Research article Special Issues

Codimension two 1:1 strong resonance bifurcation in a discrete predator-prey model with Holling Ⅳ functional response

  • Received: 29 September 2021 Accepted: 17 November 2021 Published: 24 November 2021
  • MSC : 39A28, 3AA30

  • In this paper we revisit a discrete predator-prey model with Holling Ⅳ functional response. By using the method of semidiscretization, we obtain new discrete version of this predator-prey model. Some new results, besides its stability of all fixed points and the transcritical bifurcation, mainly for codimension two 1:1 strong resonance bifurcation, are derived by using the center manifold theorem and bifurcation theory, showing that this system possesses complicate dynamical properties.

    Citation: Mianjian Ruan, Chang Li, Xianyi Li. Codimension two 1:1 strong resonance bifurcation in a discrete predator-prey model with Holling Ⅳ functional response[J]. AIMS Mathematics, 2022, 7(2): 3150-3168. doi: 10.3934/math.2022174

    Related Papers:

  • In this paper we revisit a discrete predator-prey model with Holling Ⅳ functional response. By using the method of semidiscretization, we obtain new discrete version of this predator-prey model. Some new results, besides its stability of all fixed points and the transcritical bifurcation, mainly for codimension two 1:1 strong resonance bifurcation, are derived by using the center manifold theorem and bifurcation theory, showing that this system possesses complicate dynamical properties.



    加载中


    [1] A. J. Lotka, Elements of physical biology, Baltimore: Williams and Wilkins, 1925.
    [2] V. Volterra, Fluctuations in the abundance of species considered mathematically, Nature, 118 (1926), 558–560.
    [3] X. Tao, L. Zhu, Study of periodic diffusion and time delay induced spatiotemporal patterns in a predator-prey system, Chaos Solitons Fractals, 150 (2021), 111101. doi: 10.1016/j.chaos.2021.111101. doi: 10.1016/j.chaos.2021.111101
    [4] K. Wu, C. Sheng, P. Gong, Equation of predator functional response and estimation of the parameters in it, Entomol. Knowl., 41 (2004), 267–269.
    [5] Z. Shang, Y. Qiao, L. Duan, Bifurcation analysis in a predator–prey system with an increasing functional response and constant-yield prey harvesting, Math. Comput. Simul., 190 (2021), 976–1002. doi: 10.1016/j.matcom.2021.06.024. doi: 10.1016/j.matcom.2021.06.024
    [6] A. Zegeling, R. E. Kooij, Singular perturbations of the Holling Ⅰ predator–prey system with a focus, J. Differ. Equations, 269 (2020), 5434–5462. doi: 10.1016/j.jde.2020.04.011. doi: 10.1016/j.jde.2020.04.011
    [7] S. Li, X. Wang, X. Li, K. Wu, Relaxation oscillations for Leslie-type predator–prey model with Holling Type Ⅰ response functional function, Appl. Math. Lett., 120 (2021), 1–6. doi: 10.1016/j.aml.2021.107328. doi: 10.1016/j.aml.2021.107328
    [8] B. Liu, Y. Zhang, L. Chen, Dynamic complexities of a Holling Ⅰ predator–prey model concerning periodic biological and chemical control, Chaos Solitons Fractals, 22 (2004), 123–134. doi: 10.1016/j.chaos.2003.12.060. doi: 10.1016/j.chaos.2003.12.060
    [9] M. Liu, K. Wang, Dynamics of a Leslie-Gower Holling-type ii predator-prey system with levy jumps, Nonlinear Anal.: Theory, Methods Appl., 85 (2013), 204–213. doi: 10.1016/j.na.2013.02.018 doi: 10.1016/j.na.2013.02.018
    [10] Y. Xu, M. Liu, Y. Yang, Analysis of a stochastic two-predators one-prey system with modified Leslie-Gower and holling-type Ⅱ schemes, J. Appl. Anal. Comput., 7 (2017), 713–727. doi: 10.11948/2017045. doi: 10.11948/2017045
    [11] X. Zou, Y. Zheng, L. Zhang, J. Lv, Survivability and stochastic bifurcations for a stochastic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 1–20. doi: 10.1016/j.cnsns.2019.105136. doi: 10.1016/j.cnsns.2019.105136
    [12] M. Liu, J. Huang, Global analysis in Bazykin's model with Holling Ⅱ functional response and predator competition, J. Differ. Equations, 280 (2021), 99–138. doi: 10.1016/j.jde.2021.01.025. doi: 10.1016/j.jde.2021.01.025
    [13] A. K. Misra, Modeling the depletion of dissolved oxygen due to algal bloom in a lake by taking Holling type-Ⅲ interaction, Appl. Math. Comput., 217 (2011), 8367–8376. doi: 10.1016/j.amc.2011.03.034. doi: 10.1016/j.amc.2011.03.034
    [14] R. Banerjee, P. Das, D. Mukherjee, Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-Ⅲ functional response, Chaos Solitons Fractals, 117 (2018), 240–248. doi: 10.1016/j.chaos.2018.10.032. doi: 10.1016/j.chaos.2018.10.032
    [15] C. Wang, X. Zhang, Canards, heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized Holling type Ⅲ, J. Differ. Equations, 267 (2019), 3397–3441. doi: 10.1016/j.jde.2019.04.008. doi: 10.1016/j.jde.2019.04.008
    [16] J. Huang, S. Ruan, J. Song, Bifurcations in a predator–prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differ. Equations, 257 (2014), 1721–1752. doi: 10.1016/j.jde.2014.04.024. doi: 10.1016/j.jde.2014.04.024
    [17] J. Datta, D. Jana, R. K. Upadhyay, Bifurcation and bio-economic analysis of a prey-generalist predator model with Holling type Ⅳ functional response and nonlinear age-selective prey harvesting, Chaos Solitons Fractals, 122 (2019), 229–235. doi: 10.1016/j.chaos.2019.02.010. doi: 10.1016/j.chaos.2019.02.010
    [18] Y. Li, D. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Chaos Solitons Fractals, 34 (2007), 606–620. doi: 10.1016/j.chaos.2006.03.068. doi: 10.1016/j.chaos.2006.03.068
    [19] S. Zhang, F. Wang, L. Chen, A food chain model with impulsive perturbations and Holling Ⅳ functional response, Chaos Solitons Fractals, 26 (2005), 855–866. doi: 10.1016/j.chaos.2005.01.053. doi: 10.1016/j.chaos.2005.01.053
    [20] S. Ruan, D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445–1472. doi: 10.1137/S0036139999361896. doi: 10.1137/S0036139999361896
    [21] C. Arancibia-Ibarra, P. Aguirre, J. Flores, P. Heijster, Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response, Appl. Math. Comput., 402 (2021), 1–20. doi: 10.1016/j.amc.2021.126152. doi: 10.1016/j.amc.2021.126152
    [22] X. Zou, Q. Li, J. Lv, Stochastic bifurcations, a necessary and sufficient condition for a stochastic Beddington-DeAngelis predator-prey model, Appl. Math. Lett., 117 (2021), 1–7. doi: 10.1016/j.aml.2021.107069. doi: 10.1016/j.aml.2021.107069
    [23] D. Luo, Q. Wang, Global dynamics of a Beddington-DeAngelis amensalism system with weak Allee effect on the first species, Appl. Math. Comput., 408 (2021) 1–19. doi: 10.1016/j.amc.2021.126368. doi: 10.1016/j.amc.2021.126368
    [24] G. Zhang, S. Yi, Periodic solutions for a neutral delay Hassell-Varley type predator–prey system, Appl. Math. Comput., 264 (2015), 443–452. doi: 10.1016/j.amc.2015.04.110. doi: 10.1016/j.amc.2015.04.110
    [25] D. Wang, On a non-selective harvesting prey-predator model with Hassell-Varley type functional response, Appl. Math. Comput., 246 (2014), 678–695. doi: 10.1016/j.amc.2014.08.081. doi: 10.1016/j.amc.2014.08.081
    [26] J. Huang, S. Liu, S. Ruan, D. Xiao, Bifurcations in a discrete predator-prey model with nonmonotonic functional response, J. Math. Anal. Appl., 464 (2018), 201–230. doi: 10.1016/j.jmaa.2018.03.074. doi: 10.1016/j.jmaa.2018.03.074
    [27] S. Winggins, Introduction to applied nonlinear dynamical systems and chaos, New York: Springer-Verlag, 2003.
    [28] Y. A. Kuznetsov, Elements of applied bifurcation theory, Berlin: Springer Verlag, 1998.
    [29] K. Yagasaki, Melnikov's method and codimension-two bifurcations in forced oscillations, J. Differ. Equations, 185 (2002), 1–24. doi: 10.1006/jdeq.2002.4177. doi: 10.1006/jdeq.2002.4177
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2526) PDF downloads(234) Cited by(9)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog