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1. Introduction

Uncertainty presents a primary challenge for financial and risk research institutes, which has led to
the classical probabilistic space theory being greatly challenged in this field. The tools of probability
and expectation additivity in probability space lose their effectiveness in nonlinear financial and risk
studies. As a solution to this problem of non-additivity, Peng [1–3] proposed a complete theoretical
framework and axiom system of sub-linear expectation space. This proposal has garnered the attention
of numerous scholars, who are eagerly studying and researching this topic. As a result, a series of new
theories in sub-linear expectation spaces have been continuously proven. For instance, Zhang [4–7]
has established the exponential inequality, Rosenthal’s type inequality, Kolmogorov’s type strong law
of large numbers, strong limit theorems, and the application of the law of iterated logarithm under
sub-linear expectations. Wu and Jiang [8] have also proven the strong law of numbers and Chover’s
law of the iterated logarithm under sub-linear expectations.

Exponential inequalities play a crucial role in the proof of strong limit theorems and provide
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a useful tool for establishing the convergence rate of the strong law of numbers. All kinds of
exponential inequality theorems have been continuously proven in probabilistic space, such as those
by Kim and Kim [9], Nooghabi and Azarnoosh [10], Xing et al. [11], Sung [12], Christofides and
Hadjikyriakou [13], and Wang et al. [14]. The sub-linear expectation framework provides a good
solution to the non-additive probability problem and extends many properties of probability spaces to
sub-linear expectation spaces. Based on this theory, this paper establishes exponential inequalities
and a strong law of large numbers with a convergence rate O

(
n−1/2 ln1/2 n

)
for unbounded END

random variable sequences under sub-linear expectations. As a result, the corresponding results
obtained by Wang et al. [14] have been generalized to the sub-linear expectation space context.
Similarly, Tang et al. [15] have also established exponential inequalities for extended independent
random variables. However, the range of the extended negatively dependent random variables that we
studied is wider than that of Tang et al. [15] extended independent random variables. Furthermore, we
have obtained a conclusion that they do not include each other under weaker conditions, as shown in
literature [15]. We expect that our results may be applied to some practical inverse problems where
randomness plays an important role; see e.g., [16–21].

The remainder of the paper is organized as follows: In Section 2, we briefly introduce the conceptual
framework and properties under sub-linear expectations, as well as the necessary definitions and
lemmas required for this paper. Section 3 establishes the exponential inequalities and a strong law
of large numbers for unbounded END random variable sequences under sub-linear expectations. In
Section 4, we provide the proof of the main results of Section 3. Finally, Section 5 presents the
conclusion.

2. Preliminaries

We use the framework and notations of Peng [1–3]. Let (Ω,F ) be a given measurable space and let
H be a linear space of real functions defined on (Ω,F ) such that if X1, . . . , Xn ∈ H then ϕ (X1, . . . , Xn) ∈
H for each ϕ ∈ Cl,Lip (Rn), where Cl,Lip (Rn) denotes the linear space of (local Lipschitz) functions ϕ
satisfying

|ϕ(x) − ϕ(y)| ≤ C(1 + |x|m + |y|m)|x − y|,∀x, y ∈ Rn,

for some C > 0,m ∈ N depending on ϕ. H is considered as a space of “random variables”. In this case
we denote X ∈ H is considered as a space of “random variables”. We also denote Cb,Lip (Rn) to be the
bounded Lipschitz functions ϕ(x) satisfying

|ϕ(x)| ≤ C, |ϕ(x) − ϕ(y)| ≤ C|x − y|,∀x, y ∈ Rn,

for some C > 0, depending on ϕ.

Definition 2.1. (Zhang [6]). A sub-linear expectation Ê on H is a function Ê : H → R̄ satisfying the
following properties: for all X,Y ∈ H , we have
(a) Monotonicity: If X ≥ Y then ÊX ≥ ÊY;
(b) Constant preserving: Êc = c;
(c) Sub-additivity: Ê(X + Y) ≤ ÊX + ÊY whenever ÊX + ÊY is not of the form +∞−∞ or −∞ +∞;
(d) Positive homogeneity: Ê(λX) = λÊX, λ ≥ 0.
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Here R̄ = [−∞,+∞]. The triple
(
Ω,H , Ê

)
is called a sub-linear expectation space. Given a sub-

linear expectation Ê, let us denote the conjugate expectation ε̂ of Ê by

ε̂X := −Ê(−X),∀X ∈ H .

From the definition, it is easily shown that ε̂(X) ≤ Ê(X), Ê(X + c) = Ê(X) + c and Ê(X − Y) ≤ ÊX − ÊY
for all X,Y ∈ H with ÊY being finite. Further, if Ê(|X|) is finite, then ε̂X and ÊX are both finite.

It is called to be countably sub-additive if ÊX ≤
∞∑

n=1
ÊXn, whenever X ≤

∞∑
n=1

Xn, X, Xn ∈ H and

X ≥ 0, Xn ≥ 0, n ≥ 1.
Next, we introduce the capacities corresponding to the sub-linear expectations. Let G ⊂ F . A

function V : G → [0, 1] is called a capacity if

V(∅) = 0, V(Ω) = 1 and V(A) ≤ V(B) for ∀A ⊂ B, A, B ∈ G.

It is called to be sub-additive if V(A ∪ B) ≤ V(A) + V(B) for all A, B ∈ G with A ∪ B ∈ G. It is called

to be countably sub-additive if V
(
∞⋃

n=1
An

)
≤
∞∑

n=1
V (An) ,∀An ∈ F .

Let
(
Ω,H , Ê

)
be a sub-linear space, and ε̂ be the conjugate of Ê. We denote a pair (V,V) of

capacities by
V(A) := inf{Êξ; IA ≤ ξ, ξ ∈ H}, V(A) := 1 − V(Ac), ∀A ∈ F ,

where Ac is the complement set of A. Then

V(A) := Ê(IA), V(A) := ε̂(IA), if IA ∈ H . (2.1)

For example, if A = ∅ then IA = 0 ∈ H and if A = Ω then IA = 1 ∈ H . Further, we have

Ê f ≤ V(A) ≤ Êg, ε̂ f ≤ V(A) ≤ ε̂g, if f ≤ IA ≤ g, f , g ∈ H . (2.2)

It is obvious that V is sub-additive, butV and ε̂ are not. However, we have

V(A ∪ B) ≤ V(A) + V(B) and ε̂(X + Y) ≤ ε̂X + ÊY. (2.3)

Due to the fact that V (Ac ∩ Bc) = V (Ac \ B) ≥ V (Ac) − V(B) and Ê(−X − Y) ≥ Ê(−X) − ÊY .
Also, we define the Choquet integrals expectations (CV,CV) by

CV(X) =

∫ ∞

0
V(X > t)dt +

∫ 0

−∞

[V(X ≥ t) − 1]dt,

with V being replaced by V andV respectively.

Remark 2.1. From (2.2), for ∀X ∈ H , x > 0, p > 0, it emerges that V(|X| ≥ y) ≤ Ê(|X|p)/xp, which is
the well-known Markov’s inequality.

Definition 2.2. (Peng [1], Zhang [4]). (i) (Identical distribution). Let X1 and X2 be two random vectors
defined respectively in sub-linear expectation spaces

(
Ω,H , Ê

)
. They are called identically distributed,

denoted by X1
d
= X2 if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cl,Lip (R) ,
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whenever the sub-linear expectation are finite. A sequence {Xn, n ≥ 1} of random variables is said to
be identically distributed if Xi

d
= X1 for each i ≥ 1.

(ii) (Extended negatively dependent). A sequence of random variables {Xn, n ≥ 1} is named to be
upper (resp. lower) extended negatively dependent if there is some dominating constant K ≥ 1 such
that

Ê

 n∏
i=1

ϕi(Xi)

 ≤ K
n∏

i=1

Ê (ϕi(Xi)) , ∀n ≥ 2,

whenever the non-negative functions ϕi(x) ∈ Cb,Lip(R), i = 1, 2, ... , are all non-decreasing (resp. all
non-increasing). They are named extended negatively dependent (END) if they are both upper extended
negatively dependent and lower extended negatively dependent. It shall be noted that the extended
negatively dependence of {Xn; n ≥ 1} under Ê does not imply the extended negatively dependence
under ε̂.

It is obvious that, let {Xn; n ≥ 1} be a sequence of extended negatively dependent random variables
and f1(x), f2(x), ... ∈ Cl,Lip(R) are all non-decreasing (resp. all non-increasing) functions, then
{ fn(Xn); n ≥ 1} is also a sequence of extended negatively dependent random variables.

In the following, let {Xn; n ≥ 1} be a sequence random variables in
(
Ω,H , Ê

)
, and I(·) denote an

indicator function. The symbol C stands for a generic positive constant which may differ from one
place to another.

To prove our results, we need the following three lemmas.

Lemma 2.1. Let {Xn; n ≥ 1} be a sequence of END random variables in
(
Ω,H , Ê

)
with ÊXn ≤ 0 for

each n ≥ 1. If there exists a sequence of positive numbers {cn, n ≥ 1} such that |Xi| ≤ ci for each i ≥ 1,
then for any t > 0 and n ≥ 1,

Ê exp

t
n∑

i=1

Xi

 ≤ C exp

 t2

2

n∑
i=1

etciÊX2
i

 .
Proof. It is easy to check that for all x ∈ R, ex ≤ 1 + x + 1

2 x2e|x|. Thus, by ÊXi ≤ 0 and |Xi| ≤ ci for each
i ≥ 1, we have

ÊetXi≤ 1 + tÊXi +
1
2

t2Ê
(
X2

i et|Xi |
)
≤ 1 +

1
2

t2Ê
(
X2

i et|Xi |
)

≤ 1 +
1
2

t2etciÊX2
i ≤ exp

{
1
2

t2etciÊX2
i

}
,

for any t > 0. By Definition 2.2, we can see that

Ê exp

t
n∑

i=1

Xi

 ≤ C
n∏

i=1

ÊetXi ≤ C exp

 t2

2

n∑
i=1

etciÊX2
i

 .
This completes the proof of Lemma 2.1. �

Lemma 2.2. (Zhang [4], Theorem 3.1). Let {X1, ..., Xn} be a sequence of END random variables in(
Ω,H , Ê

)
with ÊXi ≤ 0 Then

V(S n ≥ x) ≤ C
B2

n

x2 , ∀x > 0,

where S n =
∑n

i=1 Xi, B2
n =

∑n
i=1 ÊX2

i .
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Lemma 2.3. (Borel-Cantelli’s lemma, Zhang [6] Lemma 3.9). Let {An; n ≥ 1} be a sequence of events

in F . Suppose that V is a countably sub-additive capacity. If
∞∑

n=1
V(An) < ∞, then

V (An; i.o.) = 0, where {An; i.o.} =

∞⋂
n=1

∞⋃
i=n

Ai.

3. Main results

This section presents the main results of this paper. First, we provide the exponential inequalities
for unbounded END random variable sequences. Then, we establish a strong law of large numbers
with convergence rate O

(
n−1/2 ln1/2 n

)
.

3.1. Exponential inequalities

Let {Xn; n ≥ 1} be a sequence of random variables in
(
Ω,H , Ê

)
, and {cn; n ≥ 1} be a sequence of

positive numbers. Define for 1 ≤ i ≤ n, n ≥ 1,

X1,i,n = −cnI(Xi < −cn) + XiI(−cn ≤ Xi ≤ cn) + cnI(Xi > cn),
X2,i,n = (Xi − cn)I(Xi > cn), X3,i,n = (Xi + cn)I(Xi < −cn). (3.1)

It is easy to check that X1,i,n + X2,i,n + X3,i,n = Xi for 1 ≤ i ≤ n, n ≥ 1 and
{
X1,i,n; 1 ≤ i ≤ n

}
are bounded

by cn for each fixed n ≥ 1.
Let f1(x) = −cI(x < −c) + xI(−c ≤ x ≤ c) + cI(x > c), f2(x) = (x − c)I(x > c), f3(x) = (x + c)I(x <

−c) for any c > 0, then { fi(x), i = 1, 2, 3} ∈ Cl,Lip and { fi(x), i = 1, 2, 3} is non-decreasing. So, if
{Xn; n ≥ 1} are END random variables in

(
Ω,H , Ê

)
, then

{
X1,i,n, X2,i,n, X3,i,n; 1 ≤ i ≤ n

}
, are also END

random variables in
(
Ω,H , Ê

)
for each fixed n ≥ 1 due to the fact that { fi(x), i = 1, 2, 3} ∈ Cl,Lip and

{ fi(x), i = 1, 2, 3} is non-decreasing.

Theorem 3.1. Let {Xn; n ≥ 1} be a sequence of END random variables in
(
Ω,H , Ê

)
and {X1,i,n; 1 ≤ i ≤

n, n ≥ 1} be defined by (3.1). Define B2
n =

n∑
i=1
ÊX2

i , n ≥ 1. Then for any ε > 0 such that ε ≤ 2eB2
n/cn and

n ≥ 1,

V

 n∑
i=1

(
X1,i,n − ÊX1,i,n

)
> ε

 ≤ C exp
{
−

ε2

8eB2
n

}
, (3.2)

V

 n∑
i=1

(
X1,i,n − ε̂X1,i,n

)
< −ε

 ≤ C exp
{
−

ε2

8eB2
n

}
. (3.3)

In particular, if ÊX1,i,n = ε̂X1,i,n, then

V


∣∣∣∣∣∣∣

n∑
i=1

(
X1,i,n − ÊX1,i,n

)∣∣∣∣∣∣∣ > ε
 ≤ 2C exp

{
−

ε2

8eB2
n

}
. (3.4)
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Corollary 3.1. Let {Xn; n ≥ 1} be a sequence of identically distributed END random variables in(
Ω,H , Ê

)
and

{
X1,i,n; 1 ≤ i ≤ n, n ≥ 1

}
be defined by (3.1). Then for any ε > 0 such that ε ≤ 2eÊX2

1/cn,

V

 n∑
i=1

(
X1,i,n − ÊX1,i,n

)
> nε

 ≤ C exp

− nε2

8eÊX2
1

 ,
V

 n∑
i=1

(
X1,i,n − ε̂X1,i,n

)
< −nε

 ≤ C exp

− nε2

8eÊX2
1

 .
In particular, if ÊX1,i,n = ε̂X1,i,n, then

V


∣∣∣∣∣∣∣

n∑
i=1

(
X1,i,n − ÊX1,i,n

)∣∣∣∣∣∣∣ > nε

 ≤ 2C exp

− nε2

8eÊX2
1

 .
Theorem 3.2. Let {Xn; n ≥ 1} be a sequence of identically distributed END random variables in(
Ω,H , Ê

)
and

{
Xq,i,n; 1 ≤ i ≤ n, n ≥ 1

}
, q = 2, 3 be defined by (3.1) with limc→∞ Ê

[
(X2

1 − c)+
]

= 0.
Assume that there exists a δ > 0 satisfying supt≤δ Êet|X1 | ≤ Mδ < ∞, where Mδ is a positive constant
depending only on δ. Then for any ε > 0 and t ∈ (0, δ],

V

1
n

n∑
i=1

(
Xq,i,n − ÊXq,i,n

)
> ε

 ≤ C
Mδ

t2ε2n
e−tcn , (3.5)

V

 n∑
i=1

(
Xq,i,n − ε̂Xq,i,n

)
< −ε

 ≤ C
Mδ

t2ε2n
e−tcn . (3.6)

In particular, if ÊXq,i,n = ε̂Xq,i,n, then

V

1
n

∣∣∣∣∣∣∣
n∑

i=1

(
Xq,i,n − ÊXq,i,n

)∣∣∣∣∣∣∣ > ε
 ≤ 2C

Mδ

t2ε2n
e−tcn . (3.7)

Corollary 3.2. Let {Xn; n ≥ 1} be a sequence of identically distributed END random variables
in

(
Ω,H , Ê

)
with limc→∞ Ê

[
(X2

1 − c)+
]

= 0 and Êeδ|X1 | < ∞ for some δ > 0. Let{
Xq,i,n; 1 ≤ i ≤ n, n ≥ 1

}
, q = 2, 3 be defined by (3.1). Then for any ε > 0,

V

1
n

n∑
i=1

(
Xq,i,n − ÊXq,i,n

)
> ε

 ≤ C
Êeδ|X1 |

δ2ε2n
e−δcn ,

V

 n∑
i=1

(
Xq,i,n − ε̂Xq,i,n

)
< −ε

 ≤ C
Êeδ|X1 |

δ2ε2n
e−δcn .

In particular, if ÊXq,i,n = ε̂Xq,i,n, then

V

1
n

∣∣∣∣∣∣∣
n∑

i=1

(
Xq,i,n − ÊXq,i,n

)∣∣∣∣∣∣∣ > ε
 ≤ 2C

Êeδ|X1 |

δ2ε2n
e−δcn .
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Theorem 3.3. Let {Xn; n ≥ 1} be a sequence of identically distributed END random variables in(
Ω,H , Ê

)
with limc→∞ Ê

[
(X2

1 − c)+
]

= 0 and Êeδ|X1 | < ∞ for some δ > 0 and {cn; n ≥ 1} be a sequence
of positive numbers such that

0 < cn ≤

enÊX2
1

2δ

1/3

f or any n ≥ n0 , (3.8)

where n0 is a positive integer. Define εn =

√
8δeÊX2

1cn/n. Then for n ≥ n0 ,

V

1
n

n∑
i=1

(
Xi − ÊXi

)
> 3εn

 ≤ C
1 +

2Êeδ|X1 |

δ3eÊX2
1cn

 e−δcn , (3.9)

V

 n∑
i=1

(Xi − ε̂Xi) < −3εn

 ≤ C
1 +

2Êeδ|X1 |

δ3eÊX2
1cn

 e−δcn . (3.10)

In particular, if ÊXi = ε̂Xi, then

V

1
n

∣∣∣∣∣∣∣
n∑

i=1

(
Xi − ÊXi

)∣∣∣∣∣∣∣ > 3εn

 ≤ 2C
1 +

2Êeδ|X1 |

δ3eÊX2
1cn

 e−δcn . (3.11)

3.2. The strong law of large numbers

Theorem 3.4. Let {Xn; n ≥ 1} be a sequence of identically distributed END random variables in(
Ω,H , Ê

)
with limc→∞ Ê

[
(X2

1 − c)+
]

= 0 and Êeδ|X1 | < ∞ for some δ > 1. Suppose V is countably
sub-additive, then

lim sup
n→∞

1
n

n∑
i=1

an

(
Xi − ÊXi

)
≤ 0 a.s. V, (3.12)

lim inf
n→∞

1
n

n∑
i=1

an (Xi − ε̂Xi) ≥ 0 a.s. V. (3.13)

In particular, if ÊXi = ε̂Xi, then

lim
n→∞

1
n

n∑
i=1

an

(
Xi − ÊXi

)
= 0 a.s. V, (3.14)

where an = O(n1/2 ln−1/2 n).

Remark 3.1. Here, we extend the results of Tang et al. [15] for extended independent random variables
to the case of extended negatively dependent random variables. Our Theorem 3.2 to Theorem 3.4
weaken the condition of [15] from ÊeδX2

1 < ∞ to Êeδ|X1 | < ∞. Furthermore, in Theorem 3.3, we

improves the results of [15] for 0 < cn ≤

(
enÊX2

1
2δ

)1/4
to an arbitrary positive sequence satisfying (3.8)

only.
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4. Proof of main results

4.1. Proofs of the exponential inequalities

Proof of Theorem 3.1. It is easily seen that
∣∣∣X1,i,n − ÊX1,i,n

∣∣∣ ≤ 2cn for each 1 ≤ i ≤ n, n ≥ 1. Noting that
(a − b)2 ≤ 2(a2 + b2) and ÊX2

1,i,n ≤ ÊX2
i for 1 ≤ i ≤ n,

Ê
(
X1,i,n − ÊX1,i,n

)2
≤ 2Ê

(
X2

1,i,n +
(
ÊX1,i,n

)2
)
≤ 4ÊX2

1,i,n ≤ 4ÊX2
i .

Therefore, by Lemma 2.1, we have that for any t > 0 and n ≥ 1,

Ê exp

t
n∑

i=1

(
X1,i,n − ÊX1,i,n

)
≤exp

 t2

2
e2tcn

n∑
i=1

Ê
(
X1,i,n − ÊX1,i,n

)2


≤C exp

2t2e2tcn

n∑
i=1

ÊX2
i


=C exp

{
2t2e2tcn B2

n

}
.

By Markov’s inequality, we have that for any t > 0,

V

 n∑
i=1

(
X1,i,n − ÊX1,i,n

)
> ε


≤e−tεÊ exp

t
n∑

i=1

(
X1,i,n − ÊX1,i,n

)
≤C exp

{
−tε + 2t2e2tcn B2

n

}
.

Taking t = ε/
(
4eB2

n

)
, and noting that 2tcn ≤ 1, we get

V

 n∑
i=1

(
X1,i,n − ÊX1,i,n

)
> ε


≤C exp

{
−tε + 2t2e2tcn B2

n

}
≤C exp

{
−

ε2

4eB2
n

+
ε2

8eB2
n

}
=C exp

{
−

ε2

8eB2
n

}
.

That is, (3.2) holds.
Obviously,

{
−X1,i,n; n ≥ 1

}
is a sequence of END random variables in

(
Ω,H , Ê

)
, and also satisfies

the conditions of Theorem 3.1. Considering
{
−X1,i,n; n ≥ 1

}
instead of

{
X1,i,n; n ≥ 1

}
in (3.2), we can get

V

 n∑
i=1

(
−X1,i,n − Ê

(
−X1,i,n

))
> ε

 ≤ C exp
{
−

ε2

8eB2
n

}
.
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By ε̂X1,i,n = −Ê(−X1,i,n), we have

V

 n∑
i=1

(
X1,i,n − ε̂X1,i,n

)
< −ε


=V

 n∑
i=1

(
−X1,i,n − Ê

(
−X1,i,n

))
> ε


≤C exp

{
−

ε2

8eB2
n

}
.

That is, (3.3) holds.
In particular, if ÊX1,i,n = ε̂X1,i,n, (3.4) follow from (3.2), (3.3), then

V


∣∣∣∣∣∣∣

n∑
i=1

(
X1,i,n − ÊX1,i,n

)∣∣∣∣∣∣∣ > ε


≤V

 n∑
i=1

(
X1,i,n − ÊX1,i,n

)
> ε

 + V

 n∑
i=1

(
X1,i,n − ÊX1,i,n

)
< −ε


=V

 n∑
i=1

(
X1,i,n − ÊX1,i,n

)
> ε

 + V

 n∑
i=1

(
X1,i,n − ε̂X1,i,n

)
< −ε


≤2C exp

{
−

ε2

8eB2
n

}
.

That completes the proof of Theorem 3.1. �
Proof of Theorem 3.2. By Lemma 2.2 and (a − b)2 ≤ 2(a2 + b2), we have

V

1
n

n∑
i=1

(
Xq,i,n − ÊXq,i,n

)
> ε


=V

 n∑
i=1

(
Xq,i,n − ÊXq,i,n

)
> nε


≤C

n∑
i=1
Ê

(
Xq,i,n − ÊXq,i,n

)2

n2ε2

≤C
ÊX2

q,1,n

nε2

Therefore, it remains only to estimate ÊX2
q,1,n. Noting that ÊetX1 ≤ Êet|X1 | ≤ Mδ for any t ∈ (0, δ].

From Lemma 3.9 of Zhang [7], we can infer directly that if limc→∞ Ê
[
(X2 − c)+

]
= 0, then Ê(X2) ≤

CV(X2). Noting that

0 ≤ lim
c→∞
Ê

([
(X1 − cn)2 I (X1 > cn) − c

]+
)
≤ lim

c→∞
Ê

[
(X2

1 − c)+
]

= 0,

0 ≤ lim
c→∞
Ê

([
(X1 + cn)2 I (X1 < −cn) − c

]+
)
≤ lim

c→∞
Ê

[
(X2

1 − c)+
]

= 0,
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we have Ê
(
(X1 − cn)2 I (X1 > cn)

)
≤ CV

(
(X1 − cn)2 I (X1 > cn)

)
and Ê

(
(X1 + cn)2 I (X1 < −cn)

)
≤

CV
(
(X1 + cn)2 I (X1 < −cn)

)
.

For q = 2, by Markov’s inequality, it follows that

ÊX2
2,1,n= Ê

(
(X1 − cn)2 I (X1 > cn)

)
≤ CV

(
(X1 − cn)2 I (X1 > cn)

)
=

∫ ∞

0
2yV (|X1 − cn| I (X1 > cn) > y) dy

=

∫ ∞

0
2yV (X1 − cn > y) dy

=

∫ ∞

cn

2 (u − cn)V (X1 > u) du (y = u − cn)

≤

∫ ∞

cn

2(u − cn)e−tuÊetX1du

≤ Mδ

∫ ∞

cn

2(u − cn)e−tudu

=
2Mδe−tcn

t2 .

It follows that

V

1
n

n∑
i=1

(
X2,i,n − ÊX2,i,n

)
> ε

 ≤ C
ÊX2

2,1,n

ε2n
≤ C

Mδe−tcn

t2ε2n
.

For q = 3, by Markov’s inequality, it follows that

ÊX2
3,1,n= Ê

(
(X1 + cn)2 I (X1 < −cn)

)
≤ CV

(
(X1 + cn)2 I (X1 < −cn)

)
=

∫ ∞

0
2yV (|X1 + cn| I (X1 < −cn) > y) dy

=

∫ ∞

0
2yV (X1 + cn < −y) dy

=

∫ ∞

0
2yV (−X1 > y + cn) dy

=

∫ ∞

cn

2 (u − cn)V (−X1 > u) du (y = u − cn)

≤

∫ ∞

cn

2(u − cn)e−tuÊe−tX1du

≤ Mδ

∫ ∞

cn

2(u − cn)e−tudu

=
2Mδe−tcn

t2 .

It follows that

V

1
n

n∑
i=1

(
X3,i,n − ÊX3,i,n

)
> ε

 ≤ C
ÊX2

3,1,n

ε2n
≤ C

Mδe−tcn

t2ε2n
.

That is, (3.5) holds.
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Obviously, {−Xq,i,n; n ≥ 1}, q = 2, 3 is a sequence of END random variables in
(
Ω,H , Ê

)
, and also

satisfies the conditions of Theorem 3.2. Considering
{
−Xq,i,n; n ≥ 1

}
instead of

{
Xq,i,n; n ≥ 1

}
in (3.5),

we can get

V

1
n

n∑
i=1

(
−Xq,i,n − Ê(−Xq,i,n)

)
> ε

 ≤ C
Mδe−tcn

t2ε2n
.

By ε̂Xq,i,n = −Ê(−Xq,i,n), we have

V

1
n

n∑
i=1

(
Xq,i,n − ε̂Xq,i,n

)
< −ε


=V

1
n

n∑
i=1

(
−Xq,i,n − Ê(−Xq,i,n)

)
> ε


≤C

Mδe−tcn

t2ε2n
.

That is, (3.6) holds.
In particular, if ÊXq,i,n = ε̂Xq,i,n, (3.7) follow (3.5) and (3.6), then

V

1
n

∣∣∣∣∣∣∣
n∑

i=1

(
Xq,i,n − Ê(−Xq,i,n)

)∣∣∣∣∣∣∣ > ε


=V

1
n

n∑
i=1

(
Xq,i,n − ÊXq,i,n

)
> ε

 +

1
n

n∑
i=1

(
Xq,i,n − ε̂Xq,i,n

)
< −ε


≤2C

Mδe−tcn

t2ε2n
.

That completes the proof of Theorem 3.2. �

Proof of Corollary 3.2. It is easily seen that supt≤δ Êet|X1 | ≤ Êeδ|X1 | = Mδ < ∞, which implies the desired
results immediately from Theorem 3.2. �

4.2. Proof of the strong law of large numbers

Proof of Theorem 3.3. It is easy to check that εncn ≤ 2eÊX2
1 and nε2

n/
(
8eÊX2

1

)
= δcn . It follows from

Corollary 3.1 and Corollary 3.2 that

V

1
n

n∑
i=1

(
Xi − ÊXi

)
> 3εn

 ≤ V 1
n

n∑
i=1

(
X1,i,n − ÊX1,i,n

)
> εn


+V

1
n

n∑
i=1

(
X2,i,n − ÊX2,i,n

)
> εn

 + V

1
n

n∑
i=1

(
X3,i,n − ÊX3,i,n

)
> εn


≤C exp

− nε2
n

8eÊX2
1

 + C
Êeδ|X1 |e−δcn

δ2ε2
nn

+ C
Êeδ|X1 |e−δcn

δ2ε2
nn

≤C
1 +

2Êeδ|X1 |

δ3eÊX2
1cn

 e−δcn ,
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and

V

1
n

n∑
i=1

(Xi − ε̂Xi) < −3εn

 ≤ V 1
n

n∑
i=1

(
X1,i,n − ε̂X1,i,n

)
< −εn


+V

1
n

n∑
i=1

(
X2,i,n − ε̂X2,i,n

)
< −εn

 + V

1
n

n∑
i=1

(
X3,i,n − ε̂X3,i,n

)
< −εn


≤C exp

− nε2
n

8eÊX2
1

 + C
Êeδ|X1 |e−δcn

δ2ε2
nn

+ C
Êeδ|X1 |e−δcn

δ2ε2
nn

≤C
1 +

2Êeδ|X1 |

δ3eÊX2
1cn

 e−δcn .

That is, (3.9) and (3.10) holds.
In parrticular, if ÊXi = ε̂Xi, we have

V

1
n

∣∣∣∣∣∣∣
n∑

i=1

(
Xi − ÊXi

)∣∣∣∣∣∣∣ > 3εn

 ≤ V 1
n

∣∣∣∣∣∣∣
n∑

i=1

(
X1,i,n − ÊX1,i,n

)∣∣∣∣∣∣∣ > εn


+V

1
n

∣∣∣∣∣∣∣
n∑

i=1

(
X2,i,n − ÊX2,i,n

)∣∣∣∣∣∣∣ > εn

 + V

1
n

∣∣∣∣∣∣∣
n∑

i=1

(
X3,i,n − ÊX3,i,n

)∣∣∣∣∣∣∣ > εn


≤2C exp

− nε2
n

8eÊX2
1

 + 2C
Êeδ|X1 |e−δcn

δ2ε2
nn

+ 2C
Êeδ|X1 |e−δcn

δ2ε2
nn

≤2C
1 +

2Êeδ|X1 |

δ3eÊX2
1cn

 e−δcn .

The proof of Theorem 3.3 is completed. �
Proof of Theorem 3.4. Taking cn = ln n and δ > 1 in Theorem 3.3, can get the following result

∞∑
n=1

V

1
n

n∑
i=1

(
Xi − ÊXi

)
> 3εn


=

∞∑
n=1

V

1
n

n∑
i=1

(
Xi − ÊXi

)
> 3

√
8δeÊX2

1 ln n/n


=

∞∑
n=1

V

1
n

n∑
i=1

(
Xi − ÊXi

)
> 3

√
8δeÊX2

1

(
n−1/2 ln1/2 n

)
≤C

∞∑
i=1

1 +
2Êeδ|X1 |

δ3eÊX2
1cn

 e−δcn

=C

 ∞∑
n=1

1
nδ

+
2Êeδ|X1 |

δ3eÊX2
1

∞∑
i=1

1
nδ ln n

 < ∞, (4.1)

and
∞∑

n=1

V

1
n

n∑
i=1

(Xi − ε̂Xi) < −3εn
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=

∞∑
n=1

V

1
n

n∑
i=1

(Xi − ε̂Xi) > 3
√

8δeÊX2
1 ln n/n


=

∞∑
n=1

V

1
n

n∑
i=1

(Xi − ε̂Xi) < −3
√

8δeÊX2
1

(
n−1/2 ln1/2 n

)
≤C

∞∑
i=1

1 +
2Êeδ|X1 |

δ3eÊX2
1cn

 e−δcn

=C

 ∞∑
n=1

1
nδ

+
2Êeδ|X1 |

δ3eÊX2
1

∞∑
i=1

1
nδ ln n

 < ∞. (4.2)

From Eqs (4.1) and (4.2), we can obtain that
∑∞

n=1V
(

1
n

∑n
i=1 an

(
Xi − ÊXi

)
> ε

)
< ∞, and∑∞

n=1V
(

1
n

∑n
i=1 an (Xi − ε̂Xi) < −ε

)
< ∞ for any ε > 0 and an = O(n1/2 ln−1/2 n). Then for Lemma 2.3

(Borel-Canttelli’s lemma) and V being countably sub-additive, we have

lim sup
n→∞

1
n

n∑
i=1

an

(
Xi − ÊXi

)
≤ 0 a.s. V,

and

lim inf
n→∞

1
n

n∑
i=1

an (Xi − ε̂Xi) ≥ 0 a.s. V.

That is, (3.12) and (3.13) holds.

In particular, if ÊXi = ε̂Xi, then
∑∞

n=1V
(

1
n

∑n
i=1 an

∣∣∣∣(Xi − ÊXi

)∣∣∣∣ > ε) < ∞ can be obtained directly
from Eqs (4.1) and (4.2). By Lemma 2.3 (Borel-Canttelli’s lemma) andV being countably sub-additive,
we have

lim
n→∞

1
n

n∑
i=1

an

(
Xi − ÊXi

)
= 0 a.s. V.

That completes the proof of Theorem 3.4. �

5. Conclusions

This paper presents new results regarding exponential inequalities and a strong law of large numbers
for END random variables under sub-linear expectations. These theorems extend the corresponding
results in classical linear expectation space.
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