We present a new type of degenerate poly-Bernoulli polynomials and numbers by modifying the polyexponential function in terms of the degenerate exponential functions and degenerate logarithm functions. Also, we introduce a new variation of the degenerate unipoly-Bernoulli polynomials by the similar modification. Based on these polynomials, we investigate some properties, new identities, and their relations to the known special functions and numbers such as the degenerate type 2-Bernoulli polynomials, the type 2 degenerate Euler polynomials, the degenerate Bernoulli polynomials and numbers, the degenerate Stirling numbers of the first kind, and $ \lambda $-falling factorial sequence. In addition, we compute some of the proposed polynomials and present their zeros and behaviors for different variables in specific cases.
Citation: Dojin Kim, Patcharee Wongsason, Jongkyum Kwon. Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions[J]. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
We present a new type of degenerate poly-Bernoulli polynomials and numbers by modifying the polyexponential function in terms of the degenerate exponential functions and degenerate logarithm functions. Also, we introduce a new variation of the degenerate unipoly-Bernoulli polynomials by the similar modification. Based on these polynomials, we investigate some properties, new identities, and their relations to the known special functions and numbers such as the degenerate type 2-Bernoulli polynomials, the type 2 degenerate Euler polynomials, the degenerate Bernoulli polynomials and numbers, the degenerate Stirling numbers of the first kind, and $ \lambda $-falling factorial sequence. In addition, we compute some of the proposed polynomials and present their zeros and behaviors for different variables in specific cases.
[1] | S. Araci, Degenerate poly-type 2-Bernoulli polynomials, Math. Sci. Appl. E., 9 (2021), 1–8. https://doi.org/10.36753/mathenot.839111 |
[2] | S. Araci, A new class of Bernoulli polynomials attached to polyexponential functions and related identities, Adv. Stud. Contemp. Math., 31 (2021), 195–204. https://dx.doi.org/10.17777/ascm2021.31.2.195 |
[3] | L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math., 7 (1956), 28–33. https://doi.org/10.1007/BF01900520 doi: 10.1007/BF01900520 |
[4] | L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math., 15 (1979), 51–88. |
[5] | U. Duran, M. Acikgoz, S. Araci, Hermite based poly-Bernoulli polynomials with a $q$ parameter, Adv. Stud. Contemp. Math., 28 (2018), 285–296. https://dx.doi.org/10.17777/ascm2018.28.2.285 doi: 10.17777/ascm2018.28.2.285 |
[6] | G. W. Jang, T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math., 29 (2019), 147–159. Dhttps://dx.doi.org/10.17777/ascm2019.29.1.147 doi: 10.17777/ascm2019.29.1.147 |
[7] | L. C. Jang, D. S. Kim, T. Kim, H. Lee, $p$-adic integral on $Z_p$ associated with degenerate Bernoulli polynomials of the second kind, Adv. Differ. Equ., 2020 (2020), 278. https://doi.org/10.1186/s13662-020-02746-2 doi: 10.1186/s13662-020-02746-2 |
[8] | D. S. Kim, T. Kim, A note on polyexponential and unipoly functions, Russ. J. Math. Phys., 26 (2019), 40–49. https://doi.org/10.1134/S1061920819010047 doi: 10.1134/S1061920819010047 |
[9] | J. Kwon, L. C. Jang, A note on the type 2 poly-Apostol-Bernoulli polynomials, Adv. Stud. Contemp. Math., 30 (2020), 253–262. https://dx.doi.org/10.17777/ascm2020.30.2.253 doi: 10.17777/ascm2020.30.2.253 |
[10] | T. Kim, D. S. Kim, A note on a new type degenerate Bernoulli numbers, Russ. J. Math. Phys., 27 (2020), 227–235. https://doi.org/10.1134/S1061920820020090 doi: 10.1134/S1061920820020090 |
[11] | T. Kim, D. S. Kim, J. Kwon, H. Lee, Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials, Adv. Differ. Equ., 2020 (2020), 168. https://doi.org/10.1186/s13662-020-02636-7 doi: 10.1186/s13662-020-02636-7 |
[12] | T. Kim, D. S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl., 487 (2020), 124017. http://dx.doi.org/10.1016/j.jmaa.2020.124017 doi: 10.1016/j.jmaa.2020.124017 |
[13] | W. A. Khan, G. Muhiuddin, A. Muhyi, D. Al-Kadi, Analytical properties of type 2 degenerate poly-Bernoulli polynomials associated with their applications, Adv. Differ. Equ., 2021 (2021), 420. http://dx.doi.org/10.1186/s13662-021-03575-7 doi: 10.1186/s13662-021-03575-7 |
[14] | W. A. Khan, A. Muhyi, R. Ali, K. A. H. Alzobydi, M. Singh, P. Agarwal, A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties, AIMS Mathematics, 6 (2021), 12680–12697. http://dx.doi.org/10.3934/math.2021731 doi: 10.3934/math.2021731 |
[15] | S. Roman, The umbral calculus, Academic Press, 1984. |
[16] | S. K. Sharma, W. A. Khan, S. Araci, S. S. Ahmed, New construction of type 2 degenerate central Fubini polynomials with their certain properties, Adv. Differ. Equ., 2020 (2020), 587. https://doi.org/10.1186/s13662-020-03055-4 doi: 10.1186/s13662-020-03055-4 |
[17] | Y. Simsek, Identities on the Changhee numbers and Apostol-type Daehee polynomials, Adv. Stud. Contemp. Math., 27 (2017), 199–212. http://dx.doi.org/10.17777/ascm2017.27.2.199 doi: 10.17777/ascm2017.27.2.199 |
[18] | S. C. Woon, Analytic continuation of Bernoulli numbers, a new formula for the Riemann Zeta function, and the phenomenon of scattering of zeros, 1997, arXiv: physics/9705021. |