In this paper, we introduced a new subclass $ S_{SC}^*\left({\alpha, \delta, A, B} \right) $ of tilted star-like functions with respect to symmetric conjugate points in an open unit disk and obtained some of its basic properties. The estimation of the Taylor-Maclaurin coefficients, the Hankel determinant, Fekete-Szegö inequality, and distortion and growth bounds for functions in this new subclass were investigated. A number of new or known results were presented to follow upon specializing in the parameters involved in our main results.
Citation: Daud Mohamad, Nur Hazwani Aqilah Abdul Wahid, Nurfatin Nabilah Md Fauzi. Some properties of a new subclass of tilted star-like functions with respect to symmetric conjugate points[J]. AIMS Mathematics, 2023, 8(1): 1889-1900. doi: 10.3934/math.2023097
In this paper, we introduced a new subclass $ S_{SC}^*\left({\alpha, \delta, A, B} \right) $ of tilted star-like functions with respect to symmetric conjugate points in an open unit disk and obtained some of its basic properties. The estimation of the Taylor-Maclaurin coefficients, the Hankel determinant, Fekete-Szegö inequality, and distortion and growth bounds for functions in this new subclass were investigated. A number of new or known results were presented to follow upon specializing in the parameters involved in our main results.
[1] | W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326 doi: 10.4064/ap-28-3-297-326 |
[2] | R. M. El-Ashwah, D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc., 2 (1987), 85–100. |
[3] | S. A. Halim, Functions starlike with respect to other points, Int. J. Math. Math. Sci., 14 (1991), 620597. https://doi.org/10.1155/s0161171291000613 doi: 10.1155/s0161171291000613 |
[4] | L. C. Ping, A. Janteng, Subclass of starlike functions with respect to symmetric conjugate points, International Journal of Algebra, 5 (2011), 755–762. |
[5] | K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72–75. https://doi.org/10.2969/jmsj/01110072 doi: 10.2969/jmsj/01110072 |
[6] | T. N. Shanmugam, C. Ramachandram, V. Ravichandran, Fekete-Szegö problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc., 43 (2006), 589–598. http://dx.doi.org/10.4134/BKMS.2006.43.3.589 doi: 10.4134/BKMS.2006.43.3.589 |
[7] | S. A. F. M. Dahhar, A. Janteng, A subclass of starlike functions with respect to conjugate points, Int. Math. Forum., 4 (2009), 1373–1377. |
[8] | Q. H. Xu, G. P. Wu, Coefficient estimate for a subclass of univalent functions with respect to symmetric point, European Journal of Pure and Applied Mathematics, 3 (2010), 1055–1061. |
[9] | G. Singh, G. Singh, Coefficient inequality for subclasses of starlike functions with respect to conjugate points, International Journal of Modern Mathematical Sciences, 8 (2013), 48–56. |
[10] | G. Singh, Hankel determinant for analytic functions with respect to other points, Eng. Math. Lett., 2 (2013), 115–123. |
[11] | A. Yahya, S. C. Soh, D. Mohamad, Coefficient bound of a generalised close-to-convex function, International Journal of Pure and Applied Mathematics, 83 (2013), 287–293. |
[12] | A. Yahya, S. C. Soh, D. Mohamad, Some extremal properties of a generalised close-to-convex function, Int. J. Math. Anal., 8 (2014), 1931–1936. http://doi.org/10.12988/ijma.2014.44109 doi: 10.12988/ijma.2014.44109 |
[13] | N. H. A. A. Wahid, D. Mohamad, S. C. Soh, On a subclass of tilted starlike functions with respect to conjugate points, Discovering Mathematics, 37 (2015), 1–6. |
[14] | D. Vamshee Krishna, B. Venkateswarlu, T. RamReddy, Third Hankel determinant for starlike and convex functions with respect to symmetric points, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 70 (2016), 37–45. http://doi.org/10.17951/a.2016.70.1.37 doi: 10.17951/a.2016.70.1.37 |
[15] | A. K. Mishra, J. Prajapat, S. Maharana, Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points, Cogent Mathematics, 3 (2016), 1160557. http://doi.org/10.1080/23311835.2016.1160557 doi: 10.1080/23311835.2016.1160557 |
[16] | N. H. A. A. Wahid, D. Mohamad, Bounds on Hankel determinant for starlike functions with respect to conjugate points, J. Math. Comput. Sci., 11 (2021), 3347–3360. https://doi.org/10.28919/jmcs/5722 doi: 10.28919/jmcs/5722 |
[17] | N. H. A. A. Wahid, D. Mohamad, Toeplitz determinant for a subclass of tilted starlike functions with respect to conjugate points, Sains Malays., 50 (2021), 3745–3751. http://doi.org/10.17576/jsm-2021-5012-23 doi: 10.17576/jsm-2021-5012-23 |
[18] | P. Zaprawa, Initial logarithmic coefficients for functions starlike with respect to symmetric points, Bol. Soc. Mat. Mex., 27 (2021), 62. https://doi.org/10.1007/s40590-021-00370-y doi: 10.1007/s40590-021-00370-y |
[19] | H. Tang, K. R. Karthikeyan, G. Murugusundaramoorthy, Certain subclass of analytic functions with respect to symmetric points associated with conic region, AIMS Mathematics, 6 (2021), 12863–12877. http://doi.org/10.3934/math.2021742 doi: 10.3934/math.2021742 |
[20] | K. Trạbka-Wiẹcław, On coefficient problems for functions connected with the sine function, Symmetry, 13 (2021), 1179. http://doi.org/10.3390/sym13071179 doi: 10.3390/sym13071179 |
[21] | D. Mohamad, N. H. A. A. Wahid, Zalcman coefficient functional for tilted starlike functions with respect to conjugate points, J. Math. Comput. Sci., 29 (2023), 40–51. http://doi.org/10.22436/jmcs.029.01.04 doi: 10.22436/jmcs.029.01.04 |
[22] | R. M. Goel, B. C. Mehrok, A subclass of univalent functions, J. Aust. Math. Soc., 35 (1983), 1–17. http://doi.org/10.1017/S1446788700024733 doi: 10.1017/S1446788700024733 |
[23] | I. Efraimidis, A generalization of Livingston's coefficient inequalities for functions with positive real part, J. Math. Anal. Appl., 435 (2016), 369–379. http://doi.org/10.1016/j.jmaa.2015.10.050 doi: 10.1016/j.jmaa.2015.10.050 |
[24] | P. L. Duren, Univalent functions, New York: Springer, 1983. |