In this paper we revisit a discrete predator-prey model with Holling Ⅳ functional response. By using the method of semidiscretization, we obtain new discrete version of this predator-prey model. Some new results, besides its stability of all fixed points and the transcritical bifurcation, mainly for codimension two 1:1 strong resonance bifurcation, are derived by using the center manifold theorem and bifurcation theory, showing that this system possesses complicate dynamical properties.
Citation: Mianjian Ruan, Chang Li, Xianyi Li. Codimension two 1:1 strong resonance bifurcation in a discrete predator-prey model with Holling Ⅳ functional response[J]. AIMS Mathematics, 2022, 7(2): 3150-3168. doi: 10.3934/math.2022174
In this paper we revisit a discrete predator-prey model with Holling Ⅳ functional response. By using the method of semidiscretization, we obtain new discrete version of this predator-prey model. Some new results, besides its stability of all fixed points and the transcritical bifurcation, mainly for codimension two 1:1 strong resonance bifurcation, are derived by using the center manifold theorem and bifurcation theory, showing that this system possesses complicate dynamical properties.
[1] | A. J. Lotka, Elements of physical biology, Baltimore: Williams and Wilkins, 1925. |
[2] | V. Volterra, Fluctuations in the abundance of species considered mathematically, Nature, 118 (1926), 558–560. |
[3] | X. Tao, L. Zhu, Study of periodic diffusion and time delay induced spatiotemporal patterns in a predator-prey system, Chaos Solitons Fractals, 150 (2021), 111101. doi: 10.1016/j.chaos.2021.111101. doi: 10.1016/j.chaos.2021.111101 |
[4] | K. Wu, C. Sheng, P. Gong, Equation of predator functional response and estimation of the parameters in it, Entomol. Knowl., 41 (2004), 267–269. |
[5] | Z. Shang, Y. Qiao, L. Duan, Bifurcation analysis in a predator–prey system with an increasing functional response and constant-yield prey harvesting, Math. Comput. Simul., 190 (2021), 976–1002. doi: 10.1016/j.matcom.2021.06.024. doi: 10.1016/j.matcom.2021.06.024 |
[6] | A. Zegeling, R. E. Kooij, Singular perturbations of the Holling Ⅰ predator–prey system with a focus, J. Differ. Equations, 269 (2020), 5434–5462. doi: 10.1016/j.jde.2020.04.011. doi: 10.1016/j.jde.2020.04.011 |
[7] | S. Li, X. Wang, X. Li, K. Wu, Relaxation oscillations for Leslie-type predator–prey model with Holling Type Ⅰ response functional function, Appl. Math. Lett., 120 (2021), 1–6. doi: 10.1016/j.aml.2021.107328. doi: 10.1016/j.aml.2021.107328 |
[8] | B. Liu, Y. Zhang, L. Chen, Dynamic complexities of a Holling Ⅰ predator–prey model concerning periodic biological and chemical control, Chaos Solitons Fractals, 22 (2004), 123–134. doi: 10.1016/j.chaos.2003.12.060. doi: 10.1016/j.chaos.2003.12.060 |
[9] | M. Liu, K. Wang, Dynamics of a Leslie-Gower Holling-type ii predator-prey system with levy jumps, Nonlinear Anal.: Theory, Methods Appl., 85 (2013), 204–213. doi: 10.1016/j.na.2013.02.018 doi: 10.1016/j.na.2013.02.018 |
[10] | Y. Xu, M. Liu, Y. Yang, Analysis of a stochastic two-predators one-prey system with modified Leslie-Gower and holling-type Ⅱ schemes, J. Appl. Anal. Comput., 7 (2017), 713–727. doi: 10.11948/2017045. doi: 10.11948/2017045 |
[11] | X. Zou, Y. Zheng, L. Zhang, J. Lv, Survivability and stochastic bifurcations for a stochastic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 1–20. doi: 10.1016/j.cnsns.2019.105136. doi: 10.1016/j.cnsns.2019.105136 |
[12] | M. Liu, J. Huang, Global analysis in Bazykin's model with Holling Ⅱ functional response and predator competition, J. Differ. Equations, 280 (2021), 99–138. doi: 10.1016/j.jde.2021.01.025. doi: 10.1016/j.jde.2021.01.025 |
[13] | A. K. Misra, Modeling the depletion of dissolved oxygen due to algal bloom in a lake by taking Holling type-Ⅲ interaction, Appl. Math. Comput., 217 (2011), 8367–8376. doi: 10.1016/j.amc.2011.03.034. doi: 10.1016/j.amc.2011.03.034 |
[14] | R. Banerjee, P. Das, D. Mukherjee, Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-Ⅲ functional response, Chaos Solitons Fractals, 117 (2018), 240–248. doi: 10.1016/j.chaos.2018.10.032. doi: 10.1016/j.chaos.2018.10.032 |
[15] | C. Wang, X. Zhang, Canards, heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized Holling type Ⅲ, J. Differ. Equations, 267 (2019), 3397–3441. doi: 10.1016/j.jde.2019.04.008. doi: 10.1016/j.jde.2019.04.008 |
[16] | J. Huang, S. Ruan, J. Song, Bifurcations in a predator–prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differ. Equations, 257 (2014), 1721–1752. doi: 10.1016/j.jde.2014.04.024. doi: 10.1016/j.jde.2014.04.024 |
[17] | J. Datta, D. Jana, R. K. Upadhyay, Bifurcation and bio-economic analysis of a prey-generalist predator model with Holling type Ⅳ functional response and nonlinear age-selective prey harvesting, Chaos Solitons Fractals, 122 (2019), 229–235. doi: 10.1016/j.chaos.2019.02.010. doi: 10.1016/j.chaos.2019.02.010 |
[18] | Y. Li, D. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Chaos Solitons Fractals, 34 (2007), 606–620. doi: 10.1016/j.chaos.2006.03.068. doi: 10.1016/j.chaos.2006.03.068 |
[19] | S. Zhang, F. Wang, L. Chen, A food chain model with impulsive perturbations and Holling Ⅳ functional response, Chaos Solitons Fractals, 26 (2005), 855–866. doi: 10.1016/j.chaos.2005.01.053. doi: 10.1016/j.chaos.2005.01.053 |
[20] | S. Ruan, D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445–1472. doi: 10.1137/S0036139999361896. doi: 10.1137/S0036139999361896 |
[21] | C. Arancibia-Ibarra, P. Aguirre, J. Flores, P. Heijster, Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response, Appl. Math. Comput., 402 (2021), 1–20. doi: 10.1016/j.amc.2021.126152. doi: 10.1016/j.amc.2021.126152 |
[22] | X. Zou, Q. Li, J. Lv, Stochastic bifurcations, a necessary and sufficient condition for a stochastic Beddington-DeAngelis predator-prey model, Appl. Math. Lett., 117 (2021), 1–7. doi: 10.1016/j.aml.2021.107069. doi: 10.1016/j.aml.2021.107069 |
[23] | D. Luo, Q. Wang, Global dynamics of a Beddington-DeAngelis amensalism system with weak Allee effect on the first species, Appl. Math. Comput., 408 (2021) 1–19. doi: 10.1016/j.amc.2021.126368. doi: 10.1016/j.amc.2021.126368 |
[24] | G. Zhang, S. Yi, Periodic solutions for a neutral delay Hassell-Varley type predator–prey system, Appl. Math. Comput., 264 (2015), 443–452. doi: 10.1016/j.amc.2015.04.110. doi: 10.1016/j.amc.2015.04.110 |
[25] | D. Wang, On a non-selective harvesting prey-predator model with Hassell-Varley type functional response, Appl. Math. Comput., 246 (2014), 678–695. doi: 10.1016/j.amc.2014.08.081. doi: 10.1016/j.amc.2014.08.081 |
[26] | J. Huang, S. Liu, S. Ruan, D. Xiao, Bifurcations in a discrete predator-prey model with nonmonotonic functional response, J. Math. Anal. Appl., 464 (2018), 201–230. doi: 10.1016/j.jmaa.2018.03.074. doi: 10.1016/j.jmaa.2018.03.074 |
[27] | S. Winggins, Introduction to applied nonlinear dynamical systems and chaos, New York: Springer-Verlag, 2003. |
[28] | Y. A. Kuznetsov, Elements of applied bifurcation theory, Berlin: Springer Verlag, 1998. |
[29] | K. Yagasaki, Melnikov's method and codimension-two bifurcations in forced oscillations, J. Differ. Equations, 185 (2002), 1–24. doi: 10.1006/jdeq.2002.4177. doi: 10.1006/jdeq.2002.4177 |