Research article

Construction of partially degenerate Laguerre-Genocchi polynomials with their applications

  • Received: 15 October 2019 Accepted: 07 May 2020 Published: 11 May 2020
  • MSC : 05A10, 05A15, 33C45

  • Various applications of degenerate polynomials in different areas call for the thoughtful study and research, and many extensions and variants can be found in the literature. In this paper, we introduce partially degenerate Laguerre-Genocchi polynomials and investigate their properties and identities. Furthermore, we introduce a generalized form of partially degenerate Laguerre-Genocchi polynomials and derive some interesting properties and identities. The results obtained are of general character and can be reduced to yield formulas and identities for relatively simple polynomials and numbers.

    Citation: Talha Usman, Mohd Aman, Owais Khan, Kottakkaran Sooppy Nisar, Serkan Araci. Construction of partially degenerate Laguerre-Genocchi polynomials with their applications[J]. AIMS Mathematics, 2020, 5(5): 4399-4411. doi: 10.3934/math.2020280

    Related Papers:

  • Various applications of degenerate polynomials in different areas call for the thoughtful study and research, and many extensions and variants can be found in the literature. In this paper, we introduce partially degenerate Laguerre-Genocchi polynomials and investigate their properties and identities. Furthermore, we introduce a generalized form of partially degenerate Laguerre-Genocchi polynomials and derive some interesting properties and identities. The results obtained are of general character and can be reduced to yield formulas and identities for relatively simple polynomials and numbers.


    加载中


    [1] G. Dattoli, A. Torre, Operational methods and two-variable Laguerre polynomials, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 132 (1998), 1-7.
    [2] G. Dattoli, S. Lorenzutta, C. Cesarano, Finite sums and generalized forms of Bernoulli polynomials, Rend. Mat. Appl., 19 (1999), 385-391.
    [3] L. C. Jang, H. I. Kwon, J. G. Lee, et al. On the generalized partially degenerate Genocchi polynomials, Global J. Pure Appl. Math., 11 (2015), 4789-4799.
    [4] N. U. Khan, T. Usman, M. Aman, Certain generating function of generalized Apostol type Legendre-based polynomials, Note Mat., 37 (2017), 21-43.
    [5] N. U. Khan, T. Usman, J. Choi, A New generalization of Apostol type Laguerre-Genocchi polynomials, C. R. Math., 355 (2017), 607-617. doi: 10.1016/j.crma.2017.04.010
    [6] N. U. Khan, T. Usman, J. Choi, A new class of generalized polynomials, Turkish J. Math., 42 (2018), 1366-1379.
    [7] N. U. Khan, T. Usman, J. Choi, A new class of generalized Laguerre-Euler polynomials, RACSAM, 113 (2019), 861-873. doi: 10.1007/s13398-018-0518-8
    [8] S. Khan, M. W. Al-Saad, R. Khan, Laguerre-based Appell polynomials: Properties and applications, Math. Comput. Model., 52 (2010), 247-259. doi: 10.1016/j.mcm.2010.02.022
    [9] D. S. Kim, T. Kim, Daehee numbers and polynomials, Appl. Math. Sci., 7 (2013), 5969-5976.
    [10] D. S. Kim, T. Kim, Some identities of degenerate special polynomials, Open Math., 13 (2015), 380-389.
    [11] D. S. Kim, T. Kim, S. H. Lee, et al. A note on the lambda-Daehee polynomials, Int. J. Math. Anal., 7 (2013), 3069-3080. doi: 10.12988/ijma.2013.311264
    [12] D. S. Kim, S. H. Lee, T. Mansour, et al. A note on q-Daehee polynomials and numbers, Adv. Stud. Contemp. Math., 24 (2014), 155-160.
    [13] T. Kim, J. J. Seo, A note on partially degenerate Bernoulli numbers and polynomials, J. Math. Anal., 6 (2015), 1-6.
    [14] D. Lim, Degenerate, partially degenerate and totally degenerate Daehee numbers and polynomials, Adv. Differ. Equ., 2015 (2015), 287.
    [15] D. Lim, Some identities of Degenerate Genocchi polynomials, Bull. Korean Math. Soc., 53 (2016), 569-579. doi: 10.4134/BKMS.2016.53.2.569
    [16] J. W. Park, J. Kwon, A note on the degenerate high order Daehee polynomials, Global J. Appl. Math. Sci., 9 (2015), 4635-4642.
    [17] M. A. Pathan, W. A. Khan, Some implicit summation formulas and symmetric identities for the generalized Hermite-Bernoulli polynomials, Mediterr. J. Math., 12 (2015), 679-695. doi: 10.1007/s00009-014-0423-0
    [18] F. Qi, D. V. Dolgy, T. Kim, et al. On the partially degenerate Bernoulli polynomials of the first kind, Global J. Pure Appl. Math., 11 (2015), 2407-2412.
    [19] E. D. Rainville, Special Functions, Macmillan Company, New York, 1960.
    [20] C. S. Ryoo, T. Kim, J. Choi, et al. On the generalized q-Genocchi numbers and polynomials of higher-order, Adv. Differ. Equ., 2011 (2011), 1-8.
    [21] H. M. Srivastava, H. L. Manocha, Treatise on Generating Functions, Ellis Horwood Limited, New York, 1984.
    [22] W. P. Zang, Z. F. Cao, Another generalization of Menon's identity, Int. J. Number Theory, 13 (2017), 2373-2379. doi: 10.1142/S1793042117501299
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3781) PDF downloads(291) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog