Research article

Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations

  • Received: 25 December 2021 Revised: 28 February 2022 Accepted: 08 March 2022 Published: 15 March 2022
  • MSC : 60F15

  • In this paper, we establish the complete convergence and complete integral convergence of partial sums for moving average process based on independent random variables under the sub-linear expectations. The results in the paper extend some convergence properties of moving average process under independent assumption from probability space to the sub-linear expectation space.

    Citation: Xiaocong Chen, Qunying Wu. Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations[J]. AIMS Mathematics, 2022, 7(6): 9694-9715. doi: 10.3934/math.2022540

    Related Papers:

  • In this paper, we establish the complete convergence and complete integral convergence of partial sums for moving average process based on independent random variables under the sub-linear expectations. The results in the paper extend some convergence properties of moving average process under independent assumption from probability space to the sub-linear expectation space.



    加载中


    [1] S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Ito type, Sto. Anal. Appl., 2 (2006), 541–567. https://doi.org/10.1007/978-3-540-70847-6_25 doi: 10.1007/978-3-540-70847-6_25
    [2] S. G. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under gexpectation, Stoch. Proc. Appl., 118 (2008), 2223–2253. https://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015
    [3] S. G. Peng, Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China Ser. A-Math., 52 (2009), 1391–1411. https://doi.org/10.1007/s11425-009-0121-8 doi: 10.1007/s11425-009-0121-8
    [4] L. X. Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations, 2016. https://doi.org/10.48550/arXiv.1608.00710
    [5] L. X. Zhang, Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications, Sci. China Math., 59 (2016), 751–768. https://doi.org/10.1007/s11425-015-5105-2 doi: 10.1007/s11425-015-5105-2
    [6] L. X. Zhang, Exponential inequalities under sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1
    [7] P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. USA, 33 (1947), 25–31. https://doi.org/10.1086/bullnattax41787752 doi: 10.1086/bullnattax41787752
    [8] Y. S. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sin., 16 (1988), 177–201.
    [9] S. H. Sung, A note on the complete convergence for arrays of rowwise independent random elements, Stat. Probab. Lett., 78 (2008), 1283–1289. https://doi.org/10.1016/j.spl.2007.11.018 doi: 10.1016/j.spl.2007.11.018
    [10] Q. Y. Wu, Complete convergence for negatively dependent sequences of random variables, J. Inequal. Appl., 2010 (2010), 1–10. https://doi.org/10.1155/2010/507293 doi: 10.1155/2010/507293
    [11] Q. Y. Wu, A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables, J. Inequal. Appl., 2012 (2012), 1–10. https://doi.org/10.1186/1029-242X-2012-50 doi: 10.1186/1029-242X-2012-50
    [12] X. H. Bao, J. J. Lin, X. J. Wang, Y. Wu, On complete convergence for weighted sums of arrays of rowwise END random variables and its statistical applications, Math. Slovaca, 69 (2019), 223–232. https://doi.org/10.1515/ms-2017-0216 doi: 10.1515/ms-2017-0216
    [13] X. Deng, X. J. Wang, On complete convergence for extended independent random variables under sub-linear expectations, J. Korean Math. Soc., 57 (2020), 553–570. https://doi.org/10.4134/JKMS.j190093 doi: 10.4134/JKMS.j190093
    [14] J. Li, Q. Y. Wu, Complete integral convergence for arrays of row-wise extended independent random variables under Sub-linear expectations, Commun. Stat.-Theor. M., 49 (2020), 5613–5626. https://doi.org/10.1080/03610926.2019.1620954 doi: 10.1080/03610926.2019.1620954
    [15] C. Lu, R. Wang, X. J. Wang, Y. Wu, Complete f-moment convergence for extended negatively dependent random variables under sub-linear expectations, J. Korean Math. Soc., 57 (2020), 1485–1508. https://doi.org/10.4134/JKMS.j190756 doi: 10.4134/JKMS.j190756
    [16] H. Y. Zhong, Q. Y. Wu, Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation, J. Inequal. Appl., 2017 (2017), 1–14. https://doi.org/10.1186/s13660-017-1538-1 doi: 10.1186/s13660-017-1538-1
    [17] M. Z. Xu, K. Cheng, Convergence for sums of i.i.d. random variables under sublinear expectations, J. Inequal. Appl., 2021 (2021), 1–14. https://doi.org/10.1186/s13660-021-02692-x doi: 10.1186/s13660-021-02692-x
    [18] X. Ding, A general form for precise asymptotics for complete convergence under sublinear expectation, AIMS Math., 7 (2022), 1664–1677. https://doi.org/10.3934/math.2022096 doi: 10.3934/math.2022096
    [19] L. X. Zhang, The convergence of the sums of independent random variables under the sub-linear expectations, Acta Math. Sin.-E., 36 (2020), 224–244. https://doi.org/10.1007/s10114-020-8508-0 doi: 10.1007/s10114-020-8508-0
    [20] I. A. Ibragimov, Some limit theorems for stationary processes, Theor. Probab. Appl., 7 (1962), 349–382. https://doi.org/10.1137/1107036 doi: 10.1137/1107036
    [21] R. M. Burton, H. Dehling, Large deviations for some weakly dependent random processes, Stat. Probab. Lett., 9 (1990), 397–401. https://doi.org/10.1016/0167-7152(90)90031-2 doi: 10.1016/0167-7152(90)90031-2
    [22] D. L. Li, M. B. Rao, X. C. Wang, Complete convergence of moving average processes, Stat. Probab. Lett., 14 (1992), 111–114. https://doi.org/10.1016/0167-7152(92)90073-E doi: 10.1016/0167-7152(92)90073-E
    [23] L. X. Zhang, Complete convergence of moving average processes under dependence assumptions, Stat. Probab. Lett., 30 (1996), 165–170. https://doi.org/10.1016/0167-7152(95)00215-4 doi: 10.1016/0167-7152(95)00215-4
    [24] W. Z. Yang, X. J. Wang, N. X. Ling, S. H. Hu, On complete convergence of moving average process for AANA sequence, Discrete Dyn. Nat. Soc., 2012 (2012), 1–24. https://doi.org/10.1155/2012/863931 doi: 10.1155/2012/863931
    [25] W. Z. Yang, S. H. Hu, Complete moment convergence of pairwise NQD random variables, Stochastics, 87 (2015), 199–208. https://doi.org/10.1080/17442508.2014.939975 doi: 10.1080/17442508.2014.939975
    [26] D. H. Qiu, P. Y. Chen, Convergence for moving average process under END set-up, Acta Math. Sci. Ser. A, 35 (2018), 756–768.
    [27] X. R. Tao, Y. Wu, H. Xia, X. J. Wang, Complete moment convergence of moving average process generated by a class of random variables, Commun. Stat. Theor. Method., 46 (2017), 10903–10913. https://doi.org/10.1080/03610926.2016.1252401 doi: 10.1080/03610926.2016.1252401
    [28] M. Z. Song, Q. X. Zhu, Convergence properties of the maximum partial sums for moving average process under $\rho^{-}$-mixing assumption, J. Inequal. Appl., 2019 (2019), 1–16. https://doi.org/10.1186/s13660-019-2038-2 doi: 10.1186/s13660-019-2038-2
    [29] W. Liu, Y. Zhang, Central limit theorem for linear processes generated by IID random variables under the sub-linear expectation, Appl. Math. Ser. B, 36 (2021), 243–255. https://doi.org/10.1007/s11766-021-3882-7 doi: 10.1007/s11766-021-3882-7
    [30] W. Liu, Y. Zhang, The law of the iterated logarithm for linear processes generated by stationary independent random variables under the sub-linear expectation, Entropy, 23 (2021), 1–11. https://doi.org/10.3390/e23101313 doi: 10.3390/e23101313
    [31] W. Liu, Y. Zhang, Large deviation principle for linear processes generated by real stationary sequences under the sub-linear expectation, Commun. Stat. Theor. Method., 2021. https://doi.org/10.1080/03610926.2021.2018462
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1644) PDF downloads(102) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog