The main objective of the present article is to define the class of bounded turning functions associated with modified sigmoid function. Also we investigate and determine sharp results for the estimates of four initial coefficients, Fekete-Szegö functional, the second-order Hankel determinant, Zalcman conjucture and Krushkal inequality. Furthermore, we evaluate bounds of the third and fourth-order Hankel determinants for the class and for the 2-fold and 3-fold symmetric functions.
Citation: Muhammad Ghaffar Khan, Nak Eun Cho, Timilehin Gideon Shaba, Bakhtiar Ahmad, Wali Khan Mashwani. Coefficient functionals for a class of bounded turning functions related to modified sigmoid function[J]. AIMS Mathematics, 2022, 7(2): 3133-3149. doi: 10.3934/math.2022173
The main objective of the present article is to define the class of bounded turning functions associated with modified sigmoid function. Also we investigate and determine sharp results for the estimates of four initial coefficients, Fekete-Szegö functional, the second-order Hankel determinant, Zalcman conjucture and Krushkal inequality. Furthermore, we evaluate bounds of the third and fourth-order Hankel determinants for the class and for the 2-fold and 3-fold symmetric functions.
[1] | M. Arif, L. Rani, M. Raza, P. Zaprawa, Fourth Hankel determinant for the family of functions with bounded turning, Bull. Korean Math. Soc., 55 (2018), 1703–1711. doi: 10.1007/s40278-018-49036-z. doi: 10.1007/s40278-018-49036-z |
[2] | M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17 (2019), 1615–1630. doi: 10.1515/math-2019-0132. doi: 10.1515/math-2019-0132 |
[3] | K. O. Babalola, On $H_{3}\left(1\right) $ Hankel determinant for some classes of univalent functions, Inequal. Theory. Appl., 6 (2017), 1–7. |
[4] | O. M. Barukab, M. Arif, M. Abbas, S. A. Khan, Sharp bounds of the coefficient results for the family of bounded turning functions associated with a Petal-shaped domain, J. Funct. Spaces, 2021 (2021), 5535629. doi: 10.1155/2021/5535629. doi: 10.1155/2021/5535629 |
[5] | J. E. Brown, A. Tsao, On the Zalcman conjecture for starlikeness and typically real functions, Math. Z., 191 (1986), 467–474. doi: 10.1007/BF01162720. doi: 10.1007/BF01162720 |
[6] | N. E. Cho, V. Kumar, S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 45 (2019), 213–232. doi: 10.1007/s41980-018-0127-5. doi: 10.1007/s41980-018-0127-5 |
[7] | N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, H. M. Srivastava, Starlike functions related to the Bell numbers, Symmetry, 11 (2019), 219. doi: 10.3390/sym11020219. doi: 10.3390/sym11020219 |
[8] | D. Bansal, J. Sokól, Zalcman conjecture for some subclass of analytic functions, J. Fractional Calculus Appl., 8 (2017), 1–5. |
[9] | J. Dziok, R. K. Raina, R. K. J. Sokól, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Model., 57 (2013), 1203–1211. doi: 10.1016/j.mcm.2012.10.023. doi: 10.1016/j.mcm.2012.10.023 |
[10] | P. Goel, S. S. Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc., 43 (2020), 957–991. doi: 10.1007/s40840-019-00784-y. doi: 10.1007/s40840-019-00784-y |
[11] | W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc., 3 (1968), 77–94. doi: 10.1112/plms/s3-18.1.77. doi: 10.1112/plms/s3-18.1.77 |
[12] | S. Kanas, D. Răducanu, Some classes of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. doi: 10.2478/s12175-014-0268-9. doi: 10.2478/s12175-014-0268-9 |
[13] | F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12. doi : 10.1017/s0084255900011207. doi: 10.1017/s0084255900011207 |
[14] | W. Keopf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89–95. |
[15] | M. G. Khan, B. Ahmad, G. M. Moorthy, R. Chinram, W. K. Mashwani, Applications of modified Sigmoid functions to a class of starlike functions, J. Funct. Spaces, 2020 (2020), 8844814. |
[16] | M. G. Khan, B. Ahmad, J. Sokól, Coefficient problems in a class of functions with bounded turning associated with sine funtion, Eur. J. Pure. Appl. Math., 14 (2021), 53–64. doi: 10.51202/0323-3243-2021-3-053. doi: 10.51202/0323-3243-2021-3-053 |
[17] | S. K. Krushkal, A short geometric proof of the Zalcman and Bieberbach conjectures, arXiv. Available from: https://arXiv.org/abs/1408.1948. |
[18] | R. J. Libera, E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), 225–230. doi: 10.1090/S0002-9939-1982-0652447-5. doi: 10.1090/S0002-9939-1982-0652447-5 |
[19] | W. C. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104 (1988), 741–744. doi: 10.1090/S0002-9939-1988-0964850-X doi: 10.1090/S0002-9939-1988-0964850-X |
[20] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the conference on complex analysis, Tianjin, 1992. |
[21] | R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386. doi: 10.1093/oxartj/kcv022. doi: 10.1093/oxartj/kcv022 |
[22] | J. W. Noonan, D. K. Thomas, On the Second Hankel determinant of a really mean $p$-valent functions, Trans. Amer. Math. Soc., 22 (1976), 337–346. doi: 10.1090/S0002-9947-1976-0422607-9. doi: 10.1090/S0002-9947-1976-0422607-9 |
[23] | H. Orhan, N. Magesh, J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math., 40 (2016), 679–687. doi: 10.3906/mat-1505-3. doi: 10.3906/mat-1505-3 |
[24] | C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108–112. doi: 10.1112/S002557930000807X. doi: 10.1112/S002557930000807X |
[25] | C. Pommerenke, Univalent functions, Göttingen: Vanderhoeck & Ruprecht, 1975. |
[26] | R. K. Raina, J. Sokól, On coefficient estimates for a certain class of starlike functions, Hacettepe. J. Math. Statist., 44 (2015), 1427–1433. |
[27] | V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, Comptes Rendus Math., 353 (2015), 505–510. doi: 10.1016/j.crma.2015.03.003. doi: 10.1016/j.crma.2015.03.003 |
[28] | L. Shi, M. G. Khan, B. Ahmad, W. K. Mashwani, P. Agarwal, S. Momani, Certain coefficient estimate problems for three-leaf-type starlike functions, Fractal Fract., 5 (2021), 137. doi: 10.3390/fractalfract5040137. doi: 10.3390/fractalfract5040137 |
[29] | K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with cardioid, Afr. Mat., 27 (2016), 923–939. doi: 10.1007/s13370-015-0387-7. doi: 10.1007/s13370-015-0387-7 |
[30] | J. Sokól, S. Kanas, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105. |
[31] | H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0. doi: 10.1007/s40995-019-00815-0 |
[32] | H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, et al., Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli, Mathematics, 7 (2019), 848. doi: 10.3390/math7090848. doi: 10.3390/math7090848 |
[33] | H. M. Srivastava, Ş. Altinkaya, S. Yalçin, Hankel determinat for a subclass of bi-univalent functions defined by using a symmetric $q$-derivative operator, Filomat, 32 (2018), 503–516. doi: 10.2298/FIL1802503S. doi: 10.2298/FIL1802503S |
[34] | L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalized $q$-operator, Symmetry, 12 (2020), 291. doi: 10.3390/sym12020291. doi: 10.3390/sym12020291 |
[35] | H. M. Srivastava, Some parametric and argument variations ofthe operators of fractional calculus andrelated special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520. |
[36] | H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third hankel determinant for a subclass of $q$-starlike functions associated with the $q$-exponentional function, Bull. Sci. Math., 167 (2021), 102942. doi: 10.1016/j.bulsci.2020.102942. doi: 10.1016/j.bulsci.2020.102942 |
[37] | H. M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex Anal., 22 (2021), 511–526. |
[38] | M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran, An upper bound of the third Hankel determinant for a subclass of $q$-starlike functions associated with $k$-Fibonacci numbers, Symmetry, 12 (2020), 1043. doi: 10.3390/sym12061043. doi: 10.3390/sym12061043 |
[39] | L. A. Wani, A. Swaminathan, Starlike and convex functions associated with a Nephroid domain, Bull. Malays. Math. Sci. Soc., 44 (2021), 79–104. doi: 10.1007/s40840-020-00935-6. doi: 10.1007/s40840-020-00935-6 |
[40] | D. M. Wilkes, S. D. Morgera, F. Noor, M. H. Hayes, A Hermitian Toeplitz matrix is unitarily similar to a real Toeplitz-plus-Hankel matrix, IEEE Trans. Signal Process., 39 (1991), 2146–2148. doi: 10.1109/78.134459 doi: 10.1109/78.134459 |
[41] | H. Y. Zhang, H. Tang, A study of fourth-order Hankel determinants for starlike functions connected with the sine function, J. Funct. Spaces, 2021 (2021), 9991460. doi: 10.1155/2021/9991460. doi: 10.1155/2021/9991460 |