Research article Special Issues

A novel analysis of the time-fractional nonlinear dispersive K(m, n, 1) equations using the homotopy perturbation transform method and Yang transform decomposition method

  • Received: 28 August 2023 Revised: 23 November 2023 Accepted: 07 December 2023 Published: 18 December 2023
  • MSC : 26A33, 35A20, 35L05

  • The main features of scientific effort in physics and engineering are the development of models for various physical issues and the development of solutions. In this paper, we investigate the numerical solution of time-fractional non-linear dispersive K(m, n, 1) type equations using two innovative approaches: the homotopy perturbation transform method and Yang transform decomposition method. Our suggested approaches elegantly combine Yang transform, homotopy perturbation method (HPM) and adomian decomposition method (ADM). With the help of the Yang transform, we first convert the problem into its differential partner before using HPM to get the He's polynomials and ADM to get the Adomian polynomials, both of which are extremely effective supports for non-linear issues. In this case, Caputo sense is used for defining the fractional derivative. The derived solutions are shown in series form and converge quickly. To ensure the effectiveness and applicability of the proposed approaches, the examined problems were analyzed using various fractional orders. We analyze and demonstrate the validity and applicability of the solution approaches under consideration with given initial conditions. Two and three dimensional graphs reflect the outcomes that were attained. To verify the effectiveness of the strategies, numerical simulations are presented. The numerical outcomes demonstrate that only a small number of terms are required to arrive at an approximation that is exact, efficient, and trustworthy. The results of this study demonstrate that the studied methods are effective and strong in solving nonlinear differential equations that appear in science and technology.

    Citation: Abdul Hamid Ganie, Fatemah Mofarreh, Adnan Khan. A novel analysis of the time-fractional nonlinear dispersive K(m, n, 1) equations using the homotopy perturbation transform method and Yang transform decomposition method[J]. AIMS Mathematics, 2024, 9(1): 1877-1898. doi: 10.3934/math.2024092

    Related Papers:

  • The main features of scientific effort in physics and engineering are the development of models for various physical issues and the development of solutions. In this paper, we investigate the numerical solution of time-fractional non-linear dispersive K(m, n, 1) type equations using two innovative approaches: the homotopy perturbation transform method and Yang transform decomposition method. Our suggested approaches elegantly combine Yang transform, homotopy perturbation method (HPM) and adomian decomposition method (ADM). With the help of the Yang transform, we first convert the problem into its differential partner before using HPM to get the He's polynomials and ADM to get the Adomian polynomials, both of which are extremely effective supports for non-linear issues. In this case, Caputo sense is used for defining the fractional derivative. The derived solutions are shown in series form and converge quickly. To ensure the effectiveness and applicability of the proposed approaches, the examined problems were analyzed using various fractional orders. We analyze and demonstrate the validity and applicability of the solution approaches under consideration with given initial conditions. Two and three dimensional graphs reflect the outcomes that were attained. To verify the effectiveness of the strategies, numerical simulations are presented. The numerical outcomes demonstrate that only a small number of terms are required to arrive at an approximation that is exact, efficient, and trustworthy. The results of this study demonstrate that the studied methods are effective and strong in solving nonlinear differential equations that appear in science and technology.



    加载中


    [1] M. Yavuz, T. A. Sulaiman, F. Usta, H. Bulut, Analysis and numerical computations of the fractional regularized long-wave equation with damping term, Math. Methods Appl. Sci., 44 (2021), 7538–7555. https://doi.org/10.1002/mma.6343 doi: 10.1002/mma.6343
    [2] S. Kumar, S. Ghosh, B. Samet, E. F. Doungmo Goufo, An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator, Math. Methods Appl. Sci., 43 (2020), 6062–6080. https://doi.org/10.1002/mma.6347 doi: 10.1002/mma.6347
    [3] E. F. Doungmo Goufo, S. Kumar, Shallow water wave models with and without singular kernel: existence, uniqueness, and similarities, Math. Probl. Eng., 2017 (2017), 1–9. https://doi.org/10.1155/2017/4609834 doi: 10.1155/2017/4609834
    [4] M. Yavuz, Characterizations of two different fractional operators without singular kernel, Math. Model. Nat. Phenom., 14 (2019), 302. https://doi.org/10.1051/mmnp/2018070 doi: 10.1051/mmnp/2018070
    [5] E. F. Doungmo Goufo, S. Kumar, S. B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel, Chaos Solitons Fract., 130 (2020), 109467. https://doi.org/10.1016/j.chaos.2019.109467 doi: 10.1016/j.chaos.2019.109467
    [6] R. Subashini, K. Jothimani, K. S. Nisar, C. Ravichandran, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59 (2020), 2891–2899. https://doi.org/10.1016/j.aej.2020.01.055 doi: 10.1016/j.aej.2020.01.055
    [7] H. Bulut, H. M. Baskonus, Y. Pandir, The modified trial equation method for fractional wave equation and time fractional generalized Burgers equation, Abstr. Appl. Anal., 2013 (2013), 1–8. https://doi.org/10.1155/2013/636802 doi: 10.1155/2013/636802
    [8] J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng., 167 (1998), 57–68. https://doi.org/10.1016/s0045-7825(98)00108-x doi: 10.1016/s0045-7825(98)00108-x
    [9] V. P. Dubey, R. Kumar, D. Kumar, A hybrid analytical scheme for the numerical computation of time fractional computer virus propagation model and its stability analysis, Chaos Solitons Fract., 133 (2020), 109626. https://doi.org/10.1016/j.chaos.2020.109626 doi: 10.1016/j.chaos.2020.109626
    [10] S. Kumar, Y. Khan, A. Yildirim, A mathematical modeling arising in the chemical systems and its approximate numerical solution, Asia Pac. J. Chem. Eng., 7 (2012), 835–840. https://doi.org/10.1002/apj.647 doi: 10.1002/apj.647
    [11] J. Singh, D. Kumar, S. D. Purohit, A. M. Mishra, M. Bohra, An efficient numerical approach for fractional multidimensional diffusion equations with exponential memory, Numer. Methods Partial Differ. Equ., 37 (2021), 1631–1651. https://doi.org/10.1002/num.22601 doi: 10.1002/num.22601
    [12] M. Caputo, Linear models of dissipation whose Q is almost frequency independent–Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246x.1967.tb02303.x doi: 10.1111/j.1365-246x.1967.tb02303.x
    [13] Z. Li, C. Huang, B. J. Wang, Phase portrait, bifurcation, chaotic pattern and optical soliton solutions of the Fokas-Lenells equation with cubic-quartic dispersion in optical fibers, Phys. Lett. A, 465 (2023), 128714. https://doi.org/10.1016/j.physleta.2023.128714 doi: 10.1016/j.physleta.2023.128714
    [14] M. S. Ullah, Interaction solution to the (3+1)-D negative-order KdV first structure, Partial Differ. Equ. Appl. Math., 8 (2023), 100566. https://doi.org/10.1016/j.padiff.2023.100566 doi: 10.1016/j.padiff.2023.100566
    [15] A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764 doi: 10.1113/jphysiol.1952.sp004764
    [16] M. S. Ullah, D. Baleanu, M. Z. Ali, H. O. Roshid, Novel dynamics of the Zoomeron model via different analytical methods, Chaos Solitons Fract., 174 (2023), 113856. https://doi.org/10.1016/j.chaos.2023.113856 doi: 10.1016/j.chaos.2023.113856
    [17] M. H. Protter, H. F. Weinberger, Maximum principles in differential equations, New York: Springer, 1984. https://doi.org/10.1007/978-1-4612-5282-5
    [18] M. Schatzman, J. Taylor, Numerical analysis: a mathematical introduction, Oxford University Press, 2002. https://doi.org/10.1093/oso/9780198502791.001.0001
    [19] J. W. Thomas, Numerical partial differential equations: finite difference methods, New York: Springer, 1995. https://doi.org/10.1007/978-1-4899-7278-1
    [20] K. George, E. H. Twizell, Stable second-order finite-difference methods for linear initial-boundary-value problems, Appl. Math. Lett., 19 (2006), 146–154. https://doi.org/10.1016/j.aml.2005.04.003 doi: 10.1016/j.aml.2005.04.003
    [21] K. Nonlaopon, A. M. Alsharif, A. M. Zidan, A. Khan, Y. S. Hamed, R. Shah, Numerical investigation of fractional-order Swift-Hohenberg equations via a novel transform, Symmetry, 13 (2021), 1–21. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
    [22] J. G. Liu, X. J. Yang, Symmetry group analysis of several coupled fractional partial differential equations, Chaos Solitons Fract., 173 (2023), 113603. https://doi.org/10.1016/j.chaos.2023.113603 doi: 10.1016/j.chaos.2023.113603
    [23] A. H. Ganie, M. M. AlBaidani, A. Khan, A comparative study of the fractional partial differential equations via novel transform, Symmetry, 15 (2023), 1–21. https://doi.org/10.3390/sym15051101 doi: 10.3390/sym15051101
    [24] J. G. Liu, Y. F. Zhang, J. J. Wang, Investigation of the time fractional generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity, Fractals, 31 (2023), 2350033. https://doi.org/10.1142/s0218348x23500330 doi: 10.1142/s0218348x23500330
    [25] A. H. Ganie, F. Mofarreh, A. Khan, A fractional analysis of Zakharov-Kuznetsov equations with the Liouville-Caputo operator, Axioms, 12 (2023), 1–18. https://doi.org/10.3390/axioms12060609 doi: 10.3390/axioms12060609
    [26] M. M. AlBaidani, A. H. Ganie, F. Aljuaydi, A. Khan, Application of analytical techniques for solving fractional physical models arising in applied sciences, Fractal Fract., 7 (2023), 1–19. https://doi.org/10.3390/fractalfract7080584 doi: 10.3390/fractalfract7080584
    [27] J. G. Liu, X. J. Yang, L. L. Geng, X. J. Yu, On fractional symmetry group scheme to the higher-dimensional space and time fractional dissipative Burgers equation, Int. J. Geom. Methods Modern Phys., 19 (2022), 2250173. https://doi.org/10.1142/s0219887822501730 doi: 10.1142/s0219887822501730
    [28] J. Azevedo, C. Cuevas, E. Henriquez, Existence and asymptotic behaviour for the time-fractional Keller-Segel model for chemotaxis, Math. Nachr., 292 (2019), 462–480. https://doi.org/10.1002/mana.201700237 doi: 10.1002/mana.201700237
    [29] C. Peng, Z. Li, Soliton solutions and dynamics analysis of fractional Radhakrishnan-Kundu-Lakshmanan equation with multiplicative noise in the Stratonovich sense, Results Phys., 53 (2023), 106985. https://doi.org/10.1016/j.rinp.2023.106985 doi: 10.1016/j.rinp.2023.106985
    [30] N. A. Zabidi, Z. A. Majid, A. Kilicman, F. Rabiei, Numerical solutions of fractional differential equations by using fractional explicit Adams method, Mathematics, 8 (2020), 1–23. https://doi.org/10.3390/math8101675 doi: 10.3390/math8101675
    [31] J. S. Duan, T. Chaolu, R. Rach, Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method, Appl. Math. Comput., 218 (2012), 8370–8392. https://doi.org/10.1016/j.amc.2012.01.063 doi: 10.1016/j.amc.2012.01.063
    [32] T. Botmart, R. P. Agarwal, M. Naeem, A. Khan, R. Shah, On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators, AIMS Math., 7 (2022), 12483–12513. https://doi.org/10.3934/math.2022693 doi: 10.3934/math.2022693
    [33] N. A. Shah, Y. S. Hamed, K. M. Abualnaja, J. D. Chung, R. Shah, A. Khan, A comparative analysis of fractional-order Kaup-Kupershmidt equation within different operators, Symmetry, 14 (2022), 1–23. https://doi.org/10.3390/sym14050986 doi: 10.3390/sym14050986
    [34] D. Fathima, R. A. Alahmadi, A. Khan, A. Akhter, A. H. Ganie, An efficient analytical approach to investigate fractional Caudrey-Dodd-gibbon equations with non-singular kernel derivatives, Symmetry, 15 (2023), 1–18. https://doi.org/10.3390/sym15040850 doi: 10.3390/sym15040850
    [35] H. Jafari, H. Tajadodi, D. Baleanu, A. Al-Zahrani, Y. Alhamed, A. Zahid, Fractional sub-equation method for the fractional generalized reaction Duffing model and nonlinear fractional Sharma-Tasso-Olver equation, Open Phys., 11 (2013), 1482–1486. https://doi.org/10.2478/s11534-013-0203-7 doi: 10.2478/s11534-013-0203-7
    [36] N. K. Mishra, M. M. AlBaidani, A. Khan, A. H. Ganie, Two novel computational techniques for solving nonlinear time-fractional Lax's Korteweg-de Vries equation, Axioms, 12 (2023), 1–13. https://doi.org/10.3390/axioms12040400 doi: 10.3390/axioms12040400
    [37] A. M. Wazwaz, The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. Math. Comput., 167 (2005), 1196–1210. https://doi.org/10.1016/j.amc.2004.08.005 doi: 10.1016/j.amc.2004.08.005
    [38] N. K. Mishra, M. M. AlBaidani, A. Khan, A. H. Ganie, Numerical investigation of time-fractional Phi-four equation via novel transform, Symmetry, 15 (2023), 1–18. https://doi.org/10.3390/sym15030687 doi: 10.3390/sym15030687
    [39] W. H. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47 (2009), 204–226. https://doi.org/10.1137/080714130 doi: 10.1137/080714130
    [40] M. K. Alaoui, R. Fayyaz, A. Khan, R. Shah, M. S. Abdo, Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction, Complexity, 2021 (2021), 1–21. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
    [41] A. M. Wazwaz, New solitary-wave special solutions with compact support for the nonlinear dispersive K(m, n) equations, Chaos Solitons Fract., 13 (2002), 321–330. https://doi.org/10.1016/s0960-0779(00)00249-6 doi: 10.1016/s0960-0779(00)00249-6
    [42] J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
    [43] J. H. He, X. H. Wu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos Solitons Fract., 29 (2006), 108–113. https://doi.org/10.1016/j.chaos.2005.10.100 doi: 10.1016/j.chaos.2005.10.100
    [44] J. H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Modern Phys. B, 20 (2006), 1141–1199. https://doi.org/10.1142/s0217979206033796 doi: 10.1142/s0217979206033796
    [45] J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons Fract., 26 (2005), 695–700. https://doi.org/10.1016/j.chaos.2005.03.006 doi: 10.1016/j.chaos.2005.03.006
    [46] M. Inc, New exact solitary pattern solutions of the nonlinearly dispersive R(m, n) equations, Chaos Solitons Fract., 29 (2006), 499–505. https://doi.org/10.1016/j.chaos.2005.08.051 doi: 10.1016/j.chaos.2005.08.051
    [47] J. H. He, String theory in a scale dependent discontinuous space-time, Chaos Solitons Fract., 36 (2008), 542–545. https://doi.org/10.1016/j.chaos.2007.07.093 doi: 10.1016/j.chaos.2007.07.093
    [48] I. Podlubny, M. Kacenak, Isoclinal matrices and numerical solution of fractional differential equations, In: 2001 European Control Conference (ECC), Portugal: Porto, 2001, 1467–1470. https://doi.org/10.23919/ecc.2001.7076125
    [49] X. J. Yang, D. Baleanu, H. M. Srivastava, Local fractional Laplace transform and applications, In: Local fractional integral transforms and their applications, Cambridge, MA, USA: Academic Press, 2016,147–178. https://doi.org/10.1016/b978-0-12-804002-7.00004-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(830) PDF downloads(47) Cited by(3)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog