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1. Introduction and preliminaries

We begin with the following definitions of notations:

N = {1, 2, 3, · · · } and N0 := N∪ {0} .
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Also, as usual, R denotes the set of real numbers and C denotes the set of complex numbers.

The two variable Laguerre polynomials Ln(u, v) [1] are defined by the Taylor expansion about τ = 0
(also popularly known as generating function) as follows:

∞∑
p=0

Lp(u, v)
τp

p!
= evτC0(uτ),

where is the 0-th order Tricomi function [19] given by

C0(u) =

∞∑
p=0

(−1)pup

(p!)2

and has the series representation

Lp(u, v) =

p∑
s=0

p!(−1)svp−sus

(p − s)!(s!)2 .

The classical Euler polynomials Ep(u), Genocchi polynomials Gp(u) and the Bernoulli polynomials
Bp(u) are usually defined by the generating functions (see, for details and further work, [1,2,4–7,9,11,
12, 20]):

∞∑
p=0

Ep(u)
τp

p!
=

2
eτ + 1

euτ (|τ| < π),

∞∑
p=0

Gp(u)
τp

p!
=

2τ
eτ + 1

euτ (|τ| < π)

and
∞∑

p=0

Bp(u)
τp

p!
=

τ

eτ − 1
euτ (|τ| < 2π).

The Daehee polynomials, recently originally defined by Kim et al. [9], are defined as follows

∞∑
p=0

Dp(u)
τp

p!
=

log(1 + τ)
τ

(1 + τ)u, (1.1)

where, for u = 0, Dp(0) = Dp stands for Daehee numbers given by

∞∑
p=0

Dp
τp

p!
=

log(1 + τ)
τ

. (1.2)

Due to Kim et al.’s idea [9], Jang et al. [3] gave the partially degenarate Genocchi polynomials as
follows:

2 log(1 + τλ)
1
λ

eτ + 1
euτ =

∞∑
p=0

Gp,λ(u)
τp

p!
, (1.3)
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which, for the case u = 0, yields the partially degenerate Genocchi numbers Gn,λ := Gn,λ(0).
Pathan et al. [17] considered the generalization of Hermite-Bernoulli polynomials of two variables

H B(α)
p (u, v) as follows (

τ

eτ − 1

)α
euτ+vτ2

=

∞∑
p=0

H B(α)
p (u, v)

τp

p!
. (1.4)

On taking α = 1 in (1.4) yields a well known result of [2, p. 386 (1.6)] given by(
τ

eτ − 1

)
euτ+vτ2

=

∞∑
p=0

H Bp(u, v)
τp

p!
. (1.5)

The two variable Laguerre-Euler polynomials (see [7, 8]) are defined as
∞∑

p=0
LEp(u, v)

τp

p!
=

2
eτ + 1

evτC0(uτ). (1.6)

The alternating sum Tk(p), where k ∈ N0, (see [14]) is given as

Tk(p) =

p∑
j=0

(−1) j jk

and possess the generating function
∞∑

r=0

Tk(p)
τr

r!
=

1 − (−eτ)(p+1)

eτ + 1
. (1.7)

The idea of degenerate numbers and polynomials found existence with the study related to Bernoulli
and Euler numbers and polynomials. Lately, many researchers have begun to study the degenerate
versions of the classical and special polynomials (see [3,10–16,18], for a systematic work). Influenced
by their works, we introduce partially degenerate Laguerre-Genocchi polynomials and also a new
generalization of partially degenerate Laguerre-Genocchi polynomials and then give some of their
applications. We also derive some implicit summation formula and general symmetry identities.

2. Partially degenerate Laguerre-Genocchi polynomials

Let λ, τ ∈ C with |τλ| ≤ 1 and τλ , −1. We introduce and investigate the partially degenerate
Laguerre-Genocchi polynomials as follows:

∞∑
p=0

LGp,λ(u, v)
τp

p!
=

2 log(1 + λτ)
1
λ

eτ + 1
evτC0(uτ). (2.1)

In particular, when λ→ 0, LGp,λ(u, v)→ LGp(u, v) and they have the closed form given as

LGp,λ(u, v) =

p∑
q=0

(
p
q

)
Gq,λLp−q(u, v).

Clearly, u = 0 in (2.1) gives LGp,λ(0, 0) := Gp,λ that stands for the partially degenerate Genocchi
polynomials [3].
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Theorem 1. For p ∈ No, the undermentioned relation holds:

LGp,λ(u, v) =

p∑
q=0

(
p

q + 1

)
q!(−λ)q

LGp−q−1(u, v). (2.2)

Proof. With the help of (2.1), one can write

∞∑
p=0

LGp,λ(u, v)
τp

p!
=

2 log(1 + λτ)
1
λ

eτ + 1
evτC0(uτ)

=τ


∞∑

q=0

(−1)q

q + 1
(λτ)q


 ∞∑

p=0
LGp(u, v)

τp

p!


=

∞∑
p=0


p∑

q=0

(
p
q

)
(−λ)q

q + 1
q!LGp−q(u, v)

 τp+1

p!
,

where, LGp−q(u, v) are the Laguerre-Genocchi polynomials (see [8]). Finally, the assertion easily
follows by equating the coefficients τp

p! . �

Theorem 2. For p ∈ No, the undermentioned relation holds:

LGp+1,λ(u, v) =

p∑
q=0

(
p
q

)
λq(p + 1)LGp−q+1(u, v)Dq. (2.3)

Proof. We first consider

I1 =
1
τ

2 log(1 + λτ)
1
λ

eτ + 1
evτC0(uτ) =


∞∑

q=0

Dq
(λτ)q

q!


 ∞∑

p=0
LGp(u, v)

τp

p!


=

∞∑
p=1


p∑

q=0

(
p
q

)
(λ)qDqLGp−q(u, v)

 τp

p!
.

Next we have,

I2 =
1
τ

2 log(1 + λτ)
1
λ

eτ + 1
evτCo(uτ) =

1
τ

∞∑
p=0

LGp,λ(u, v)
τp

p!

=

∞∑
p=0

LGp+1,λ(u, v)
p + 1

τp

p!
.

Since I1 = I2, we conclude the assertion (2.3) of Theorem 2. �

Theorem 3. For p ∈ N0, the undermentioned relation holds:

LGp,λ(u, v) = p
p−1∑
q=0

(
p − 1

q

)
(λ)q

LEp−q−1(u, v)Dq. (2.4)
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Proof. With the help of (2.1), one can write

∞∑
p=0

LGp,λ(x, y)
τp

p!
=

{
τ log(1 + λτ)

λτ

}{
2

eτ + 1
evτC0(uτ)

}

=τ


∞∑

q=0

Dq
(λτ)q

q!


 ∞∑

p=0
LEp(u, v)

τp

p!


=

∞∑
p=0


p∑

q=0

(
p
q

)
(λ)qDq LEp−q(u, v)

 τp+1

p!
.

Finally, the assertion (2.4) straightforwardly follows by equating the coefficients of same powers of τ
above. �

Theorem 4. For p ∈ No, the following relation holds:

LGp,λ(u, v + 1) =

p∑
q=0

(
p
q

)
LGp−q,λ(u, v). (2.5)

Proof. Using (2.1), we find

∞∑
p=0

{
LGp,λ(u, v + 1) − LGp,λ(u, v)

} τp

p!
=

2 log(1 + λτ)
1
λ

eτ + 1

×e(v+1)τC0(uτ) −
2 log(1 + λτ)

1
λ

eτ + 1
evτC0(uτ)

=

∞∑
p=0

LGp,λ(u, v)
τp

p!

∞∑
q=0

τq

q!
−

∞∑
p=0

LGp,λ(u, v)
τp

p!

=

∞∑
p=0


p∑

q=0

(
p
q

)
LGp−q,λ(u, v) − LGp,λ(u, v)

 τp

p!
.

Hence, the assertion (2.5) straightforwardly follows by equating the coefficients of τp above. �

Theorem 5. For p ∈ No, the undermentioned relation holds:

LGp,λ(u, v) =

p∑
q=0

q∑
l=0

(
p
q

)(
q
l

)
Gp−qDq−l λ

q−lLl(u, v). (2.6)

Proof. Since

∞∑
p=0

LGp,λ(u, v)
τp

p!
=

2 log(1 + λτ)
1
λ

eτ + 1
evτC0(uτ)

=

{
2τ

eτ + 1

}{
2 log(1 + λτ)

λτ

}
evτC0(uτ)

AIMS Mathematics Volume 5, Issue 5, 4399–4411.



4404

=

 ∞∑
p=0

Gp
τp

p!



∞∑

q=0

Dq
(λτ)q

q!


 ∞∑

l=0

Ll(u, v)
τl

l!

 ,
we have

∞∑
p=0

LGp,λ(u, v)
τp

p!
=

∞∑
p=0


p∑

q=0

q∑
l=0

(
p
q

)(
q
l

)
Gp−qDq−lλ

q−lLl(u, v)

 τp

p!
.

We thus complete the proof of Theorem 5. �

Theorem 6. (Multiplication formula). For p ∈ No, the undermentioned relation holds:

LGp,λ(u, v) = f p−1
f−1∑
a=0

LGp, λf

(
u,

v + a
f

)
. (2.7)

Proof. With the help of (2.1), we obtain

∞∑
p=0

LGp,λ(u, v)
τp

p!
=

2 log(1 + λτ)
1
λ

eτ + 1
evτC0(uτ)

=
2 log(1 + λτ)

1
λ

eτ + 1
C0(uτ)

f−1∑
a=0

e(a+v)τ

=

∞∑
p=0

 f p−1
f−1∑
a=0

LGp, λf

(
u,

v + a
f

) τp

p!
.

Thus, the result in (2.7) straightforwardly follows by comparing the coefficients of τp above. �

3. Generalized partially degenerate Laguerre-Genocchi polynomials

Consider a Dirichlet character χ and let d (d ∈ N) be the conductor connected with it such that
d ≡ 1( mod 2) (see [22]). Now we present a generalization of partially degenerate Laguerre-Genocchi
polynomials attached to χ as follows:

∞∑
p=0

LGp,χ,λ(u, v)
τp

p!
=

2 log(1 + λτ)
1
λ

e f τ + 1

f−1∑
a=0

(−1)aχ(a)e(v+a)τC0(uτ). (3.1)

Here, Gp,χ,λ = LGp,χ,λ(0, 0) are in fact, the generalized partially degenerate Genocchi numbers attached
to the Drichlet character χ. We also notice that

lim
λ→ 0
v = 0

LGp,χ,λ(u, v) = Gp,χ(u),

is the familiar looking generalized Genocchi polynomial (see [20]).
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Theorem 7. For p ∈ N0, the following relation holds:

LGp,χ,λ(u, v) =

p∑
q=0

(
p
q

)
λqDq LGp−q,χ(u, v). (3.2)

Proof. In view of (3.1), we can write
∞∑

p=0
LGp,χ,λ(u, v)

τp

p!
=

2 log(1 + λτ)
1
λ

e f τ + 1

f−1∑
a=0

(−1)aχ(a)e(v+a)τC0(uτ)

=

{
log(1 + λτ)

λτ

} 2τ
e f τ + 1

f−1∑
a=0

(−1)aχ(a)e(v+a)τC0(uτ)


=


∞∑

q=0

Dq
λq

τq q!


 ∞∑

p=0
LGp,χ(u, v)

τp

p!

 .
Finally, the assertion (3.2) of Theorem 7 can be achieved by equating the coefficients of same powers
of τ. �

Theorem 8. The undermentioned formula holds true:

LGp,χ,λ(u, v) = f p−1
f−1∑
a=0

(−1)aχ(a)LGp, λf

(
u,

a + v
f

)
. (3.3)

Proof. We first evaluate
∞∑

p=0
LGp,χ,λ(u, v)

τp

p!
=

2 log(1 + λτ)
1
λ

e f τ + 1

f−1∑
a=0

(−1)aχ(a)e(v+a)τC0(uτ)

=
1
f

f−1∑
a=0

(−1)aχ(a)
2 log(1 + λτ)

f
λ

e f τ + 1
e
(

a+v
f

)
f τC0(uτ)

=

∞∑
p=0

 f p−1
f−1∑
a=0

(−1)aχ(a)LGp, λf

(
u,

a + v
f

) τp

p!
.

Now, the Theorem 8 can easily be concluded by equating the coefficients τp

p! above. �

Using the result in (3.1) and with a similar approach used just as in above theorems, we provide
some more theorems given below. The proofs are being omitted.

Theorem 9. The undermentioned formula holds true:

LGp,χ,λ(u, v) =

p∑
q=0

Gp−q,χ,λ(v) (−u)q p!
(q!)2 (p − q)!

. (3.4)

Theorem 10. The undermentioned formula holds true:

LGp,χ,λ(u, v) =

p,l∑
q=0

Gp−q−l,χ,λ (v)q (−u)l p!
(p − q − l)! (q)! (l!)2 . (3.5)
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4. Implicit summation formulae

Theorem 11. The undermentioned formula holds true:

LGl+h,λ(u, ν) =

l,h∑
p,n=0

(
l
p

)(
h
n

)
(u − v)p+n

LGl+h−n−p,λ(u, v). (4.1)

Proof. On changing τ by τ + µ and rewriting (2.1), we evaluate

e−v(τ+µ)
∞∑

l,h=0
LGl+h,λ(u, v)

τlµh

l!h!
=

2 log(1 + λ(τ + µ))
1
λ

eτ+µ + 1
Co(u(τ + µ)),

which, upon replacing v by u and solving further, gives

e(u−v)(τ+µ)
∞∑

l,h=0
LGl+h,λ(u, v)

τlµh

l!h!
=

∞∑
l,h=0

LGl+h,λ(u, ν)
τlµh

l!h!
,

and also
∞∑

P=0

(u − v)P(τ + u)P

P!

∞∑
l,h=0

LGl+h,λ(u, v)
τlµh

l!h!
=

∞∑
l,h=0

LGl+h,λ(u, ν)
τlµh

l!h!
. (4.2)

Now applying the formula [21, p.52(2)]

∞∑
P=0

f (P)
(u + v)P

P!
=

∞∑
p,q=0

f (p + q)
up

p!
vq

q!
,

in conjunction with (4.2), it becomes

∞∑
p,n=0

(u − v)p+nτpµn

p!n!

∞∑
l,h=0

LGl+h,λ(u, v)
τlµh

l!h!
=

∞∑
l,h=0

LGl+h,λ(u, ν)
τlµh

l!h!
. (4.3)

Further, upon replacing l by l− p, h by h− n, and using the result in [21, p.100 (1)], in the left of (4.3),
we obtain

∞∑
p,n=0

∞∑
l,h=0

(u − v)p+n

p! n! LGl+h−p−n,λ(u, v)
τlµh

(l − p)!(h − n)!
=

∞∑
l,h=0

LGl+h,λ(u, ν)
τlµh

l! h!
.

Finally, the required result can be concluded by equating the coefficients of the identical powers of τl

and µh above. �

Corollary 4.1. For h = 0 in (4.1), we get

LGl,λ(u, ν) =

l∑
ρ=0

(
l
ρ

)
(u − v)p

LGl−ρ,λ(u, v).
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Some identities of Genocchi polynomials for special values of the parameters u and ν in Theorem
11 can also be obtained. Now, using the result in (2.1) and with a similar approach, we provide some
more theorems given below. The proofs are being omitted.

Theorem 12. The undermentioned formula holds good:

LGp,λ(u, v + µ) =

p∑
q=0

(
p
q

)
µq

LGp−q,λ(u, v)

Theorem 13. The undermentioned implicit holds true:

∞∑
p=0

LGp,λ(u, v)
τp

p!
=

2 log(1 + λτ)
1
λ

eτ + 1
evτCo(uτ) =

p∑
q=0

(
p
q

)
Gp−q,λ Lp(u, v)

and

LGp,λ(u, v) =

p∑
q=0

(
p
q

)
Gp−q,λ(u, v) Lp(u, v).

Theorem 14. The undermentioned implicit summation formula holds:

LGp,λ(u, v + 1) + LGp,λ(u, v) = 2p
p−1∑
q=0

(
p − 1

q

)
(−λ)qq!
q + 1

Lp−q−1(u, v).

Theorem 15. The undermentioned formula holds true:

LGp,λ(u, v + 1) =

p∑
q=0

LGp−q,λ(u, v).

5. Symmetry identities

Symmetry identities involving various polynomials have been discussed (e.g., [7, 9–11, 17]). As
in above-cited work, here, in view of the generating functions (1.3) and (2.1), we obtain symmetry
identities for the partially degenerate Laguerre-Genocchi polynomials LGn,λ(u, v).

Theorem 16. Let α, β ∈ Z and p ∈ N0, we have

p∑
q=0

(
p
q

)
βqαp−q

LGp−q,λ(uβ, vβ)LGq,λ(uα, vα)

=

p∑
q=0

(
p
q

)
αqβp−q

LGp−q,λ(uα, vα)LGq,λ(uβ, vβ).

Proof. We first consider

g(τ) =

{
2 log(1 + λ)

β
λ

}
(eατ + 1)

{
2 log(1 + λ)

α
λ

}
(eβτ + 1)

e(α+β)vτC0(uατ)C0(uβτ).
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Now we can have two series expansion of g(τ) in the following ways:
On one hand, we have

g(τ) =

 ∞∑
p=0

LGp,λ(uβ, vβ)
(ατ)p

p!


 ∞∑

q=0
LGq,λ(uα, vα)

(βτ)q

q!

 (5.1)

=

∞∑
p=0

 p∑
q=0

(
p
q

)
βqαp−q

LGp−q,λ(uβ, vβ) LGq,λ(uα, vα)

 τp

p!
.

and on the other, we can write

g(τ) =

 ∞∑
p=0

LGp,λ(uα, vα)
(βτ)p

p!


 ∞∑

q=0
LGq,λ(uβ, vβ)

(ατ)q

q!

 (5.2)

=

∞∑
p=0

 p∑
q=0

(
p
q

)
αqβp−q

LGp−q,λ(uα, vα) LGq,λ(uβ, vβ)

 τp

p!
.

Finally, the result easily follows by equating the coefficients of τp on the right-hand side of Eqs (5.1)
and (5.2). �

Theorem 17. Let α, β ∈ Z with p ∈ N0, Then,

p∑
q=0

(
p
q

)
βqαp−q

α−1∑
σ=0

β−1∑
ρ=0

(−1)σ+ρ
LGp−q,λ(u, vβ +

β

α
σ + ρ)Gq,λ(zα)

=

p∑
q=0

(
p
q

)
αpβp−q

β−1∑
σ=0

α−1∑
ρ=0

(−1)σ+ρ
LGp−q,λ(u, vα +

β

α
σ + ρ)Gq,λ(zβ).

Proof. Let

g(τ) =

{
2 log(1 + λ)

α
λ

}
(eατ + 1)2

{
2 log(1 + λ)

β
λ

}
(eβτ + 1)2 e(αβτ+1)2

e(αβ)(v+z)τ[Cs0(uτ)].

Considering g(τ) in two forms. Firstly,

g(τ) =

{
2 log(1 + λ)

α
λ

}
eατ + 1

eαβvτCo(uτ)
(
eαβτ + 1
eβτ + 1

)
×

{
2 log(1 + λ)

β
λ

}
eβτ + 1

eαβzτ

(
eαβτ + 1
eατ + 1

)

=

{
2 log(1 + λ)

α
λ

}
eατ + 1

eαβvτC0(uτ)

α−1∑
σ=0

(−1)σeβτσ


×

{
2 log(1 + λ)

β
λ

}
eβτ + 1

eαβτzC0(uτ)

 β−1∑
ρ=0

(−1)ρeατρ
 , (5.3)
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Secondly,

g(τ)

=

∞∑
p=0


p∑

q=0

(
p
q

)
βqαp−q

α−1∑
σ=0

β−1∑
ρ=0

(−1)σ+ρ
LGp−q,λ

(
uα, vβ +

β

α
σ + ρ

)
Gq,λ(αz)

 τp

p!

=

∞∑
p=0


p∑

q=0

(
p
q

)
αqβp−q

α−1∑
σ=0

β−1∑
ρ=0

(−1)σ+ρ
LGσ−ρ,λ

(
u, vα +

α

β
σ + ρ

)
Gq,λ(zβ)

 τp

p!
. (5.4)

Finally, the result straightforwardly follows by equating the coefficients of τp in Eqs (5.3) and (5.4). �

We now give the following two Theorems. We omit their proofs since they follow the same
technique as in the Theorems 16 and 17.

Theorem 18. Let α, β ∈ Z and p ∈ N0, Then,

p∑
q=0

(
p
q

)
βqαp−q

α−1∑
σ=0

β−1∑
ρ=0

(−1)σ+ρ
LGp−q,λ

(
u, vβ +

β

α
σ
)

Gq,λ

(
zα +

α

β
ρ

)

=

p∑
q=0

(
p
q

)
αqβp−q

β−1∑
σ=0

α−1∑
ρ=0

(−1)σ+ρ
LGp−q,λ

(
u, vα +

α

β
σ + ρ

)
LGq,λ

(
zβ +

β

α
ρ
)

.

Theorem 19. Let α, β ∈ Z and p ∈ N0, Then,

p∑
q=0

(
p
q

)
βqαp−q

LGp−q,λ(uβ, vβ)
q∑

σ=0

(
q
σ

)
Tσ(α − 1)Gq−σ,λ(uα)

=

p∑
q=0

(
p
q

)
βp−qαq

LGp−q,λ(uα, vα)
q∑

σ=0

(
q
σ

)
Tσ(β − 1)Gq−σ,λ(uβ).

6. Concluding remark and observation

Motivated by importance and potential for applications in certain problems in number theory,
combinatorics, classical and numerical analysis and other fields of applied mathematics, various
special numbers and polynomials, and their variants and generalizations have been extensively
investigated (for example, see the references here and those cited therein). The results presented here,
being very general, can be specialized to yield a large number of identities involving known or new
simpler numbers and polynomials. For example, the case u = 0 of the results presented here give the
corresponding ones for the generalized partially degenerate Genocchi polynomials [3].

Acknowledgment

The authors express their thanks to the anonymous reviewers for their valuable comments and
suggestions, which help to improve the paper in the current form.

AIMS Mathematics Volume 5, Issue 5, 4399–4411.



4410

Conflict of interest

We declare that we have no conflict of interests.

References

1. G. Dattoli, A. Torre, Operational methods and two-variable Laguerre polynomials, Atti Accad.
Sci. Torino Cl. Sci. Fis. Mat. Natur., 132 (1998), 1–7.

2. G. Dattoli, S. Lorenzutta, C. Cesarano, Finite sums and generalized forms of Bernoulli
polynomials, Rend. Mat. Appl., 19 (1999), 385–391.

3. L. C. Jang, H. I. Kwon, J. G. Lee, et al. On the generalized partially degenerate Genocchi
polynomials, Global J. Pure Appl. Math., 11 (2015), 4789–4799.

4. N. U. Khan, T. Usman, M. Aman, Certain generating function of generalized Apostol type
Legendre-based polynomials, Note Mat., 37 (2017), 21–43.

5. N. U. Khan, T. Usman, J. Choi, A New generalization of Apostol type Laguerre-Genocchi
polynomials, C. R. Math., 355 (2017), 607–617.

6. N. U. Khan, T. Usman, J. Choi, A new class of generalized polynomials, Turkish J. Math., 42
(2018), 1366–1379.

7. N. U. Khan, T. Usman, J. Choi, A new class of generalized Laguerre-Euler polynomials,
RACSAM, 113 (2019), 861–873.

8. S. Khan, M. W. Al-Saad, R. Khan, Laguerre–based Appell polynomials: Properties and
applications, Math. Comput. Model., 52 (2010), 247–259.

9. D. S. Kim, T. Kim, Daehee numbers and polynomials, Appl. Math. Sci., 7 (2013), 5969–5976.

10. D. S. Kim, T. Kim, Some identities of degenerate special polynomials, Open Math., 13 (2015),
380–389.

11. D. S. Kim, T. Kim, S. H. Lee, et al. A note on the lambda-Daehee polynomials, Int. J. Math. Anal.,
7 (2013), 3069–3080.

12. D. S. Kim, S. H. Lee, T. Mansour, et al. A note on q-Daehee polynomials and numbers, Adv. Stud.
Contemp. Math., 24 (2014), 155–160.

13. T. Kim, J. J. Seo, A note on partially degenerate Bernoulli numbers and polynomials, J. Math.
Anal., 6 (2015), 1–6.

14. D. Lim, Degenerate, partially degenerate and totally degenerate Daehee numbers and
polynomials, Adv. Differ. Equ., 2015 (2015), 287.

15. D. Lim, Some identities of Degenerate Genocchi polynomials, Bull. Korean Math. Soc., 53 (2016),
569–579.

16. J. W. Park, J. Kwon, A note on the degenerate high order Daehee polynomials, Global J. Appl.
Math. Sci., 9 (2015), 4635–4642.

17. M. A. Pathan, W. A. Khan, Some implicit summation formulas and symmetric identities for the
generalized Hermite-Bernoulli polynomials, Mediterr. J. Math., 12 (2015), 679–695.

AIMS Mathematics Volume 5, Issue 5, 4399–4411.



4411

18. F. Qi, D. V. Dolgy, T. Kim, et al. On the partially degenerate Bernoulli polynomials of the first
kind, Global J. Pure Appl. Math., 11 (2015), 2407–2412.

19. E. D. Rainville, Special Functions, Macmillan Company, New York, 1960.

20. C. S. Ryoo, T. Kim, J. Choi, et al. On the generalized q-Genocchi numbers and polynomials of
higher-order, Adv. Differ. Equ., 2011 (2011), 1–8.

21. H. M. Srivastava, H. L. Manocha, Treatise on Generating Functions, Ellis Horwood Limited, New
York, 1984.

22. W. P. Zang, Z. F. Cao, Another generalization of Menon’s identity, Int. J. Number Theory, 13
(2017), 2373–2379.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 5, 4399–4411.

http://creativecommons.org/licenses/by/4.0

	Introduction and preliminaries
	Partially degenerate Laguerre-Genocchi polynomials
	Generalized partially degenerate Laguerre-Genocchi polynomials
	Implicit summation formulae
	Symmetry identities
	Concluding remark and observation

