The problem of decentralized observer-based event-triggered stabilization for an interconnected fractional-order system subject to stochastic cyber-attacks is studied. To address this issue, the decentralized event-triggered mechanism is proposed for the interconnected fractional-order system, where the event-triggered schemes are designed based on the states of fractional-order observers, and the stochastic attacks are considered both on control inputs and observer outputs. By combining decentralized observers and decentralized event-triggered controllers, we aim to achieve decentralized control with reduced amplifying error and use local signals to improve overall system performance. By utilizing the diffusive representation of the fractional-order system, the interconnected fractional-order system is transformed into an equivalent integer-order one to simplify the analysis and control design. Employing the Lyapunov indirect approach, a sufficient condition is obtained to guarantee the stochastic asymptotically stability of the augmented system. Additionally, by the singular value decomposition technique, the approach of simultaneously computing the decentralized observer gains and controller gains is presented. Finally, a simulation example is provided to validate the theoretical findings.
Citation: Zhaohui Chen, Jie Tan, Yong He, Zhong Cao. Decentralized observer-based event-triggered control for an interconnected fractional-order system with stochastic Cyber-attacks[J]. AIMS Mathematics, 2024, 9(1): 1861-1876. doi: 10.3934/math.2024091
The problem of decentralized observer-based event-triggered stabilization for an interconnected fractional-order system subject to stochastic cyber-attacks is studied. To address this issue, the decentralized event-triggered mechanism is proposed for the interconnected fractional-order system, where the event-triggered schemes are designed based on the states of fractional-order observers, and the stochastic attacks are considered both on control inputs and observer outputs. By combining decentralized observers and decentralized event-triggered controllers, we aim to achieve decentralized control with reduced amplifying error and use local signals to improve overall system performance. By utilizing the diffusive representation of the fractional-order system, the interconnected fractional-order system is transformed into an equivalent integer-order one to simplify the analysis and control design. Employing the Lyapunov indirect approach, a sufficient condition is obtained to guarantee the stochastic asymptotically stability of the augmented system. Additionally, by the singular value decomposition technique, the approach of simultaneously computing the decentralized observer gains and controller gains is presented. Finally, a simulation example is provided to validate the theoretical findings.
[1] | I. Podlubny, Fractional differential equations, In: Mathematics in science and engineering, San Diego: Academic Press, 1999. |
[2] | N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135–3145. https://doi.org/10.1103/PhysRevE.62.3135 doi: 10.1103/PhysRevE.62.3135 |
[3] | N. Laskin, Fractional market dynamics, Phys. A, 287 (2000), 482–492. https://doi.org/10.1016/S0378-4371(00)00387-3 doi: 10.1016/S0378-4371(00)00387-3 |
[4] | V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanic, J. Fluids Eng., 124 (2002), 803–806. https://doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062 |
[5] | V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008), 215–225. https://doi.org/10.1016/j.cam.2007.08.011 doi: 10.1016/j.cam.2007.08.011 |
[6] | I. Petras, R. L. Magin, Simulation of drug uptake in a two compartmental fractional model for a biological system, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4588–4595. https://doi.org/10.1016/j.cnsns.2011.02.012 doi: 10.1016/j.cnsns.2011.02.012 |
[7] | Y. Li, Y. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965–1969. https://doi.org/10.1016/j.automatica.2009.04.003 doi: 10.1016/j.automatica.2009.04.003 |
[8] | Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821. https://doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019 |
[9] | Y. Luo, Y. Chen, Fractional order[proportional derivative] controller for a class of fractional order systems, Automatica, 45 (2009), 2446–2450. https://doi.org/10.1016/j.automatica.2009.06.022 doi: 10.1016/j.automatica.2009.06.022 |
[10] | M. Ghorbani, Robust stabilization criteria of a general form of fractional-order controllers for interval fractional-order plants with complex uncertain parameters, ISA Trans., 129 (2022), 140–151. https://doi.org/10.1016/j.isatra.2022.02.014 doi: 10.1016/j.isatra.2022.02.014 |
[11] | A. Kumar, S. Pan, Design of fractional order PID controller for load frequency control system with communication delay, ISA Trans., 129 (2022), 138–149. https://doi.org/10.1016/j.isatra.2021.12.033 doi: 10.1016/j.isatra.2021.12.033 |
[12] | C. Dou, Q. Jia, S. Jin, Z. Bo, Robust controller design for large interconnected power systems with model uncertainties based on wide-area measurement, Electr. Eng., 90 (2008), 265–273. https://doi.org/10.1007/s00202-007-0076-0 doi: 10.1007/s00202-007-0076-0 |
[13] | X. Zheng, X. Luo, J. Wang, J. Yan, X. Guan, Acceleration-feedback-based finite-time platoon control for interconnected vehicular system, Comput. Electr. Eng., 101 (2022), 108054. https://doi.org/10.1016/j.compeleceng.2022.108054 doi: 10.1016/j.compeleceng.2022.108054 |
[14] | J. Li, J. Lu, Y. Chen, Robust decentralized control of perturbed fractional-order linear interconnected systems, Comput. Math. Appl., 66 (2013), 844–859. https://doi.org/10.1016/j.camwa.2013.07.001 doi: 10.1016/j.camwa.2013.07.001 |
[15] | Y. Boukal, M. Darouach, M. Zasadzinski, N. E. Radhy, Large-scale fractional-order systems: Stability analysis and their decentralized functional observers design, IET Control Theory Appl., 12 (2017), 359–367. https://doi.org/10.1049/iet-cta.2017.0264 doi: 10.1049/iet-cta.2017.0264 |
[16] | V. Nithya, R. Sakthivel, F. Alzahrani, Y. Ma, Decentralized fault-tolerant resilient control for fractional-order interconnected systems with input saturation, Int. J. Control Auto. Syst., 17 (2019), 2895–2905. https://doi.org/10.1007/s12555-018-0865-4 doi: 10.1007/s12555-018-0865-4 |
[17] | Z. Chen, J. Cheng, J. Tan, Z. Cao, Decentralized finite-time control for linear interconnected fractional-order systems with input saturation, J. Franklin Inst., 357 (2020), 6137–6153. https://doi.org/10.1016/j.jfranklin.2020.04.018 doi: 10.1016/j.jfranklin.2020.04.018 |
[18] | X. Li, Y. Zhan, S. Tong, Adaptive neural network decentralized fault-tolerant control for nonlinear interconnected fractional-order systems, Neurocomputing, 488 (2022), 14–22. https://doi.org/10.1016/j.neucom.2022.02.078 doi: 10.1016/j.neucom.2022.02.078 |
[19] | Z. Yu, Y. Sun, X. Dai, Decentralized partial-variable periodic intermittent control for a class of interconnected fractional-order systems, J. Franklin Inst., 359 (2022), 1298–1319. https://doi.org/10.1016/j.jfranklin.2021.11.022 doi: 10.1016/j.jfranklin.2021.11.022 |
[20] | J. Cai, R. Yu, B. Wang, C. Mei, L. Shen, Decentralized event-triggered control for interconnected systems with unknown disturbances, J. Franklin Inst., 357 (2020), 1494–1515. https://doi.org/10.1016/j.jfranklin.2019.10.033 doi: 10.1016/j.jfranklin.2019.10.033 |
[21] | D. Liu, G. H. Yang, Decentralized event-triggered output feedback control for a class of interconnected large-scale systems, ISA Trans., 93 (2019), 156–164. https://doi.org/10.1016/j.isatra.2019.03.009 doi: 10.1016/j.isatra.2019.03.009 |
[22] | M. I. Shahid, Q. Ling, Event-triggered control of physically interconnected systems, In: 2017 29th chinese control and decision conference (CCDC), 2017, 2600–2605. https://doi.org/10.1109/CCDC.2017.7978953 |
[23] | M. Guinaldo, J. Sánchez, R. Dormido, S. Dormido, Distributed control for large-scale systems with adaptive event-triggering, J. Franklin Inst., 353 (2016), 735–756. https://doi.org/10.1016/j.jfranklin.2015.12.008 doi: 10.1016/j.jfranklin.2015.12.008 |
[24] | X. Wang, M. D. Lemmon, Event-triggering in distributed networked control systems, IEEE Trans. Automat. Control, 56 (2011), 586–601. https://doi.org/10.1109/TAC.2010.2057951 doi: 10.1109/TAC.2010.2057951 |
[25] | M. Guinaldo, D. Lehmann, J. Sanchez, S. Dormido, K. H. Johansson, Distributed event-triggered control for non-reliable networks, J. Franklin Inst., 351 (2014), 5250–5273. https://doi.org/10.1016/j.jfranklin.2014.09.004 doi: 10.1016/j.jfranklin.2014.09.004 |
[26] | Y. Sun, N. H. El-Farra, Quasi-decentralized networked process control using an adaptive communication policy, In: Proceedings of the 2010 american control conference, 2010, 2841-2846. https://doi.org/10.1109/ACC.2010.5531452 |
[27] | M. Guinaldo, D. V. Dimarogonas, K. H. Johansson, J. Sánchez, S. Dormido, Distributed event-based control strategies for interconnected linear systems, IET Control Theory Appl., 7 (2013), 877–886. https://doi.org/10.1049/iet-cta.2012.0525 doi: 10.1049/iet-cta.2012.0525 |
[28] | C. De Persis, R. Sailer, F. Wirth, Parsimonious event-triggered distributed control: A Zeno free approach, Automatica, 49 (2013), 2116–2124. https://doi.org/10.1016/j.automatica.2013.03.003 doi: 10.1016/j.automatica.2013.03.003 |
[29] | Y. Wang, T. Zhang, J. Ren, M. Chen, Observer-based event-triggered sliding mode control for uncertain descriptor systems with a neural-network event-triggering sampling scheme, Neurocomputing, 385 (2020), 319–328. https://doi.org/10.1016/j.neucom.2019.12.066 doi: 10.1016/j.neucom.2019.12.066 |
[30] | X. Ren, F. Hao, Observer-based event-triggered control of linear system with two-time scales, ISA Trans., 129 (2022), 324–335. https://doi.org/10.1016/j.isatra.2021.12.042 doi: 10.1016/j.isatra.2021.12.042 |
[31] | Z. Wang, D. Xue, F. Pan, Observer-based robust control for singular switched fractional order systems subject to actuator saturation, Appl. Math. Comput., 411 (2021), 126538. https://doi.org/10.1016/j.amc.2021.126538 doi: 10.1016/j.amc.2021.126538 |
[32] | T. Feng, Y. E. Wang, L. Liu, B. Wu, Observer-based event-triggered control for uncertain fractional-order systems, J. Franklin Inst., 357 (2020), 9423–9441. https://doi.org/10.1016/j.jfranklin.2020.07.017 doi: 10.1016/j.jfranklin.2020.07.017 |
[33] | M. Xiong, Y. Tan, D. Du, B. Zhang, S. Fei, Observer-based event-triggered output feedback control for fractional-order cyber-physical systems subject to stochastic network attacks, ISA Trans., 104 (2020), 15–25. https://doi.org/10.1016/j.isatra.2019.11.040 doi: 10.1016/j.isatra.2019.11.040 |
[34] | A. Teixeira, H. Sandberg, K. H. Johansson, Networked control systems under cyber attacks with applications to power networks, In: Proceedings of the 2010 american control conference, 3690–3696. https://doi.org/10.1109/ACC.2010.5530638 |
[35] | Z. Pang, G. Liu, Design and implementation of secure networked predictive control systems under deception attacks, IEEE Trans. Control Syst. Technol., 20 (2012), 1334–1342. https://doi.org/10.1109/TCST.2011.2160543 doi: 10.1109/TCST.2011.2160543 |
[36] | D. Ding, Z. Wang, Q. L. Han, G. Wei, Security control for discrete-time stochastic nonlinear systems subject to deception attacks, IEEE Trans. Syst. Man Cybernet. Syst., 48 (2018), 779–789. https://doi.org/10.1109/TSMC.2016.2616544 doi: 10.1109/TSMC.2016.2616544 |
[37] | H. S. Foroush, S. Martínez, On event-triggered control of linear systems under periodic Denial-of-Service jamming attacks, In: 2012 IEEE 51st IEEE conference on decision and control (CDC), 2012, 2551–2556. https://doi.org/10.1109/CDC.2012.6425868 |
[38] | M. Zhu, S. Martínez, On the performance analysis of resilient networked control systems under replay attacks, IEEE Trans. Automat. Control, 59 (2014), 804–808. https://doi.org/10.1109/TAC.2013.2279896 doi: 10.1109/TAC.2013.2279896 |
[39] | Y. Mo, B. Sinopoli, On the performance degradation of cyber-physical systems under stealthy integrity attacks, IEEE Trans. Automat. Control, 61 (2016), 2618–2624. https://doi.org/10.1109/TAC.2015.2498708 doi: 10.1109/TAC.2015.2498708 |
[40] | J. C. Trigeassou, N. Maamri, J. Sabatier, A. Oustaloup, A Lyapunov approach to the stability of fractional differential equations, Signal Process., 91 (2011), 437–445. https://doi.org/10.1016/j.sigpro.2010.04.024 doi: 10.1016/j.sigpro.2010.04.024 |
[41] | M. S. Mahmoud, Interconnected jumping time-delay systems: Mode-dependent decentralized stability and stabilization, Internat. J. Robust Nonlinear Control, 22 (2012), 808–826. https://doi.org/10.1002/rnc.1736 doi: 10.1002/rnc.1736 |
[42] | J. Liu, D. Yue, Event-triggering in networked systems with probabilistic sensor and actuator faults, Inform. Sci., 240 (2013), 145–160. https://doi.org/10.1016/j.ins.2013.03.042 doi: 10.1016/j.ins.2013.03.042 |
[43] | D. W. C. Ho, G. Lu, Robust stabilization for a class of discrete-time non-linear systems via output feedback: The unified LMI approach, Int. J. Control, 76 (2003), 105–115. https://doi.org/10.1080/0020717031000067367 doi: 10.1080/0020717031000067367 |
[44] | J. Liu, J. Xia, J. Cao, E. Tian, Quantized state estimation for neural networks with cyber attacks and hybrid triggered communication scheme, Neurocomputing, 291 (2018), 35–49. https://doi.org/10.1016/j.neucom.2018.02.060 doi: 10.1016/j.neucom.2018.02.060 |