In this paper, the traveling wave solution of the Fokas system which represents the irregular pulse propagation in monomode optical fibers is studied by using the complete discriminant system method of polynomials. Firstly, the Fokas system is simplified into nonlinear ordinary differential equations by using the traveling wave transformation. Secondly, the Jacobian function solutions, the trigonometric function solutions, the hyperbolic function solutions and the rational function solution of Fokas system are obtained by using the complete discriminant system method of polynomials. Finally, in order to show the propagation of Fokas system in monomode optical fibers, three-dimensional diagram, two-dimensional diagram, contour plot and density plot of some solutions are drawn by using Maple software.
Citation: Kun Zhang, Tianyong Han, Zhao Li. New single traveling wave solution of the Fokas system via complete discrimination system for polynomial method[J]. AIMS Mathematics, 2023, 8(1): 1925-1936. doi: 10.3934/math.2023099
In this paper, the traveling wave solution of the Fokas system which represents the irregular pulse propagation in monomode optical fibers is studied by using the complete discriminant system method of polynomials. Firstly, the Fokas system is simplified into nonlinear ordinary differential equations by using the traveling wave transformation. Secondly, the Jacobian function solutions, the trigonometric function solutions, the hyperbolic function solutions and the rational function solution of Fokas system are obtained by using the complete discriminant system method of polynomials. Finally, in order to show the propagation of Fokas system in monomode optical fibers, three-dimensional diagram, two-dimensional diagram, contour plot and density plot of some solutions are drawn by using Maple software.
[1] | Z. Li, Z. G. Lian, Optical solitons and single traveling wave solutions for the Triki-Biswas equation describing monomode optical fibers, Optik, 258 (2022), 168835. https://doi.org/10.1016/j.ijleo.2022.168835 doi: 10.1016/j.ijleo.2022.168835 |
[2] | M. N. Alam, X. Li. Exact traveling wave solutions to higher order nonlinear equations, J. Ocean Eng. Sci., 4 (2019), 276–288. https://doi.org/10.1016/j.joes.2019.05.003 doi: 10.1016/j.joes.2019.05.003 |
[3] | N. Cheemaa, S. Chen, A. R. Seadawy, Propagation of isolated waves of coupled nonlienar (2+1)-deimensional Maccari system in plasma physics, Results Phys., 17 (2020), 102987. https://doi.org/10.1016/j.rinp.2020.102987 doi: 10.1016/j.rinp.2020.102987 |
[4] | A. Maccari, The Maccari system as model system for rogu waves, Phys. Lett. A, 384 (2020), 126740. https://doi.org/10.1016/j.physleta.2020.126740 doi: 10.1016/j.physleta.2020.126740 |
[5] | C. Peng, Z. Li, H. W. Zhao, New exact solutions to the Lakshmanan-Porsezian-Daniel equation with Kerr law of nonlinearity, Math. Probl. Eng., 2022 (2022), 7340373. https://doi.org/10.1155/2022/7340373 doi: 10.1155/2022/7340373 |
[6] | Z. Li, P. Li, T. Y. Han, Bifurcation, traveling wave solutions, and stability analysis of the fractional generalized Hirota-Satsuma coupled KdV equations, Discrete Dyn. Nat. Soc., 2021 (2021), 5303295. https://doi.org/10.1155/2021/5303295 doi: 10.1155/2021/5303295 |
[7] | C. A. Gomez, H. Rezazadeh, M. Inc, L. Akinyemi, F. Nazari, The generalized Chen-Lee-Liu model with higher order nonlinearity: Optical solitons, Opt. Quant. Electron., 54 (2022), 492. https://doi.org/10.1007/s11082-022-03923-1 doi: 10.1007/s11082-022-03923-1 |
[8] | S. C. Gomez, H. O. Roshid, M. Inc, L. Akinyemi, H. Rezazadeh, On soliton solutions for perturbed Fokas-Lenells equation, Opt. Quant. Electron., 54 (2022), 370. https://doi.org/10.1007/s11082-022-03796-4 doi: 10.1007/s11082-022-03796-4 |
[9] | K. Hosseini, A. Akbulut, D. Baleanu, S. Salahshour, M. Mirzazadeh, L. Akinyemi, The geophysical KdV equation: Its solitons, complexiton, and conservation laws, Int. J. Geomath., 13 (2022), 12. https://doi.org/10.1007/s13137-022-00203-8 doi: 10.1007/s13137-022-00203-8 |
[10] | Z. Li, Bifurcation and traveling wave solution to fractional Biswas-Arshed equation with the beta time derivative, Chaos Soliton. Fract., 160 (2022), 1122249. https://doi.org/10.1016/j.chaos.2022.112249 doi: 10.1016/j.chaos.2022.112249 |
[11] | T. A. Khalil, N. Badra, H. M. Ahmed, W. B. Rabie, Optical solitons and other solutions for coupled system of nonlinear Biswas-Milovic equation with Kudryashov's law of refractive index by Jacobi elliptic function expansion method, Optik, 253 (2022), 168540. https://doi.org/10.1016/j.ijleo.2021.168540 doi: 10.1016/j.ijleo.2021.168540 |
[12] | X. Y. Gao, Y. J. Guo, W. R. Shan, Regarding the shallow water in an ocean via a Whitham-Broer-Kaoup-like system: Hetero-Bäcklund transformations, bilinear forms and M solitons, Chaos, Soliton. Fract., 162 (2022), 112486. https://doi.org/10.1016/j.chaos.2022.112486 doi: 10.1016/j.chaos.2022.112486 |
[13] | K. Zhang, Z. Li, Bifurcation analysis and classification of all single traveling wave solution in fiber Bragg gratings with Radhakrishnan-Kundu-Lakshmanan equation, AIMS Math., 7 (2022), 16733–16740. https://doi.org/10.3934/math.2022918 doi: 10.3934/math.2022918 |
[14] | J. H. Xu, Unified, improved matrix upper bound on the solution of the continuous coupled algebraic Riccati equation, J. Franklin I., 350 (2013), 1634–3648. https://doi.org/10.1016/j.jfranklin.2013.03.015 doi: 10.1016/j.jfranklin.2013.03.015 |
[15] | J. Zhang, Propagation of optical solitons for Kudryashov's law with dual form of generalized non-local nonlinearity, Results Phys., 39 (2022), 105729. https://doi.org/10.1016/j.rinp.2022.105729 doi: 10.1016/j.rinp.2022.105729 |
[16] | A. M. Wazwaz, M. Mehanna, Higher-order Sasa-Satsuma equation: Bright and dark optical solitons, Optik, 243 (2021), 167421. https://doi.org/10.1016/j.ijleo.2021.167421 doi: 10.1016/j.ijleo.2021.167421 |
[17] | W. W. Mohammed, H. Ahmad, A. E. Hamza, E. S. Aly, M. Morshedy, E. M. Elabbasy, The exact solutions of the stochastic Ginzburg-Landau equation, Results Phys., 23 (2021), 103988. https://doi.org/10.1016/j.rinp.2021.103988 doi: 10.1016/j.rinp.2021.103988 |
[18] | D. Yang, Traveling waves and bifurcations and solutions for the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation, Optik, 248 (2021), 168058. https://doi.org/10.1016/j.ijleo.2021.168058 doi: 10.1016/j.ijleo.2021.168058 |
[19] | A. A. Al-Qarni, H. O. Bakodah, A. A. Alshaery, A. Biswas, Y. Yıldırım, L. Moraru, Numerical simulation of cubic-quartic optical solitons with perturbed Fokas-Lenells equation using improved Adomian decomposition algorithm, Mathematics, 10 (2022), 138. https://doi.org/10.3390/math10010138 doi: 10.3390/math10010138 |
[20] | O. González-Gaxiola, A. Biswas, M. R. Belic, Optical soliton perturbation of Fokas-Lenells equation by the Laplace-Adomian decomposition algorithm, J. Eur. Opt. Soc.-Rapid Publ., 15 (2019), 13. https://doi.org/10.1186/s41476-019-0111-6 doi: 10.1186/s41476-019-0111-6 |
[21] | K. S. Al-Ghafri, E. V. Krishnan, A. Biswas, Chirped optical soliton perturbation of Fokas-Lenells equation with full nonlinearity, Adv. Differ. Equ., 2020 (2020), 191. https://doi.org/10.1186/s13662-020-02650-9 doi: 10.1186/s13662-020-02650-9 |
[22] | D. Ntiamoah, W. Ofori-Atta, L. Akinyemi, The higher-order modified Korteweg-de Vries equation: Its soliton, breather and approximate solutions, J. Ocean Eng. Sci., 6 (2022), 042. https://doi.org/10.1016/j.joes.2022.06.042 doi: 10.1016/j.joes.2022.06.042 |
[23] | S. Abbagari, A. Houwe, L. Akinyemi, M. Inc, S. Y. Doka, K. T. Crépin, Synchronized wave and modulation instability gain induce by the effects of higher-order dispersions in nonlinear optical fibers, Opt. Quant. Electron., 54 (2022), 642. https://doi.org/10.1007/s11082-022-04014-x doi: 10.1007/s11082-022-04014-x |
[24] | M. M. A. Khater, A. Jhangeer, H. Rezazadeh, L. Akinyemi, M. A. Akbar, M. Inc, Propagation of new dynamics of longitudinal bud equation among a magneto-electro-elastic round rod, Mod. Phys. Lett. B, 35 (2021), 2150381. https://doi.org/10.1142/S0217984921503814 doi: 10.1142/S0217984921503814 |
[25] | S. Tarla, K. K. Ali, T. C. Sun, R. Yilmazer, M. S. Osman, Nonlinear pulse propagation for novel optical solitons modeled by Fokas system in monomode optical fibers, Results Phys., 36 (2022), 105381. https://doi.org/10.1016/j.rinp.2022.105381 doi: 10.1016/j.rinp.2022.105381 |
[26] | J. G. Rao, D. Mihalache, Y. Cheng, J. S. He, Lump-soliton solution to the Fokas system, Phys. Lett. A, 383 (2019), 1138–1142. https://doi.org/10.1016/j.physleta.2018.12.045 doi: 10.1016/j.physleta.2018.12.045 |
[27] | Y. L. Cao, J. G. Rao, D. Mihalache, J. S. He, Semi-rational solutions for the (2+1)-dimensional nonlocal Fokas, Appl. Math. Lett., 80 (2018), 27–34. https://doi.org/10.1016/j.aml.2017.12.026 doi: 10.1016/j.aml.2017.12.026 |
[28] | S. Sarwar, New soliton wave structures of nonlinear (4+1)-dimensional Fokas dynamical model by using different methods, Alex. Eng. J., 60 (2021), 795–803. https://doi.org/10.1016/j.aej.2020.10.009 doi: 10.1016/j.aej.2020.10.009 |
[29] | W. Tan, Z. D. Dai, D. Q. Qiu, Parameter limit method and its application in the (4+1)-dimensional Fokas equation, Comput. Math. Appl., 75 (2018), 4214–4220. https://doi.org/10.1016/j.camwa.2018.03.023 doi: 10.1016/j.camwa.2018.03.023 |
[30] | K. J. Wang, J. H. Liu, J. Wu, Soliton solutions to the Fokas system arising in monomode optical fibers, Optik, 251 (2022), 168319. https://doi.org/10.1016/j.ijleo.2021.168319 doi: 10.1016/j.ijleo.2021.168319 |
[31] | K. J. Wang, Abundant exact soliton solution to the Fokas system, Optik, 249 (2022), 168265. https://doi.org/10.1016/j.ijleo.2021.168265 doi: 10.1016/j.ijleo.2021.168265 |
[32] | J. F. Zhang, M. Z. Jin, Spatial self-similar transformation and novel line rogue waves in the Fokas system, Phys. Lett. A, 424 (2022), 127840. https://doi.org/10.1016/j.physleta.2021.127840 doi: 10.1016/j.physleta.2021.127840 |
[33] | H. Khatri, M. S. Gautam, A. Maik, Localized and complex soliton solutions to the integrable (4+1)-dimensional Fokas equation, Appl. Sci., 1 (2019), 1070. https://doi.org/10.1007/s42452-019-1094-z doi: 10.1007/s42452-019-1094-z |
[34] | P. Verma, L. Kaur, New exact solutions of the (4+1)-dimensional Fokas equation via extended version of exp $ (-\psi(k)) $ -expansion method, Int. J. Comput. Appl., 7 (2021), 104. https://doi.org/10.1007/s40819-021-01051-0 doi: 10.1007/s40819-021-01051-0 |
[35] | Y. L. Cao, J. S. He, Y. Cheng, Reduction in the (4+1)-dimensional Fokas equation and their solutions, Nonlinear Dynam., 99 (2020), 3013–3028. https://doi.org/10.1007/s11071-020-05485-x doi: 10.1007/s11071-020-05485-x |
[36] | S. Zhang, C. Tian, W. Y. Qian, Bilinearization and new multisoliton solutions for the (4+1)-dimensional Fokas equation, Pramana-J. Phys., 86 (2016), 1259–1267. https://doi.org/10.1007/s12043-015-1173-7 doi: 10.1007/s12043-015-1173-7 |
[37] | R. X. Yao, Y. L. Shen, Z. B. Li, Lump solutions and bilinear Bäcklund transformation for the (4+1)-dimensional Fokas equation, Math. Sci., 14 (2020), 301–308. https://doi.org/10.1007/s40096-020-00341-w doi: 10.1007/s40096-020-00341-w |