noting that Be™ < Ee™ ! < M; for any ¢ € (0,].

From Lemma 3.9 of Zhang [7], we can infer directly that if lim,_., E [(X2 — c)+] = 0, then B(X?) <
Cv(X?). Noting that

0<limE& ([(X1 —e ) T(X) > ) — c]+) < lim & |xt -0 =
+

0<limEB ([(X1 + )’ 1(X) < —cp) — c]+) < 1lim & |(X} - o)'|

c—00 c—00

0,
=0,
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we have E((x1 — )1 (X, > c,,)) < Cy ((x1 — eI (X, > c,,)) and E((x1 +e,)2 (X, < —c,,)) <

Co (X1 + e T Xy < —c).
For g = 2, by Markov’s inequality, it follows that

B3 = B((X - e T (X1 > ) < Cy (X1 = e’ T (X1 > )

= f zyv (|X1 - CnII(Xl > Cn) > }’) dy
0

= f 2yV(X) — ¢, >y)dy

0
= f 2—c)VXy>u)du (y=u-c,)
< f 2(u — ¢,)e "Ee™ du

< M5f 2(u —c,)e"du

_ 2M56_ZC"
= —ZQ .

It follows that

n - .
V[% ; (XZ,i,n - EXan) > g) < CEXZ,l,n < CM(;e 4 .

For g = 3, by Markov’s inequality, it follows that
BX3, = B(X) + e 1(X) < —¢)) < Cy (X + ¢ T (X1 < —c,))
= fom 29V (1Xy + el I (X1 < —cp) > y)dy
= f(;waV(Xl +c, <-y)dy
= £m2yV(—X1 >y+c,)dy
= foo2(u— c)V(=X,>uwdu (y=u-c,
< f ) 2(u — ¢,)e "Ee ™ du

< M5f 2(u —cy)e "du

_ 2M5€_IC”
=—G
It follows that -
1 2 A EX3,1,}1 M6e_tcn
V[— ; (X300 — BX) > s) <C—- oy

That is, (3.5) holds.
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Obviously, {-X,;,;n > 1}, g = 2,3 is a sequence of END random variables in (Q, H, E), and also

satisfies the conditions of Theorem 3.2. Considering {—Xq,i,n; n> 1} instead of {Xq,i,n; n> 1} in (3.5),
we can get

v (l Z (X = B-X i) > s] < M

n & 1?e’n

By &X,;, = —E(-X,,.,.), we have

\ (% Z (Xgin = 8Xp10) < —e)

i=1

=V (% Z‘ (~Xpin — B(=Xy)) > s)
M(ge_tc’l

2ein

That is, (3.6) holds.
In particular, if EXq,,-,n = &X,in, (3.7) follow (3.5) and (3.6), then

v (% D (Xgin = B(=Xgi)| > s)

i=1

= (% Z (Xq,i,n - EXq,i,n) > 8) + [% (Xq’i’n — éXq’l.’n) < —&

i=1 i=1

M(;e"“"
<2C .
r?’e’n
That completes the proof of Theorem 3.2. O
Proof of Corollary 3.2. Tt is easily seen that sup,_; Be™!! < Be®™l = M; < co, which implies the desired
results immediately from Theorem 3.2. O

4.2. Proof of the strong law of large numbers

Proof of Theorem 3.3. Tt is easy to check that &,c, < 2¢EX? and ne2/ (8eIAEXf) = dc, . It follows from
Corollary 3.1 and Corollary 3.2 that

% [% Z (x: - BX;) > 3an < V(% Z (X1 = BX) 1) > g,,]

i=1 i=1

+V (% Zn: (Xz,,-,,, - EXz,,-,n) > s,,) +V [% Zn: (X3,i,n - EX?:,i,n) > Sn]

i=1 i1

ne? BedXilg=ocn N BedXilg=dcn
Xpi——=

8elEX? 5%&2n 5%&2n

IA

Ce

ZE olXi|
C (1 e,
selEX?c,
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and

( Z X; - &X;) < 38,1) < V(l Z (X1in — EX1in) < —Sn]

i=1

( Z(sz EXyip) < sn)+V[ Z(X3,n EXzip) < 8,,]

<C —++C +C
== ORP 86:]E,X2 6%eln 62(9%11

ZEAe‘S'X" ) —
SeBXc,

SC(1+

That is, (3.9) and (3.10) holds.
In parrticular, if BX; = £X;, we have

n

V[% > (xi-Ex)

i=1

+V [% i (Xz,i,n - EXz,i,n)

i=1

n

> 38n] < V(% 2 (Xl,i,n - EXl,i,n)

>eg, |+V]| -
n

n

Z (X3,i,n - EX3,i,n)

i=1

ne2 fredlXilg-0cn fredXilg-0cn
<2C - ——— +20——
P 8eEX12 8%en 8%en
2REedXl
<2C (1 et
s elEX?c,
The proof of Theorem 3.3 is completed. O

Proof of Theorem 3.4. Taking ¢, = Inn and 6 > 1 in Theorem 3.3, can get the following result
i \% % Z (X, — EX,) > 38n)
:i ' % ; (X: — BX;) > 3/80eEX2 In n/n)
:i \ % Z (X — BX;) > 3 \/80eBX2 (n™!/21n'/? n))
i=1

n=1
oo 2fedlXil s
SC; 1+ (53efaxfc,,)e
> 1 2Ee5lxll S |
=C — —~ < , 4.1
[nz:; nd 53eEXf ; nd lnn] oo .1

and
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1 ¢ -
:Z v o Z (X; — £X;) > 3 /8eEX] lnn/n)
i=1
1 ¢ -
=Z M= Z (X; — £X;) < =3 +[85eEX? (n'2m'? n))
i=1
N 2Eedil )
<C Y |1+ ——e
Z §eEX?c,

(o0

=1
201 2Bedl 1

= — + — < . 42
{; ne 63eEXon‘51nn] * (4.2)

i=1

From Eqs (4.1) and (42), we can obtain that Y2, V(132 a,(X;-BX)>e) < oo, and
Yo,V (}l Yhia, (X - X)) < —s) < oo for any & > 0 and a, = O(n"/>In"""?n). Then for Lemma 2.3
(Borel-Canttelli’s lemma) and V being countably sub-additive, we have

n

lim sup l Z a, (Xi - EXZ-) <0 as. V,

n—eo M4

and

n

1
lim inf = Z a,(X;—&X)>0 as. V.
n—oo nN

i=1
That is, (3.12) and (3.13) holds.
In particular, if EX; = £X;, then Y V(% Dy An (Xl- - EX,)‘ > s) < oo can be obtained directly
from Eqs (4.1) and (4.2). By Lemma 2.3 (Borel-Canttelli’s lemma) and V being countably sub-additive,
we have

n

’}1_%10 i Z a, (X,- - EXi) =0 as. V.,

i=1

That completes the proof of Theorem 3.4. O
5. Conclusions

This paper presents new results regarding exponential inequalities and a strong law of large numbers
for END random variables under sub-linear expectations. These theorems extend the corresponding
results in classical linear expectation space.
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