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1. Introduction

The degenerate types of Bernoulli and Euler polynomials are initially introduced by Carlitz [3, 4]
with arithmetic and combinatorial results. Recently, these degenerate version of special functions and
numbers have been intensively studied by many authors introducing various types of polynomials,
functions and numbers (see [1,5–8,10–12,15,17] for which a rich variety of literature is available and
references therein for further details). These special polynomials and numbers have been significant
roles not only in combinatorial and arithmetic problems, but also various branches of problems arising
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in mathematics, theoretical physics, and engineering in order to new means of mathematical
approaches.

In particular, a lot of research focusing on type 2 degenerate polynomials has been conducted: for
example, the type 2 degenerate central Fubini polynomials [16], the type 2 degenerate poly-Bernoulli
numbers and polynomials [11], the type 2 degenerate Euler and Bernoulli polynomials [6], the type 2
poly-ApostolBernoulli polynomials [9], the degenerate poly-type 2-Bernoulli Polynomials [1], the
type 2 degenerate Euler and Bernoulli polynomials [6], a modification of the type 2 degenerate
poly-Bernoulli polynomials [13], and the partially degenerate polyexponential-Bernoulli polynomials
of the second kind [2].

Following by these studies, we introduce a new type of degenerate poly-Bernoulli polynomials and
unipoly-Bernoulli polynomials called the type 2 degenerate modified poly-Bernoulli polynomials and
the type 2 degenerate modified unipoly-Bernoulli polynomials attached to polynomials, respectively.
We investigate their useful properties as well as their relations to express the proposed polynomials in
terms of existing types or known functions and numbers. Further, we calculate some of the introduced
polynomials and present their behaviors as well as their zeros for different variables in specific cases.

We first recall several definitions in order to introduce our new type of poly-Bernoulli polynomials.
The Bernoulli polynomials (see [10, 11] for detail) are given by the generating function

t
et − 1

etx =

∞∑
n=0

Bn(x)
tn

n!
(|t| < 1), (1.1)

and for case x = 0, Bn := Bn(0) are called the Bernoulli numbers.
The polyexponential functions are introduced in [8, 11] for k ∈ Z, which are defined by

Eik(t) =

∞∑
n=1

tn

(n − 1)!nk (|t| < 1). (1.2)

For example, in case k = 1, it satisfies that Ei1(t) = et − 1, so that Ei1
(
log(t + 1)

)
= t. For k ≤ 0,

Eik(t) are expressed as a product of polynomials with the exponential function such that

Ei0(t) = tet, Ei−1(t) = t(t + 1)et,

Ei−2(t) = t(t2 + 3t + 1)et, Ei−3(t) = t(t3 + 6t2 + 7t + 1)et, · · · ,
(1.3)

which are obtained from the recurrence relation d
dt Eik(t) = 1

t Eik−1(t) (see [11] for detail).
As a degenerate type of the polyexponential functions in (1.2), the author [11] considered the

modified degenerate polyexponential functions for k ∈ N given by

Eik,λ(t) =

∞∑
n=1

(1)n,λtn

(n − 1)!nk (|t| < 1), (1.4)

where (t)n,λ is the λ-falling factorial sequence [11] defined by (t)n,λ = t(t − λ)(t − 2λ) · · · (t − (n − 1)λ)
for n ≥ 1 and (t)0,λ = 1. It is well known that Ei1,λ(t) = eλ(t) − 1 and Ei1,λ

(
logλ(1 + t)

)
= t.

For λ ∈ R\{0}, the author in [3, 4] introduced the degenerate Bernoulli polynomials and the
degenerate Bernoulli numbers, which are respectively defined by

t
eλ(t) − 1

ex
λ(t) =

∞∑
n=0

ßn,λ(x)
tn

n!
,

t
eλ(t) − 1

=

∞∑
n=0

ßn,λ
tn

n!
, (1.5)
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where the degenerate exponential functions are given by

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = e1

λ(t). (1.6)

As a variant of degenerate Bernoulli polynomials, the author in [1] considered the degenerate poly-
type 2-Bernoulli polynomials B(k)

n,λ, which are defined by the generating function

Lik(1 − e−t)
eλ(t) − e−1

λ (t)
ex
λ(t) =

∞∑
n=0

B(k)
n,λ(x)

tn

n!
,

where Lik(t) for k ∈ Z are the polylogarithm functions [5] defined by

Lik(t) =

∞∑
n=1

tn

nk (|t| < 1).

For the case k = 1 of B(k)
n,λ, B(1)

n,λ(x) := βn,λ(x) are called the degenerate type 2-Bernoulli polynomials,
which satisfy

t
eλ(t) − e−1

λ (t)
ex
λ(t) =

∞∑
n=0

βn,λ(x)
tn

n!
, (1.7)

since the identity holds Li1(1 − e−t) = t for k = 1.
In [10], another variant of the degenerate Bernoulli polynomials, called the degenerate Bernoulli

polynomials of the second kind, is introduced by modifying the generating function such as

t
logλ(1 + t)

(1 + t)x =

∞∑
n=0

bn,λ(x)
tn

n!
. (1.8)

Here the degenerate logarithm function logλ(t) = 1
λ
(tλ − 1) is the compositional inverse of eλ(t), i.e.,

logλ (eλ(t)) = eλ
(
logλ(t)

)
= t.

Further, applying the polyexponential function (1.2) to the degenerate Bernoulli polynomials, the
type 2 degenerate poly-Bernoulli polynomials [11] are introduced by the following formula

Eik,λ
(
logλ(1 + t)

)
eλ(t) − 1

ex
λ(t) =

∞∑
n=0

B(k)
n,λ(x)

tn

n!
, (1.9)

in which, for case x = 0, B(k)
n,λ := B(k)

n,λ(0) are called the type 2 degenerate poly-Bernoulli numbers.
As a different variation of (1.8) using the polyexponential function, the type 2 degenerate poly-

Bernoulli polynomials [14] of the second kind are introduced by the generating function

Eik,λ(logλ(1 + t))
logλ(1 + t)

(1 + t)x =

∞∑
j=0

Pb(k)
j,λ(x)

t j

j!
, k ∈ Z. (1.10)

In further research, the type 2 degenerate Euler polynomials are introduced by the author in [6]
based on the following generating function

2

e
1
2
λ (t) + e−

1
2

λ (t)
ex
λ(t) =

∞∑
n=0

En,λ(x)
tn

n!
, (1.11)

and En,λ := En,λ(0) are called the type 2 degenerate Euler numbers when x = 0.
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2. Type 2 degenerate modified poly-Bernoulli polynomials

In this section, motivated by the previous mentioned works about variant types of degenerate poly-
Bernoulli polynomials, we introduce a new type of degenerate poly-Bernoulli polynomials and discuss
their properties.

Definition 2.1. Let us define the type 2 degenerate modified poly-Bernoulli polynomials B[k]
n,λ(x) for

k ∈ Z by the generating function given by

Eik,λ(logλ(1 + t))
eλ(t) − e−1

λ (t)
ex
λ(t) =

∞∑
n=0

B
[k]
n,λ(x)

tn

n!
,

where Eik,λ are the degenerate modified polyexponential function given in (1.4). Especially, when
x = 0, B[k]

n,λ := B[k]
n,λ(0) are called the type 2 degenerate modified poly-Bernoulli numbers.

Remark 2.1. Since Ei1,λ
(
logλ(1 + t)

)
= t for k = 1, one can see that B[1]

n,λ(x) satisfy

t
eλ(t) − e−1

λ (t)
ex
λ(t) =

∞∑
n=0

B
[1]
n,λ(x)

tn

n!
,

which provides the same generating function listed in (1.7), so that B[k]
n,λ(x) represent the degenerate

type 2-Bernoulli polynomials βn,λ(x) for k = 1. Thus, the type 2 degenerate modified poly-Bernoulli
polynomials B[k]

n,λ(x) is a generalization of the degenerate type 2-Bernoulli polynomials βn,λ(x), while
the type 2 degenerate poly-Bernoulli polynomials (1.10) of the second kind is a generalization of the
degenerate Bernoulli polynomials of the second kind.

First, we can express the type 2 degenerate modified poly-Bernoulli polynomials in terms of the
degenerate Stirling numbers of the first kind and the degenerate type 2-Bernoulli polynomials (1.7).

Theorem 2.1. For n ≥ 0 and λ ∈ R\{0}, the following identity holds:

B
[k]
n,λ(x) =

n∑
m=0

1
m + 1

(
n
m

) m+1∑
`=1

S 1,λ(m + 1, `)
`k−1 (1)`,λβn−m,λ(x),

where S 1,λ(n,m) are the degenerate Stirling numbers of the first kind defined by

(t)n,λ =

n∑
m=0

S 1,λ(n,m)tm.

Proof. We first note (see [11] for detail) that the degenerate polyexponential functions Eik,λ(t) satisfy
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that

Eik,λ(logλ(1 + t)) =

∞∑
m=1

(1)m,λ(logλ(1 + t))m

(m − 1)!mk

=

∞∑
m=1

(1)m,λ

mk−1

(logλ(1 + t))m

m!

=

∞∑
m=1

(1)m,λ

mk−1

∞∑
n=m

S 1,λ(n,m)
tn

n!

=

∞∑
n=1

 n∑
m=1

(1)m,λ

mk−1 S 1,λ(n,m)

 tn

n!

=

∞∑
n=0

t
n + 1

 n+1∑
`=1

S 1,λ(n + 1, `)
(1)`,λ
`k−1

 tn

n!
.

(2.1)

From (1.7), (2.1) and Definition 2.1, we can see that
∞∑

n=0

B
[k]
n,λ(x)

tn

n!
=

ex
λ(t)

eλ(t) − e−1
λ (t)

Eik,λ(logλ(1 + t))

=

 ∞∑
n=0

βn,λ(x)
tn

n!

  ∞∑
m=0

1
m + 1

m+1∑
`=1

S 1,λ(m + 1, `)
(1)`,λ
`k−1

 tm

m!


=

∞∑
n=0

 n∑
m=0

1
m + 1

(
n
m

) m+1∑
`=1

S 1,λ(m + 1, `)
`k−1 (1)`,λβn−m,λ(x)

 tn

n!
.

(2.2)

By comparing the coefficients on the both sides of (2.2), one can conclude the desired result.

Remark 2.2. (1) One can see that the type 2 degenerate poly-Bernoulli polynomials (1.10) of the
second kind are expressed in terms of the degenerate Stirling numbers of the first kind and the
degenerate Bernoulli polynomials of the second kind with the same combinatorial coefficients
(see [14, Theorem 2.1]) as a similar expression.

(2) From d
dt Eik,λ

(
logλ(1 + t)

)
=

(1+t)λ−1

logλ(1+t) Eik−1,λ
(
logλ(1 + t)

)
for k ≥ 2 (see [11] for detail),

Eik,λ
(
logλ(1 + t)

)
can be expressed as the multiple integrals of Ei1,λ

(
logλ(1 + t)

)
as follows:

Eik,λ
(
logλ(1 + t)

)
=

∫ t

0

(1 + t1)λ−1

logλ(1 + t1)

∫ t1

0

(1 + t2)λ−1

logλ(1 + t2)
· · ·

∫ tk−2

0

(1 + tk−1)λ−1

logλ(1 + tk−1)
tk−1dtk−1 · · · dt2dt1,

in which k − 1 times of integrals are performed by the product with (1+t)λ−1

logλ(1+t) each time.

Next, using the property of Remark 2.1, we have the following result.

Theorem 2.2. For n ≥ 0, k ∈ Z, and λ ∈ R\{0}, B[k]
n,λ(x) satisfy the following identity:

B
[k]
n,λ(x) =

n∑
m=0

(
n
m

) ∑
m1+···+mk−1=m

(
m

m1, · · · ,mk−1

)
bm1,λ(λ − 1)

m1 + 1

×
bm2,λ(λ − 1)
m1 + m2 + 1

· · ·
bmk−1,λ(λ − 1)

m1 + · · · + mk−1 + 1
βn−m,λ(x).

(2.3)
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Proof. By making use of Definition 2.1, (1.7), (1.8) and Remark 2.1, we can verify that

∞∑
n=0

B
[k]
n,λ(x)

tn

n!
=

ex
λ(t)

eλ(t) − e−1
λ (t)

Eik,λ
(
logλ(1 + t)

)
=

ex
λ(t)

eλ(t) − e−1
λ (t)

(∫ t

0

(1 + t1)λ−1

logλ(1 + t1)
· · ·

∫ tk−2

0

(1 + tk−1)λ−1

logλ(1 + tk−1)
tk−1dtk−1 · · · dt1

)
=

tex
λ(t)

eλ(t) − e−1
λ (t)

 ∞∑
m=0

∑
m1+···+mk−1=m

(
m

m1, · · · ,mk−1

)
bm1,λ(λ − 1)

m1 + 1

×
bm2,λ(λ − 1)
m1 + m2 + 1

· · ·
bmk−1,λ(λ − 1)

m1 + · · · + mk−1 + 1
tm

m!

)
=

 ∞∑
n=0

βn,λ(x)
tn

n!


 ∞∑

m=0

∑
m1+···+mk−1=m

(
m

m1, · · · ,mk−1

)
bm1,λ(λ − 1)

m1 + 1

×
bm2,λ(λ − 1)
m1 + m2 + 1

· · ·
bmk−1,λ(λ − 1)

m1 + · · · + mk−1 + 1
tm

m!

)
=

∞∑
n=0

 n∑
m=0

(
n
m

) ∑
m1+···+mk−1=m

(
m

m1, · · · ,mk−1

)
bm1,λ(λ − 1)

m1 + 1

×
bm2,λ(λ − 1)
m1 + m2 + 1

· · ·
bmk−1,λ(λ − 1)

m1 + · · · + mk−1 + 1
βn−m,λ(x)

)
tn

n!
.

(2.4)

Hence, the conclusion is established by comparing coefficients on both sides.

We next give the expression for B[k]
n,λ(x) as a sum of the products of the type 2 degenerate modified

poly-Bernoulli numbers and λ-falling factorial sequence.

Theorem 2.3. Let k be any integer. Then the following identity holds true for all n ≥ 0,

B
[k]
n,λ(x) =

n∑
m=0

(
n
m

)
B

[k]
m,λ(x)n−m,λ. (2.5)

Proof. By considering B[k]
n,λ(x) to be the product of Eik,λ(logλ(1+t))

eλ(t)−e−1
λ (t) and ex

λ(t) and using the identity of

ex
λ(t) =

∑∞
m=0(x)m,λ

tm
m! , the desired result for B[k]

n,λ(x) is obtained by the binomial convolution of the

sequences
{
B

[k]
n,λ

}∞
n=0

and
{
(x)n,λ

}∞
n=0.

Let us present the recurrence relation for B[k]
n,λ(x) from the derivations of the expressions for

Eik,λ
(
logλ(1 + t)

)
.

Theorem 2.4. For n ≥ 1 and k ∈ Z, the following relation holds:

B
[k]
n,λ(1) − B[k]

n,λ(−1) =

n∑
m=1

(1)m,λS 1,λ(n,m)
mk−1 . (2.6)
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Proof. We first note from [10] that

Eik,λ
(
logλ(1 + t)

)
=

∞∑
n=1

 n∑
m=1

(1)m,λS 1,λ(n,m)
mk−1

 tn

n!
. (2.7)

On the other hand, in the virtue of the result of Theorem 2.3, it follows that

Eik,λ
(
logλ(1 + t)

)
=

(
eλ(t) − e−1

λ (t)
) ∞∑

n=0

B
[k]
n,λ

tn

n!

=

∞∑
m=0

(
(1)m,λ − (−1)m,λ

) tm

m!

∞∑
n=0

B
[k]
n,λ

tn

n!

=

∞∑
n=0

 n∑
m=0

(
n
m

) (
B

[k]
m,λ(1)n−m,λ − B

[k]
m,λ(−1)n−m,λ

) tn

n!

=

∞∑
n=1

(
B

[k]
n,λ(1) − B[k]

n,λ(−1)
) tn

n!
.

(2.8)

Therefore, we can show the desired relation by comparing coefficients of (2.7) and (2.8).

Also, B[k]
n,λ(x) can be expressed in terms of the type 2 degenerate poly-Bernoulli numbers and the

type 2 degenerate Euler polynomials.

Theorem 2.5. For n ≥ 0 and k ∈ Z, B[k]
n,λ(x) can be expressed as the product of B(k)

n,λ and En,λ(x) such as

B
[k]
n,λ(x) =

1
2

n∑
m=0

(
n
m

)
B(k)

m,λEn−m,λ

(
x +

1
2

)
. (2.9)

Proof. With the help of (1.9) and (1.11), one can have

Eik,λ(logλ(1 + t))
eλ(t) − e−1

λ (t)
ex
λ(t) =

Eik,λ(logλ(1 + t))
(eλ(t) + 1)(eλ(t) − 1)

ex+1
λ (t)

=
1
2

Eik,λ(logλ(1 + t))
eλ(t) − 1

2

e
1
2
λ (t) + e−

1
2

λ (t)
ex+ 1

2
λ (t)

=
1
2

 ∞∑
n=0

B(k)
n,λ

tn

n!

  ∞∑
m=0

Em,λ

(
x +

1
2

)
tm

m!


=

1
2

∞∑
n=0

 n∑
m=0

(
n
m

)
B(k)

m,λEn−m,λ

(
x +

1
2

) tn

n!
.

Thus, the previous identity gives the identity (2.9) by the comparing coefficients.

We close this section with an expression for B[k]
n,λ(x) in terms of B[1]

n,λ and S 1,λ(n,m).

Theorem 2.6. For n ≥ 0 and k ∈ Z, the following identity holds

B
[k]
n,λ(x) =

n∑
m=0

(
n
m

)
B

[1]
n−m,λ(x)

1
m + 1

m∑
`=0

(1)`+1,λS 1,λ(m + 1, ` + 1)
(` + 1)k−1 .
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Proof. Note that from (2.1)

Eik,λ
(
logλ(1 + t)

)
t

=

∞∑
m=0

1
m + 1

 m∑
`=0

S 1,λ(m + 1, ` + 1)
(1)`+1,λ

(` + 1)k−1

 tm

m!
.

From the previous note and Remark 2.1, the followings are established:

Eik,λ(logλ(1 + t))
eλ(t) − e−1

λ (t)
ex
λ(t) =

Eik,λ(logλ(1 + t))
t

tex
λ (t)

eλ (t) − e−1
λ (t)

=

 ∞∑
n=0

1
n + 1

n+1∑
`=1

(1)`,λS 1,λ(n + 1, `)
`k−1

tn

n!

  ∞∑
m=0

B
[1]
m,λ(x)

tm

m!


=

∞∑
n=0

 n∑
m=0

(
n
m

)
B

[1]
n−m,λ(x)

m + 1

m∑
`=0

(1)`+1,λS 1,λ(m + 1, ` + 1)
(` + 1)k−1

 tn

n!
.

Therefore, the assertion is obtained by comparing coefficients.

3. Type 2 degenerate modified unipoly-Bernoulli polynomials attached to polynomials

In this section, we consider a new type of the degenerate unipoly-Bernoulli polynomials attached
to p, where p is any arithmetic function defined on N. The unipoly function attached to p is recently
introduced in [8], which is defined by

uk(x|p) =

∞∑
n=1

p(n)
nk xn, k ∈ Z.

Applying the degenerate type of unipoly function attached to p in the degenerate poly-Bernoulli
polynomials of type 2, we introduce a new type of degenerate unipoly polynomials.

Definition 3.1. Let k be any integer. Then we define the type 2 degenerate modified unipoly-Bernoulli
polynomials attached to polynomials p, which are given by

uk,λ(logλ(1 + t)|p)
eλ(t) − e−1

λ (t)
ex
λ(t) =

∞∑
n=0

PB
[k]
n,λ,p(x)

tn

n!
,

where uk,λ(x|p) is the degenerate unipoly function [8, 11] attached to any arithmetic function p(n)
defined by

uk,λ(x|p) =

∞∑
n=1

p(n)
(1)n,λ

nk xn.

In particular, when x = 0, PB[k]
n,λ,p = PB

[k]
n,λ,p(0) are called the type 2 degenerate modified unipoly-

Bernoulli numbers.
We note that if the attached arithmetic function satisfies p(n) = 1

Γ(n) , n ∈ N, it is seen that

∞∑
n=0

PB
[k]
n,λ, 1

Γ

(x)
tn

n!
=

ex
λ(t)

eλ(t) − e−1
λ (t)

uk,λ

(
logλ(1 + t)

∣∣∣1
Γ

)
=

ex
λ(t)

eλ(t) − e−1
λ (t)

∞∑
n=1

(1)n,λ(logλ(1 + t))n

nk(n − 1)!
.

(3.1)
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Also, one can see that PB[1]
n,λ, 1

Γ

(x) = βn,λ(x) when k = 1 from (1.7) and the identity holds

∞∑
n=0

PB
[1]
n,λ, 1

Γ

(x)
tn

n!
=

ex
λ(t)

eλ(t) − e−1
λ (t)

∞∑
n=1

(1)n,λ
(
logλ(1 + t)

)n

n!
=

tex
λ(t)

eλ(t) − e−1
λ (t)

.

For example, using the scientific calculator, we can see that the first five polynomialsPB[1]
k,λ, 1

Γ

(x), k =

0, · · · , 4, are estimated as

PB
[1]
0,λ, 1

Γ

(x) = 0.5,

PB
[1]
1,λ, 1

Γ

(x) = 0.5x + 0.25λ,

PB
[1]
2,λ, 1

Γ

(x) = 0.5x2 − 0.0833λ2 − 0.1667,

PB
[1]
3,λ, 1

Γ

(x) = 0.5x3 − 0.75λx2 − 0.5x + 0.125λ3 + 0.25λ,

PB
[1]
4,λ, 1

Γ

(x) = 0.5x4 − 2λx3 + 2λ2x2 − x2 + 2λx − 0.3167λ4 − 0.667λ2 + 0.2333.

First, we show that PB[k]
n,λ,p(x) can be expressed in terms of B[1]

n,λ(x) and the degenerate Stirling
numbers of the first kind.

Theorem 3.1. For k ∈ Z, n ≥ 0, λ ∈ R\{0}, the following identity is established:

PB
[k]
n,λ,p(x) =

n∑
m=0

m∑
`=0

(
n
m

)
(1)`+1,λp(` + 1)(` + 1)!

(` + 1)k

S 1,λ(n + 1, ` + 1)
n + 1

B
[1]
n−m,λ(x).

Proof. It is well known that
tex
λ(t)

eλ(t) − e−1
λ (t)

=

∞∑
n=0

B
[1]
n,λ(x)

tn

n!
(3.2)

and
1
t
uk,λ(logλ(1 + t)|p) =

1
t

∞∑
n=0

p(n + 1)(1)n+1,λ

(n + 1)k (logλ(1 + t))n+1

=

∞∑
n=0

Cn,k,λ
tn

n!
,

(3.3)

where

Cn,k,λ :=
n∑

m=0

p(m + 1)(1)m+1,λ(m + 1)!
(m + 1)k

S 1,λ(n + 1,m + 1)
n + 1

,

which can be obtained from
(
logλ(1 + t)

)n+1 /(n + 1)! =
∑∞

m=n+1 S 1,λ(m, n + 1) tm
m! . Since the product of

the left hand sides of Eqs (3.2) and (3.3) provides the generating function in Definition 3.1, we obtain
the desired identity by the binomial convolution of

{
B

[1]
n,λ(x)

}∞
n=0

and
{
Cn,k,λ

}∞
n=0.

We next show thatPB[k]
n,λ,p(x) is expressed as a sum of the products of the type 2 degenerate modified

unipoly-Bernoulli numbers and λ-falling factorial sequence for x.
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Theorem 3.2. Let k ∈ Z, n ≥ 0, λ ∈ R\{0}. Then we have the identity:

PB
[k]
n,λ,p(x) =

n∑
m=0

(
n
m

)
PB

[k]
n,λ,p(x)n−m,λ.

Proof. By making use of the identities

uk,λ(logλ(1 + t)|p)
eλ(t) − e−1

λ (t)
=

∞∑
n=0

PB
[k]
n,λ,p

tn

n!
and ex

λ(t) =

∞∑
n=0

(x)n,λ
tn

n!
,

one can obtain the result from the binomial convolution of two identities.

Finally, we present the type 2 degenerate unipoly-Bernoulli numbers for k = 1 can be considered to
the sum of the type 2 degenerate Euler polynomials (1.11) and the degenerate Bernoulli numbers (1.5).

Theorem 3.3. Let p(n) = 1
Γ(n) for n ≥ 0, λ ∈ R\{0}, we have

PB
[1]
n,λ,p =

1
2

n∑
m=0

(
n
m

)
En,λ

(
1
2

)
ßn−m,λ.

Proof. Recalling from Definition 3.1 for k = 1 that

∞∑
n=0

PB
[1]
n,λ, 1

Γ

(x)
tn

n!
=

tex
λ(t)

eλ(t) − e−1
λ (t)

,

in which if x = 0, the right hand side of the previous equation provides that

t
eλ(t) − e−1

λ (t)
=

1
2

t
eλ(t) − 1

2e
1
2
λ (t)

e
1
2
λ (t) + e−

1
2

λ (t)

=
1
2

 ∞∑
n=0

ßn,λ
tn

n!

  ∞∑
m=0

Em,λ

(
1
2

)
tm

m!


=

1
2

∞∑
n=0

 n∑
m=0

(
n
m

)
En,λ

(
1
2

)
ßn−m,λ

 tn

n!

with the help of the definitions (1.5) and (1.11). Hence, the identity follows by comparing coefficients.

4. Illustrative examples

In this section, we present several examples and some graphical representations of the type 2
degenerate modified poly-Bernoulli polynomials and the type 2 degenerate modified
unipoly-Bernoulli polynomials attached to polynomials presented in the previous sections.
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We first note that by using the recurrence relation d
dt Eik,λ(t) = 1

t Eik−1,λ(t) with the property of
d
dt eλ(t) = 1

1+λt eλ(t), Eik,λ(t) for k ≤ 1 can be calculated as follows:

Ei1,λ(t) = eλ(t) − 1, Ei0,λ(t) =
t

1 + λt
eλ(t),

Ei−1,λ(t) =
t(1 + t)

(1 + λt)2 eλ(t), Ei−2,λ(t) =
t(t2 + 3t − λt + 1)

(1 + λt)3 eλ(t),

Ei−3,λ(t) =
t(t3 + 6t2 + λ2t2 − 4λt2 − 4λt + 7t + 1)

(1 + λt)4 eλ(t), · · · .

(4.1)

Remark 4.1. From (1.3) and (4.1), we see that the polyexponential functions Eik(t) are considered as
the limit of the degenerate polyexponential functions Eik,λ(t) as λ approaches to 0, i.e., limλ→0 Eik,λ(t) =

Eik(t).

In order to see some of the type 2 degenerate modified poly-Bernoulli polynomials, we calculate
the first six polynomials of B[1]

n,λ(x) for k = 1, which are listed below:

B
[1]
0,λ(x) =

1
2
,

B
[1]
1,λ(x) =

λ

4
+

x
2
,

B
[1]
2,λ(x) = −

λ2

12
−

1
6

+
x2

2
,

B
[1]
3,λ(x) =

λ

4
+
λ3

8
−

x
2
−

3λx2

4
+

x3

2
,

B
[1]
4,λ(x) =

1
60

(14 − 40λ2 − 19λ4) + 2λx + (2λ2 − 1)x2 − 2λx3 +
x4

2
,

B
[1]
5,λ(x) =

1
8

(−14λ + 20λ3 + 9λ5) +
1
6

(7 − 55λ2)x +
15
2

(λ − λ3)x2 −
5x3

3
+

55λ2x3

6
−

15λx4

4
+

x5

2
.

Further, following the presentation in [18], we investigate the zeros of B[1]
n,λ(x), n = 1, 2, · · · , 8 for

λ = 1
4 in Table 1 and plot the zeros of B[1]

n,λ(x) = 0 for n = 1, · · · , 15 when λ = 1/4 in Figures 1 and 2.

Figure 1. Stacks of all Roots of B[1]
n,λ(x), n = 1, 2, · · · , 15 for λ = 1

4 .
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Figure 2. Roots of B[1]
n,λ(x), n = 15, λ = 1

4 in C.

Table 1. Approximate Roots of B[1]
n,λ(x) = 0 for λ = 1/4.

n Real Roots Complex Roots

n = 1 −0.12500 −

n = 2 −0.5863, 0.5863 −

n = 3 0.1250, − 0.8982, 1.1482 −

n = 4 −0.2750, − 1.1099, 0.7750, 1.6099 −

n = 5 0.3750, − 0.6285, 1.3785,
−1.2334, 1.9834 −

n = 6 −0.0076, 1.0076, − 0.9906, −

1.9906, − 1.2289, 2.2289

n = 7 0.6250, − 0.3755, 1.6255, 2.4803 ± 0.2443i, − 1.2303 ± 0.2443i

n = 8 −0.7477, 2.2477, 0.2477, 1.2523, −1.2853 ± 0.3745i, 2.7853 ± 0.3745i

Also, we plot the behaviour of the type 2 degenerate modified unipoly-Bernoulli polynomials,
PB

[1]
6,λ, 1

Γ

(x) and PB[1]
7,λ, 1

Γ

(x) attached to polynomials p = 1
Γ

in Figure 3 for various values of

λ = 30, 25, · · · , 1/20. The figures show the degenerate polynomials PB[1]
6,λ, 1

Γ

(x) and PB[1]
7,λ, 1

Γ

(x)
approach to the type 2 Bernoulli polynomials B∗6(x) and B∗7(x), respectively, as λ is getting small,
where B∗n(x) are defined by the generating function [6]

t
et − e−t e

xt =

∞∑
n=0

B∗n(x)
tn

n!
.
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Figure 3. PB[1]
6,λ, 1

Γ

(x) and PB[1]
7,λ, 1

Γ

(x) for different λ.

5. Conclusions

Following recent research about type 2 degenerate polynomials, we studied the new types of
degenerate poly-Bernoulli polynomials and degenerate unipoly-Bernoulli polynomials, which are
obtained by modifying generating functions based on degenerate exponential functions and
degenerate logarithm functions. We present the general properties of the polynomials including
recursion relation and related identities in terms of well known special functions and numbers.
Furthermore, in order to see their zeros and behaviors, we calculate some of the proposed
polynomials for specific cases and display their zeros and polynomials for different variables. In
general, the relation among special polynomials provides not only an important research topic but
also useful identities in physics, science and engineering as well as in mathematics. Thus, it would be
interested to find the relation among the variants of some special polynomials and their applications,
which are one of our future work.
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