Research article Special Issues

Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function

  • Received: 05 May 2023 Revised: 28 June 2023 Accepted: 02 July 2023 Published: 11 July 2023
  • MSC : 05A30, 30C45, 11B65, 47B38

  • In the present article, we define and investigate a new subfamily of holomorphic functions connected with the cosine hyperbolic function with bounded turning. Further some interesting results like sharp coefficients bounds, sharp Fekete-Szegö estimate, sharp $ 2^{nd} $ Hankel determinant and non-sharp $ 3^{rd} $ order Hankel determinant. Moreover, the same estimates have been investigated for 2-fold, 3-fold symmetric functions, the first four initial sharp bounds of logarithmic coefficient and sharp second Hankel determinant of logarithmic coefficients fort his defined function family.

    Citation: Muhammmad Ghaffar Khan, Wali Khan Mashwani, Lei Shi, Serkan Araci, Bakhtiar Ahmad, Bilal Khan. Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function[J]. AIMS Mathematics, 2023, 8(9): 21993-22008. doi: 10.3934/math.20231121

    Related Papers:

  • In the present article, we define and investigate a new subfamily of holomorphic functions connected with the cosine hyperbolic function with bounded turning. Further some interesting results like sharp coefficients bounds, sharp Fekete-Szegö estimate, sharp $ 2^{nd} $ Hankel determinant and non-sharp $ 3^{rd} $ order Hankel determinant. Moreover, the same estimates have been investigated for 2-fold, 3-fold symmetric functions, the first four initial sharp bounds of logarithmic coefficient and sharp second Hankel determinant of logarithmic coefficients fort his defined function family.



    加载中


    [1] W. C. Ma, D. Minda, A unified treatment of some special familyes of univalent functions, In: Proceedings of the Conference on Complex Analysis, 1992.
    [2] S. S. Kumar, K. Arora, Starlike functions associated with a petal shaped domain, preprint paper, arXiv: 2010.10072, 2020. https://doi.org/10.48550/arXiv.2010.10072
    [3] P. Geol, S. S. Kumar, Certain class of starlike functions associated with modified sigmoid function, Bull. Malays. Math. Sci. Soc., 43 (2020), 957–991. https://doi.org/10.1007/s40840-019-00784-y doi: 10.1007/s40840-019-00784-y
    [4] H. Tang, H. M. Srivastava, S. Li, Majorization results for subfamilies of starlike functions based on sine and cosine functions, Bull. Iran. Math. Soc., 46 (2020), 381–388. https://doi.org/10.1007/s41980-019-00262-y doi: 10.1007/s41980-019-00262-y
    [5] N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 45 (2019), 213–232. https://doi.org/10.1007/s41980-018-0127-5 doi: 10.1007/s41980-018-0127-5
    [6] L. A. Wani, A. Swaminathan, Starlike and convex functions associated with a Nephroid domain, Bull. Malays. Math. Sci. Soc., 44 (2021), 79–104. https://doi.org/10.1007/s40840-020-00935-6 doi: 10.1007/s40840-020-00935-6
    [7] J. Sokól, S. Kanas, Radius of convexity of some subfamilyes of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105.
    [8] K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with cardioid, Afr. Mat., 27 (2016), 923–939. https://doi.org/10.1007/s13370-015-0387-7 doi: 10.1007/s13370-015-0387-7
    [9] R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386. https://doi.org/10.1007/s40840-014-0026-8 doi: 10.1007/s40840-014-0026-8
    [10] R. K. Raina, J. Sokól, On Coefficient estimates for a certain family of starlike functions, Hacettepe. J. Math. Statist., 44 (2015), 1427–1433.
    [11] N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, H. M. Srivastava, Starlike functions related to the Bell numbers, Symmetry, 11 (2019), 219. https://doi.org/10.3390/sym11020219 doi: 10.3390/sym11020219
    [12] J. Dziok, R. K. Raina, R. K. J. Sokól, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Model., 57 (2013), 1203–1211. https://doi.org/10.1016/j.mcm.2012.10.023 doi: 10.1016/j.mcm.2012.10.023
    [13] S. Kanas, D. Răducanu, Some class of holomorphic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
    [14] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108–112.
    [15] C. Pommerenke, Univalent Functions, Gottingen: Vanderhoeck & Ruprecht, 1975.
    [16] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain familyes of holomorphic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12.
    [17] W. Keopf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89–95.
    [18] M. G. Khan, B. Ahmad, G. M. Moorthy, R. Chinram, W. K. Mashwani, Applications of modified Sigmoid functions to a class of starlike functions, J. Funct. Spaces, 8 (2020), 8844814. https://doi.org/10.1155/2020/8844814 doi: 10.1155/2020/8844814
    [19] W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc., 3 (1968), 77–94.
    [20] H. Orhan, N. Magesh, J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math., 40 (2016), 679–687. https://doi.org/10.3906/mat-1505-3 doi: 10.3906/mat-1505-3
    [21] J. W. Noonan, D. K. Thomas, On the Second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc., 22 (1976), 337–346.
    [22] L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of holomorphic functions involving a generalized q-operator, Symmetry, 12 (2020), 291. https://doi.org/10.3390/sym12020291 doi: 10.3390/sym12020291
    [23] K. O. Babalola, On $H_{3}\left(1\right) $ Hankel determinant for some families of univalent functions, Inequal. Theory. Appl., 6 (2007), 1–7.
    [24] L. Shi, M. G. Khan, B. Ahmad, W. K. Mashwani, P. Agarwal, S. Momani, Certain coefficient estimate problems for three-leaf-type starlike functions, Fractal Fract., 5 (2021), 137. https://doi.org/10.3390/fractalfract5040137 doi: 10.3390/fractalfract5040137
    [25] H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, et al., Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli, Mathematics, 7 (2019), 848. https://doi.org/10.3390/math7090848 doi: 10.3390/math7090848
    [26] M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran, An upper bound of the third Hankel determinant for a subclass of $q$-starlike functions associated with $k$-Fibonacci numbers, Symmetry, 12 (2020), 1043. https://doi.org/10.3390/sym12061043 doi: 10.3390/sym12061043
    [27] M. Mundula, S. S. Kumar, On subfamily of starlike functions related to hyperbolic cosine function, J. Anal., 2023. https://doi.org/10.1007/s41478-023-00550-1 doi: 10.1007/s41478-023-00550-1
    [28] K. R. Karthikeyan, G. Murugusundaramoorthy, S. D. Purohit, D. L. Suthar, Certain class of analytic functions with respect to symmetric points defined by q-calculus, J. Math., 2021 (2021), 8298848. https://doi.org/10.1155/2021/8298848 doi: 10.1155/2021/8298848
    [29] K. A. Selvakumaran, P. Rajaguru, S. D. Purohit, D. L. Suthar, Certain geometric properties of the canonical weierstrass product of an entire function associated with conic domains, J. Funct. Spaces, 2022 (2022), 2876673. https://doi.org/10.1155/2022/2876673 doi: 10.1155/2022/2876673
    [30] H. Zhou, K. A. Selvakumaran, S. Sivasubramanian, S. D. Purohit, H. Tang, Subordination problems for a new class of Bazilevič functions associated with $k$-symmetric points and fractional $q$-calculus operators, AIMS Math., 6 (2021), 8642–8653. http://dx.doi.org/10.3934/math.2021502 doi: 10.3934/math.2021502
    [31] R. J. Libera, E. J. ZŁotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), 225–230.
    [32] K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27 (2016), 923–939. https://doi.org/10.1007/s13370-015-0387-7 doi: 10.1007/s13370-015-0387-7
    [33] M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of holomorphic functions related with sine function, Open Math., 17 (2019), 1615–1630. https://doi.org/10.1515/math-2019-0132 doi: 10.1515/math-2019-0132
    [34] V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, Comptes Rendus Math., 353 (2015), 505–510. https://doi.org/10.1016/j.crma.2015.03.003 doi: 10.1016/j.crma.2015.03.003
    [35] B. Khan, I. Aldawish, S. Araci, M. G. Khan, Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function, Fractal Fract., 6 (2022), 261. https://doi.org/10.3390/fractalfract6050261 doi: 10.3390/fractalfract6050261
    [36] B. Khan, Z. G. Liu, T. G. Shaba, S. Araci, N. Khan, M. G. Khan, Applications of-derivative operator to the subclass of Bi-univalent functions involving $q$-Chebyshev polynomials, J. Math., 2022 (2022), 8162182. https://doi.org/10.1155/2022/8162182 doi: 10.1155/2022/8162182
    [37] L. Shi, B. Ahmad, N. Khan, M. G. Khan, S. Araci, W. K. Mashwani, et al., Coefficient estimates for a subclass of meromorphic multivalent $q$-close-to-convex functions, Symmetry, 13 (2021), 1840. https://doi.org/10.3390/sym13101840 doi: 10.3390/sym13101840
    [38] Q. Hu, H. M. Srivastava, B. Ahmad, N. Khan, M. G. Khan, W. K. Mashwani, et al., A subclass of multivalent Janowski type $q$-starlike functions and its consequences, Symmetry, 13 (2021), 1275. https://doi.org/10.3390/sym13071275 doi: 10.3390/sym13071275
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1493) PDF downloads(97) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog