In this paper, the finite-time stability (FTS) of singular switched systems that have time-varying delays and perturbations is investigated. First, the concept of the FTS of time-varying delay singular switched systems is given, and a specific event-triggered mechanism is proposed. Then, a state feedback mechanism is proposed based on the event-triggered mechanism. Second, using the L-K function and state space decomposition, adequate criteria for the FTS of singular switched systems are found. Sufficient requirements are also presented for meeting the finite-time stable $ H_\infty $ performance index $ \gamma $.
Citation: Yidan Wang, Li Xiao, Yanfeng Guo. Finite-time stability of singular switched systems with a time-varying delay based on an event-triggered mechanism[J]. AIMS Mathematics, 2023, 8(1): 1901-1924. doi: 10.3934/math.2023098
In this paper, the finite-time stability (FTS) of singular switched systems that have time-varying delays and perturbations is investigated. First, the concept of the FTS of time-varying delay singular switched systems is given, and a specific event-triggered mechanism is proposed. Then, a state feedback mechanism is proposed based on the event-triggered mechanism. Second, using the L-K function and state space decomposition, adequate criteria for the FTS of singular switched systems are found. Sufficient requirements are also presented for meeting the finite-time stable $ H_\infty $ performance index $ \gamma $.
[1] | X. P. Xu, P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Trans. Automat. Control, 49 (2004), 2–16. https://doi.org/10.1109/TAC.2003.821417 doi: 10.1109/TAC.2003.821417 |
[2] | Z. Y. Meng, W. G. Xia, K. H. Johansson, S. Hirche, Stability of positive switched linear systems: Weak excitation and robustness to time-varying delay, IEEE Trans. Automat. Control, 62 (2017), 399–405. https://doi.org/10.1109/TAC.2016.2531044 doi: 10.1109/TAC.2016.2531044 |
[3] | V. E. Khartovskii, Criteria for modal controllability of completely regular differential-algebraic systems with aftereffect, Differ. Equations, 54 (2018), 509–524. https://doi.org/10.1134/S0012266118040080 doi: 10.1134/S0012266118040080 |
[4] | S. Y. Xu, J. Lam, Robust control and filtering of singular systems, In: Lecture notes in control and information sciences, Berlin: Springer, 2006. https://doi.org/10.1007/11375753 |
[5] | W. Q. Liu, W. Y. Yan, K. L. Teo, On initial instantaneous jumps of singular systems, IEEE Trans. Automat. Control, 40 (1995), 1650–1655. https://doi.org/10.1109/9.412639 doi: 10.1109/9.412639 |
[6] | L. Zhou, D. W. C. Ho, G. S. Zhai, Stability analysis of switched linear singular systems, Automatica, 49 (2013), 1481–1487. https://doi.org/10.1016/j.automatica.2013.02.002 doi: 10.1016/j.automatica.2013.02.002 |
[7] | Y. Li, Y. He, Dissipativity analysis for singular Markovian jump systems with time-varying delays via improved state decomposition technique, Inform. Sci., 580 (2021), 643–654. https://doi.org/10.1016/j.ins.2021.08.092 doi: 10.1016/j.ins.2021.08.092 |
[8] | J. X. Lin, X. Wu, J. Ding, Z. E. Lou, Stability of switched singular time delay systems with switching induced state jumps, IET Control Theory Appl., 14 (2020), 3351–3361. https://doi.org/10.1049/iet-cta.2019.1338 doi: 10.1049/iet-cta.2019.1338 |
[9] | L. Liu, Q. Zhou, H. J. Liang, L. J. Wang, Stability and stabilization of nonlinear switched systems under average dwell time, Appl. Math. Comput., 298 (2017), 77–94. https://doi.org/10.1016/j.amc.2016.11.006 doi: 10.1016/j.amc.2016.11.006 |
[10] | P. K. Anh, P. T. Linh, D. D. Thuan, S. Trenn, Stability analysis for switched discrete-time linear singular systems, Automatica, 119 (2020), 109100. https://doi.org/10.1049/10.1016/j.automatica.2020.109100 doi: 10.1049/10.1016/j.automatica.2020.109100 |
[11] | Y. Li, Y. He, C. K. Zhang, M. Wu, Discrete-State decomposition technique of dissipativity analysis for discrete-time singular systems with time-varying delays, IEEE Trans. Cybernetics, 2022. https://doi.org/10.1109/TCYB.2022.3151414 doi: 10.1109/TCYB.2022.3151414 |
[12] | S. Alexandre, G. Frédéric, F. Emilia, Stability of discrete-time systems with time-varying delays via a novel summation inequality, IEEE Trans. Automat. Control, 60 (2015), 2740–2745. https://doi.org/10.1109/TAC.2015.2398885 doi: 10.1109/TAC.2015.2398885 |
[13] | B. Wang, Q. X. Zhu, Stability analysis of semi-Markov switched stochastic systems, Automatica, 94 (2018), 72–80. https://doi.org/10.1016/j.automatica.2018.04.016 doi: 10.1016/j.automatica.2018.04.016 |
[14] | X. T. Wu, Y. Tang, W. B. Zhang, Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica, 66 (2016), 195–204. https://doi.org/10.1016/j.automatica.2016.01.002 doi: 10.1016/j.automatica.2016.01.002 |
[15] | S. N. Vassilyev, A. A. Kosov, Analysis of hybrid systems' dynamics using the common Lyapunov functions and multiple homomorphisms, Autom. Remote Control, 72 (2011), 1163–1183. https://doi.org/10.1134/S000511791106004X doi: 10.1134/S000511791106004X |
[16] | W. M. Haddad, J. Lee, Finite-time stability of discrete autonomous systems, Automatica, 122 (2020), 109282. https://doi.org/10.1016/j.automatica.2020.109282 doi: 10.1016/j.automatica.2020.109282 |
[17] | G. S. Wang, Y. Liu, J. Q. Lu, Z. Wang, Stability analysis of totally positive switched linear systems with average dwell time switching, Nonlinear Anal. Hybrid Syst., 36 (2020), 109282. https://doi.org/10.1016/j.nahs.2020.100877 doi: 10.1016/j.nahs.2020.100877 |
[18] | Y. L. Zhang, B. W. Wu, Y. E. Wang, X. X. Han, Finite-time stability for switched singular systems, Acta Phys., 63 (2014), 170205. https://doi.org/10.7498/aps.63.170205 doi: 10.7498/aps.63.170205 |
[19] | Y. L. Zhang, B. W. Wu, Y. E. Wang, X. X. Han, Delay-dependent observer-based $H_{\infty}$ finite-time control for switched systems with time-varying delay, Nonlinear Anal. Hybrid Syst., 6 (2012), 885–898. https://doi.org/10.1016/10.1016/j.nahs.2012.03.001 doi: 10.1016/10.1016/j.nahs.2012.03.001 |
[20] | G. Q. Ma, X. H. Liu, L. L. Qin, G. Wu, Finite-time event-triggered $H_{\infty}$ control for switched systems with time-varying delay, Neurocomputing, 207 (2016), 828–842. https://doi.org/10.1016/j.neucom.2016.05.070 doi: 10.1016/j.neucom.2016.05.070 |
[21] | B. Zhou, Finite-time stability analysis and stabilization by bounded linear time-varying feedback, Automatica, 121 (2020), 109191. https://doi.org/10.1016/j.automatica.2020.109191 doi: 10.1016/j.automatica.2020.109191 |
[22] | Q. Xi, X. Z. Liu, Finite-time stability and controller design for a class of hybrid dynamical systems with deviating argument, Nonlinear Anal. Hybrid Syst., 39 (2021), 100952. https://doi.org/10.1016/j.nahs.2020.100952 doi: 10.1016/j.nahs.2020.100952 |
[23] | N. T. Thanh, P. Niamsup, V. N. Phat, Finite-time stability of singular nonlinear switched time-delay systems: A singular value decomposition approach, J. Franklin Inst., 354 (2017), 3502–3518. https://doi.org/10.1016/j.jfranklin.2017.02.036 doi: 10.1016/j.jfranklin.2017.02.036 |
[24] | N. T. Thanh, V. N. Phat, Switching law design for finite-time stability of singular fractional-order systems with delay, IET Control Theory Appl., 13 (2019), 1367–1373. https://doi.org/10.1049/iet-cta.2018.5556 doi: 10.1049/iet-cta.2018.5556 |
[25] | Y. H. Liu, H. M. Zhi, J. M. Wei, X. L. Zhu, Q. X. Zhu, Event-triggered control for linear continuous switched singular systems, Appl. Math. Comput., 374 (2020), 125038. https://doi.org/10.1016/j.amc.2020.125038 doi: 10.1016/j.amc.2020.125038 |
[26] | L. Q. Wang, J. X. Dong, Adaptive fuzzy consensus tracking control for uncertain fractional-order multiagent systems with event-triggered input, IEEE Trans. Fuzzy Syst., 30 (2022), 310–320. https://doi.org/10.1109/TFUZZ.2020.3037957 doi: 10.1109/TFUZZ.2020.3037957 |
[27] | A. Q. Wang, L. Liu, J. B. Qiu, G. Feng, Event-triggered adaptive fuzzy output-feedback control for nonstrict-feedback nonlinear systems with asymmetric output constraint, IEEE Trans. Cybernetics, 52 (2022), 712–722. https://doi.org/10.1109/TCYB.2020.2974775 doi: 10.1109/TCYB.2020.2974775 |
[28] | L. Cao, Q. Zhou, G. W. Dong, H. Y. Li, Observer-based adaptive event-triggered control for nonstrict-feedback nonlinear systems with output constraint and actuator failures, IEEE T. Syst. Man Cy.-S., 51 (2021), 1380–1391. https://doi.org/10.1109/TSMC.2019.2895858 doi: 10.1109/TSMC.2019.2895858 |
[29] | S. Y. Xu, P. V. Dooren, R. Stefan, J. Lam, Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE Trans. Automat. Control, 47 (2002), 1122–1128. https://doi.org/10.1109/TAC.2002.800651 doi: 10.1109/TAC.2002.800651 |
[30] | L. Dai, Singular control systems, Berlin: Springer, 1989. https://doi.org/10.1007/BFb0002475 |
[31] | A. Haidar, E. K. Boukas, Exponential stability of singular systems with multiple time-varying delays, Automatica, 45 (2009), 539–545. https://doi.org/10.1016/j.automatica.2008.08.019 doi: 10.1016/j.automatica.2008.08.019 |
[32] | I. Zamani, M. Shafiee, A. Ibeas, Exponential stability of hybrid switched nonlinear singular systems with time-varying delay, J. Franklin Inst., 350 (2013), 171–193. https://doi.org/10.1016/j.jfranklin.2012.10.002 doi: 10.1016/j.jfranklin.2012.10.002 |
[33] | F. L. Lewis, A survey of linear singular systems, Circ. Syst. Signal Pr., 5 (1986), 3–36. https://doi.org/10.1007/BF01600184 doi: 10.1007/BF01600184 |
[34] | X. Y. Yang, X. D. Li, J. D. Cao, Robust finite-time stability of singular nonlinear systems with interval time-varying delay, J. Franklin Inst., 3 (2018), 1241–1258. https://doi.org/10.1016/j.jfranklin.2017.12.018 doi: 10.1016/j.jfranklin.2017.12.018 |
[35] | H. Y. Su, X. F. Ji, J. Chu, Delay-dependent robust control for uncertain singular time-delay systems, Asian J. Control, 8 (2006), 180–189. https://doi.org/10.1109/TAC.2002.800651 doi: 10.1109/TAC.2002.800651 |
[36] | F. Zahedi, H. Mohammad, Decomposition and robust non-fragile stabilisation of singular time-delay systems, IET Control Theory Appl., 12 (2018), 1882–1888. https://doi.org/10.1049/iet-cta.2017.1150 doi: 10.1049/iet-cta.2017.1150 |
[37] | I. Zamani, M. Shafiee, A. Ibeas, Switched nonlinear singular systems with time-delay: Stability analysis, Int. J. Robust Nonlinear Control, 25 (2015), 1497–1513. https://doi.org/10.1002/rnc.3154 doi: 10.1002/rnc.3154 |
[38] | X. Y. Zhao, H. Chen, Z. Z. Zhang, S. Y. Dong, S. M. Zhong, Z. Y. You, Dynamic event-triggered H-infinity control on nonlinear asynchronous switched system with mixed time-varying delay, J. Franklin Inst., 359 (2022), 520–555. https://doi.org/10.1016/j.jfranklin.2021.11.006 doi: 10.1016/j.jfranklin.2021.11.006 |
[39] | H. Gao, H. B. Zhang, K. B. Shi, K. Zhou, Event-triggered finite-time guaranteed cost control for networked Takagi-Sugeno (T-S) fuzzy switched systems under denial of service attacks, Int. J. Robust Nonlinear Control, 32 (2022), 5764–5775. https://doi.org/10.1002/rnc.6112 doi: 10.1002/rnc.6112 |