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1. Introduction

The class of all analytic functions u (ε) defined in the open unit disk

U = {ε : ε ∈ C and |ε| < 1},

is denoted byA and normalized also by the conditions

u (0) = 0 and u′ (0) = 1.
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Thus, the Taylor series expansion of each u (ε) ∈ A is as follows:

u (ε) = ε +
∞∑

n=2

dnε
n ε ∈ U. (1.1)

Furthermore, let S denotes a subfamily of A, which are univalent in U. For two functions h1, h2 ∈

A, we say that the function h1 is subordinate to the function h2 ( written as h1 ≺ h2) if there exists an
holomorphic function w with the property |w (ε)| ≤ |ε| and w (0) = 0 such that h1 (ε) = h2 (w (ε)) for
ε ∈ U. Moreover, if h2 ∈ S, then the above conditions can be written as:

h1 ≺ h2 ⇔ h1 (0) = h2 (0) and h1 (U) ⊂ h2 (U) .

The family S∗(Ψ), given by

S∗(Ψ) =
{

u ∈ A :
εu′(ε)
u(ε)

≺ Ψ(ε)
}
, (1.2)

is introduced by Ma and Minda [1] in 1992, whereΨ is an univalent function in U having the properties

Ψ(0) = 1 and ℜ (Ψ) > 0.

Many useful and intrusting properties of these classes have been obtained by them. If specifically, we
take Ψ(ε) = (1+ε)/(1−ε), then we have the family S∗(Ψ) of starlike functions. For different choice
of Ψ involved in the right hand side of (1.2), one can get a number of known subclasses of starlike
functions. Some of them are listed as follows:

(1) If we choose
Ψ(ε) = 1 + sinh−1 (ε) ,

then we get the family given by

S∗pet = S
∗
(
1 + sinh−1 (ε)

)
.

The function Ψ(ε) maps open unit disc onto the image domain which is bounded by petal shape
and was established by Kumar et al. [2].

(2) If we take

Ψ(ε) =
2

1 + e−ε
,

then we obtain the follow family

S∗sig = S
∗

(
2

1 + e−ε

)
,

this family starlike functions based on modified sigmoid functions was established and
investigated by Geol et al. [3].

(3) If we take
Ψ(ε) = cos ε

then we obtain the follow family
S∗cos = S

∗ (cos ε) ,

this family was established and investigated by Tang et al. [4].

AIMS Mathematics Volume 8, Issue 9, 21993–22008.



21995

(4) If we pick
Ψ(ε) = 1 + sin ε

then we obtain the follow family
S∗sin = S

∗ (1 + sin ε) ,

the function Ψ(ε) has image under U is eight shaped and was established and studied by Cho
et al. [5] .

(5) If we take

Ψ(ε) = 1 + ε −
1
3
ε3,

then we obtain the follow family (see [6])

S∗nep = S
∗

(
1 + ε −

1
3
ε3

)
,

(6) If we take S∗(φ) with
Ψ(ε) =

√
1 + ε,

then the functions family lead to the family

S∗L = S
∗
(√

1 + ε
)
,

which is described as the functions of starlike functions, bounded by lemniscate of Bernoulli
(see [7]).

(7) Moreover, if we take

Ψ(ε) = 1 +
4
3
ε +

2
3
ε2,

then we obtain the follow family

S∗car = S
∗

(
1 +

4
3
ε +

2
3
ε2

)
,

which was studied by Sharma et al. [8].
(8) Furthermore if we pick Ψ(ε) = e ε we get the family S∗exp = S

∗ (eε) , which was introduced and
studied by Mendiratta et al. [9]. On the other side, if we takeΨ(ε) =ε+

√
1 + ε2, we get the family

S∗l = S
∗
(
ε +
√

1 + ε2
)
, which maps U to crescent shaped region and was introduced by Raina

and Sokól [10].

Beside these, numerous subfamilies of the family of starlike functions were introduced in different
domains ( see [11–13]).

The Hankel determinant Hq,n (u) for function u ∈ S of the form (1.1),was given firstly by
Pommerenke [14, 15] as follows:

Hq,n (u) =

∣∣∣∣∣∣∣∣∣∣∣∣
dn dn+1 . . . dn+q−1

dn+1 dn+2 . . . dn+q
...

... . . .
...

dn+q−1 dn+q . . . dn+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣ q, n ∈ N = {1, 2, 3, · · · } . (1.3)
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For particular values, for example q = 2 and n = 1, we get the first order Hankel determinant is∣∣∣H2,1 (u)
∣∣∣ = ∣∣∣∣∣∣ d1 d2

d2 d3

∣∣∣∣∣∣
=

∣∣∣d3 − d2
2

∣∣∣ , where d1 = 1.

And for q = 2 and n = 2, in (1.3) we get the second order Hankel determinant

H2,2 (u) =

∣∣∣∣∣∣ d2 d3

d3 d4

∣∣∣∣∣∣
= d2d4 − d2

3.

For the third order Hankel determinant we take q = 3 and n = 1, and get the following

∣∣∣H3,1 (u)
∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 d2 d3

d2 d3 d4

d3 d4 d5

∣∣∣∣∣∣∣∣∣ .
Note that H2,1 (u) = d3 − d2

2, is the particular case of Fekete-Szegö approximations. The sharp upper
bounds for

∣∣∣H2,1 (u)
∣∣∣ for different subfamilies of holomorphic functions was investigated by different

authors (see [16–18] for details). Moreover, the second Hankel determinant and the sharp upper
bound of this has been studied and investigated by several authors from many different directions and
perspectives. For few of them are, Hayman [19], the Ohran et al. [20], Noonan and Thomas [21] and
Shi et al. [22]. Furthermore, the bounds for the third Hankel determinant for subfamilies of
holomorphic functions was first investigated by Babalola [23]. Some recent and interested works on
this topic may be found in [24–26] and the reference therein. Recently, Mundalia et al. [27] defined
the family of holomorphic starlike functions based on the trigonometric cosine hyperbolic function as
follows:

S∗Cosh =

{
u ∈ A :

εu′(ε)
u(ε)

≺ cosh
√
ε

}
(ε ∈ U).

For more about this study, we may refer the readers to see [28–30].
By taking motivation from above cited work we introduce the following family of holomorphic

function:
RCosh =

{
u ∈ A : u′ (ε) ≺ cosh

√
ε
}

(ε ∈ U). (1.4)

In this paper we evaluate first three initial sharp coefficient bounds, sharp Fekete-Szegö functional,
sharp second Hankel determinant non-sharp third Hankel determinant, third Hankel for 2, 3-fold
symmetric function and Krushkal inequality for functions belonging to this family. Further, sharp
initial four logarithmic coefficients bounds and second Hankel determinant are investigated.

2. A set of Lemmas

We next denote by P the family of holomorphic functions p which are normalized by p(0) = 1,
with Re(p(ε)) > 0, ε ∈ U and have the following form:

p (ε) = 1 +
∞∑

n=1

cnε
n ε ∈ U. (2.1)
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Lemma 2.1. If p ∈ P and has the form (2.1). Then, for x and δ with |x| ≤ 1, |δ| ≤ 1, such that

2c2 = c2
1 + x(4 − c2

1), (2.2)

4c3 = c3
1 + 2(4 − c2

1)c1x − c1(4 − c2
1)x2 + 2(4 − c2

1)(1 − |x|2)δ. (2.3)

We note that (2.2) and (2.3) are taken from [31].

Lemma 2.2. If p ∈ P and has the form (2.1), then we get following estimates

|ck| ≤ 2 for k ≥ 1, (2.4)
|cn+k − µcnck| < 2 for 0 ≤ µ ≤ 1, (2.5)∣∣∣∣∣∣c2 −

c2
1

2

∣∣∣∣∣∣ ≤ 2 −

∣∣∣c2
1

∣∣∣
2
, (2.6)

and for complex number η, we have∣∣∣c2 − ηc2
1

∣∣∣ < 2 max {1, |2η − 1|} . (2.7)

For the inequalities (2.4)–(2.6) see [16] and (2.7) is given in [32].

Lemma 2.3. [33] If p ∈ P and has the form (2.1), then

|Λ1c3
1 − Λ2c1c2 + Λ3c3| ≤ 2|Λ1| + 2|Λ2 − 2Λ1| + 2|Λ1 − Λ2 + Λ3|, (2.8)

where Λ1,Λ2 and Λ3 are real numbers.

Lemma 2.4. [34] Let α, β, t and s satisfy the conditions 0 < α < 1, 0 < s < 1 and

8s (1 − s)
[
(αβ − 2t)2 + (α (s + α) − β)2

]
+ α (1 − α) (β − 2sα)2

≤ 4α2 (1 − α)2 s (1 − s) .

If h ∈ P and of the form (2.1), then∣∣∣∣∣tc4
1 + sc2

2 + 2αc1c3 −
3
2
βc2

1c2 − c4

∣∣∣∣∣ ≤ 2.

3. Main results

Theorem 3.1. If u (ε) ∈ RCosh and it has the form given in (1.1), then

|d2| ≤
1
4
, (3.1)

|d3| ≤
1
6
, (3.2)

|d4| ≤
1
8
, (3.3)

|d5| ≤
1
10
. (3.4)

AIMS Mathematics Volume 8, Issue 9, 21993–22008.



21998

Equalities in these inequalities are obtained for functions defined as follow:

u1 (ε) =
∫ ε

0
cosh

√
tdt = ε +

1
4
ε2 + · · · , (3.5)

u2 (ε) =
∫ ε

0
cosh

(
t2
)

dt = ε +
1
6
ε3 + · · · , (3.6)

u3 (ε) =
∫ ε

0
cosh

√
t3dt = ε +

1
8
ε4 + · · · , (3.7)

u4 (ε) =
∫ ε

0
cosh

√
t4dt = ε +

1
10
ε4 + · · · , (3.8)

respectively.

Proof. Let u (ε) ∈ RCosh then the function w (ε) with conditions that w (0) = 0 and |w (ε)| < 1, such that
consider

u′(ε) = cosh
√

w (ε). (3.9)

Let p ∈ P, then above (3.9) , can be written in the form of Schwarz function as:

p (ε) =
1 + w (ε)
1 − w (ε)

= 1 + c1ε + c2ε
2 + c3ε

3 + · · · . (3.10)

Or

w (ε) =
p (ε) − 1
p (ε) + 1

=
c1ε + c2ε

2 + c3ε
3 + · · ·

2 + c1ε + c2ε2 + c3ε3 + · · ·

=
1
2

c1ε +

(
1
2

c2 −
1
4

c2
1

)
ε2 +

(
1
8

c3
1 −

1
2

c1c2 +
1
2

c3

)
ε3 + · · · .

Now from (3.9) , we have

u′(ε) = 1 + 2d2ε + 3d3ε
2 + 4d4ε

3 + 5d5ε
4 + · · · . (3.11)

And

cosh
√

w (ε) = 1 +
1
4
εc1 +

(
1
4

c2 −
11
96

c2
1

)
ε2 +

(
301

5760
c3

1 −
11
48

c2c1 +
1
4

c3

)
ε3

+

(
−

91
3840

c4
1 +

301
1920

c2
1c2 −

11
48

c3c1 −
11
96

c2
2 +

1
4

c4

)
ε4 + · · · . (3.12)

Comparing (3.11) and (3.12) , we get

d2 =
1
8

c1, (3.13)

d3 =
1

12

(
c2 −

11
24

c2
1

)
, (3.14)

d4 =
301

23 040
c3

1 −
11
192

c2c1 +
1

16
c3, (3.15)
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d5 =
−1
20

(
91
960

c4
1 −

301
480

c2
1c2 +

11
12

c3c1 +
11
24

c2
2 − c4

)
. (3.16)

Applying (2.4) , to (3.13) , we get

|d2| ≤
1
4
.

From (3.14) , using (2.5) with n = k = 1, we have

|d3| ≤
1
6
.

Applying Lemma 2.3 , to Eq (3.15) , we get

|d4| ≤
1
8
.

From Lemma 2.4, the Eq (3.16) , where t = 91
960 , s = 11

24 , β = 301
720 , α = 11

24 , then

8s (1 − s)
[
(αβ − 2t)2 + (α (s + α) − β)2

]
+ α (1 − α) (β − 2sα)2

=
383 669

21 499 084 800
≃ 0.0000178,

and
4α2 (1 − α)2 s (1 − s) =

2924 207
47 775 744

≃ 0.0612069,

satisfies the condition Lemma 2.4, so we get

|d5| ≤
1

10
.

Thus we obtain the desired result. □

Theorem 3.2. If u (ε) ∈ RCosh and it has the form given in (1.1), then∣∣∣d3 − λd2
2

∣∣∣ ≤ 1
6

max
{

1,
|9λ + 2|

24

}
. (3.17)

Equalities of this inequalities is obtained for functions u2 defined in (3.6).

Proof. From (3.13) and (3.14) , we get∣∣∣d3 − λd2
2

∣∣∣ = 1
12

∣∣∣∣∣c2 −
22 − 9λ

48
c2

1

∣∣∣∣∣ .
Applying (2.7) , to above we get the required results. □

Corollary 3.3. If u (ε) ∈ RCosh and it has the form given in (1.1), then∣∣∣d3 − d2
2

∣∣∣ ≤ 1
6
. (3.18)

Equalities of this inequalities is obtained for function u2 defined in (3.6) .
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Theorem 3.4. If u (ε) ∈ RCosh and it has the form given in (1.1), then

|d2d3 − d4| ≤
1
8
. (3.19)

Equalities of this inequalities is obtained for function u3 defined in (3.7) .

Proof. From (3.13)–(3.15) , we get

|d2d3 − d4| =

∣∣∣∣∣ 137
7680

c3
1 −

13
192

c2c1 +
1

16
c3

∣∣∣∣∣ .
Applications of Lemma 2.3, lead us to required results. □

Theorem 3.5. If u (ε) ∈ RCosh and it has the form given in (1.1), then∣∣∣d2d4 − d2
3

∣∣∣ ≤ 1
9
. (3.20)

Equalities of this inequalities is obtained for function u2 defined in (3.6) .

Proof. From (3.13)–(3.15) , we get

d2d4 − d2
3 =

289
1658 880

c4
1 −

11
13 824

c2
1c2 +

1
128

c3c1 −
1

144
c2

2.

Applying (2.2) and (2.3) to write c2 and c3 in term of c1 = c ∈ [0, 2] , we get

d2d4 − d2
3 = −

11
1658 880

c4 −
1

576
(4 − c2)2x2 −

1
512

c2(4 − c2)x2

+
1

27 648
c2(4 − c2)x +

1
256

c(4 − c2)(1 − |x|2)δ.

By implementing triangle inequality along with |δ| ≤ 1 and |x| = k ≤ 1, we get∣∣∣d2d4 − d2
3

∣∣∣ ≤ 11
1658 880

c4 +
1

576
(4 − c2)2k2 +

1
512

c2(4 − c2)k2

+
1

27 648
c2(4 − c2)k +

1
256

c(4 − c2)(1 − k2) = Υ (c, k) say.

Now differentiating partially with respect to k, we get

∂Υ (c, y)
∂y

=
1

288

(
4 − c2

)2
k +

1
258

c2
(
4 − c2

)
k −

1
128

c
(
4 − c2

)
k.

Clearly, ∂Υ(c,k)
∂y > 0 increasing function so maximum at k = 1, so that

Υ (c, k) ≤ Υ (c, 1) =
11

1658 880
c4 +

1
576

(4 − c2)2

+
1

512
c2(4 − c2) +

1
27 648

c2(4 − c2)

= −
409

1658 880
c4 −

41
6912

c2 +
1

36
.
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Now taking derivative with reference to c, we get

Υ
′

(c, 1) = −
409

414720
c3 −

41
2304

c.

Obviously Υ
′ (c, 1) ≤ 0, is decreasing function, so maximum value attained at c = 2, that is∣∣∣d2d4 − d2

3

∣∣∣ ≤ 1
36
.

□

Theorem 3.6. If u (ε) ∈ RCosh and it has the form given in (1.1), then∣∣∣H3,1 (u)
∣∣∣ ≤ 319

8640
≃ 0.0369.

Proof. Since ∣∣∣H3,1 (u)
∣∣∣ ≤ |d3|

∣∣∣d2d4 − d2
3

∣∣∣ + |d4| |d2d3 − d4| + |d5|
∣∣∣d3 − d2

2

∣∣∣ .
Putting values of (3.2)–(3.4) and (3.18)–(3.20) , we get the required result. □

4. Bounds of
∣∣∣H3,1(u)

∣∣∣ for two and three fold symmetric functions

Let us consider that m ∈ N = 1, 2, .... The rotation of domain Ω through origin can be get by an
angle 2π

m and in this case a domain Ω is called m-fold symmetric. An holomorphic function λ is m-fold
symmetric in U, if

u
(
e

2π
m ε

)
= e

2π
m u (ω) , ε ∈ U.

The family of all m-fold symmetric functions belong to well-known family S, and denoted by Sm

having the following Taylor series form:

u (ε) = ε +
∞∑

n=1

dmn+1ε
mn+1 ε ∈ U. (4.1)

The holomorphic functions of the form (4.1) is in the family Rm
Cosh , if and only if

u
′

(ε) = cosh

√
p (ε) − 1
p (ε) + 1

, ε ∈ U. (4.2)

Where p (ε) belong to the family P(m) is defined by:

P
(m) =

p ∈ P : p (ε) = 1 +
∞∑

n=1

cmnε
mn ε ∈ U.

 . (4.3)

Theorem 4.1. If u (ε) ∈ R2
Cosh and it has the form given in (4.1), then∣∣∣H3,1(u)

∣∣∣ ≤ 1
60
. (4.4)
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Proof. Let u (ε) ∈ R2
Cosh. Then, there exists a function p ∈ P(2), using the series form (4.1) and (4.3),

when m = 2 in the above relation (4.2 ), we obtain

u
′

(ε) = 1 + 3d3ε
2 + 5d5ε

4 + · · · . (4.5)

Consider

cosh

√
p (ε) − 1
p (ε) + 1

= 1 +
1
4

c2ε
2 +

(
1
4

c4 −
11
96

c2
2

)
ε4 + · · · . (4.6)

Comparing (4.5) and (4.6) we obtained

d3 =
c2

12
,

d5 =
1

20
c4 −

11
480

c2
2.

Now

H3,1(u) = d3d5 − d3
3

=
1

240
c2c4 −

43
17 280

c3
2

=
1

240
c2

(
c4 −

43
72

c2
2

)
.

Applying the trigonometric inequality to (2.4) and (2.5), we get∣∣∣H3,1(u)
∣∣∣ ≤ 1

60
.

Hence, the proof is complete. □

Theorem 4.2. If u (ε) ∈ RCosh and it has the form given in (4.1), then∣∣∣H3,1(u)
∣∣∣ ≤ 1

64
. (4.7)

Equalities of this inequalities is obtained for function defined as:

u (ε) =
∫ ε

0
cosh

√
t3dt = ε +

1
6
ε4 + · · · .

Proof. As u ∈ R3
Cosh, therefore there exists a function p ∈ P(3), such that

u
′

(ε) = cosh

√
p (ε) − 1
p (ε) + 1

.

For m = 3 and form (4.1) and (4.3), the above condition become as:

1 + 4d4ε
3 + · · · = 1 +

c3

4
ε3 + · · · . (4.8)
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Comparing the coefficients of (4.8), we obtained

d4 =
c3

16
,

then

H3,1(u) = −d2
4 = −

c2
3

256
.

Utilizing (2.4) and triangle inequality, we have∣∣∣H3,1(u)
∣∣∣ ≤ 1

64
.

Thus the complete the proof. □

5. Logarithmic coefficients for the family RCosh

The logarithmic coefficients of u ∈ S denoted by γn = γn (u) , are defined by with the following
series expansion:

log
u (ε)
ε
= 2

∞∑
n=1

γnε
n.

For function u given by (1.1) , the logarithmic coefficients are as follow:

γ1 =
1
2

d2, (5.1)

γ2 =
1
2

(
d3 −

1
2

d2
2

)
, (5.2)

γ3 =
1
2

(
d4 − d2d3 +

1
3

d3
2

)
, (5.3)

γ4 =
1
2

(
d5 − d2d4 − d2

2d3 −
1
2

d2
3 −

1
4

d4
2

)
. (5.4)

Theorem 5.1. If u (ε) ∈ RCosh and it has the form given in (1.1), then

|γ1| ≤
1
8
,

|γ2| ≤
1

12
,

|γ3| ≤
1

16
,

|γ4| ≤
1

20
.

Equalities in these inequalities are obtained for function

un (ε) =
∫ ε

0
cosh

√
tndt = ε +

1
2n + 2

εn+1 + · · · , for n = 1, 2, 3, 4. (5.5)
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Proof. Now from (5.1) to (5.4) and (3.13) to (3.16) , we get

γ1 =
1

16
c1, (5.6)

γ2 =
1

24
c2 −

53
2304

c2
1, (5.7)

γ3 =
71

7680
c3

1 −
13

384
c2c1 +

1
32

c3, (5.8)

γ4 = −
1802 099

464 486 400
c4

1 +
14 861

691 200
c2

1c2 −
103
3840

c3c1 −
19

1440
c2

2 +
1

40
c4. (5.9)

Applying (2.4) , to (5.6) , we get

|γ1| ≤
1
8
.

From (5.7) , using (2.5) , we get

|γ2| ≤
1

12
.

Applying Lemma 2.3, to Eq (5.8) , we get

|γ3| ≤
1

16
.

Also, using Lemma 2.4 to (5.9) , we get

|γ4| ≤
1

20
.

Proof for sharpness: Since

log
u1 (ε)
ε

= 2
∞∑

n=2

γ (u1) εn =
1
4
ε + · · · ,

log
u2 (ε)
ε

= 2
∞∑

n=2

γ (u2) εn =
1
6
ε2 + · · · ,

log
u3 (ε)
ε

= 2
∞∑

n=2

γ (u2) εn =
1
8
ε3 + · · · ,

log
u4 (ε)
ε

= 2
∞∑

n=2

γ (u2) εn =
1

10
ε4 + · · · ,

it follows that these inequalities are obtained for the functions un (ε) for n = 1, 2, 3, 4 defined in (5.5).
□

Theorem 5.2. If u (ε) ∈ RCosh and it has the form given in (1.1), then∣∣∣γ1γ3 − γ
2
2

∣∣∣ ≤ 1
36
.

Equalities in this inequalities are obtained for function u2 in (5.5) .
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Proof. From (5.6)–(5.8) we have

γ1γ3 − γ
2
2 =

1291
26 542 080

c4
1 −

11
55 296

c2
1c2 +

1
512

c3c1 −
1

576
c2

2.

Applying (2.2) and (2.3) to write c2 and c3 in term of c1 = c ∈ [0, 2] , we get

γ1γ3 − γ
2
2 =

91
26 542 080

c4
1 −

1
2304

(
4 − c2

1

)2
x2 −

1
2048

c2
1

(
4 − c2

1

)
x2

+
1

110 592
c2

1

(
4 − c2

1

)
x +

1
1024

c1

(
4 − c2

1

) (
1 − |x|2

)
δ.

By applying triangle inequality along with |δ| ≤ 1 and |x| = k ≤ 1, we get∣∣∣γ1γ3 − γ
2
2

∣∣∣ ≤ 91
26 542 080

c4
1 +

1
2304

(
4 − c2

1

)2
k2 +

1
2048

c2
1

(
4 − c2

1

)
k2

+
1

110 592
c2

1

(
4 − c2

1

)
k +

1
1024

c1

(
4 − c2

1

) (
1 − k2

)
= Υ (c, k) .

If we differentiate the above inequlity partially with respect to k, we have

∂Υ (c, k)
∂k

=
1

2304
k (c − 2)2

(
−c2 + 14c + 32

)
.

It is easy to observe that
∂Υ (c, k)
∂k

≥ 0

in interval [0, 1] , so maximum attained at k = 1, thus

Υ (c, k) ≤ Υ (c, 1) =
7

12 288
c4 +

1
576

(
4 − c2

)2
+

1
512

c2
(
4 − c2

)
=

13
36 864

c4 −
7

1152
c2 +

1
36
.

Taking derivative with reference to c, we get

Υ
′

(c, 1) = c
(

1
9216

c2 −
1

576

)
.

Obviously Υ
′ (c, 1) = 0, has three roots namely 0, ±4 the only root lies in interval [0, 2] is 0, so

Υ
′′

(c, 1) =
1

3072
c2 −

1
576
.

Thus Υ
′′ (0, 1) ≤ 0, so the function has maximum at c = 0, that is∣∣∣γ1γ3 − γ

2
2

∣∣∣ ≤ 1
36
.

□
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6. Conclusions

Recently the investigations of the Hankel determinant got attractions of many researchers, due to
its applications in many diverse areas of mathematics and other sciences. Here in this paper, we have
defined a new subfamily of holomorphic functions connected with the Tan hyperbolic function with
bounded boundary rotation. We have then investigated the upper bound of the third Hankel determinant
for this newly defined functions family. On the other hand, we have obtained the same bounds for 2-
fold, 3-fold symmetric functions,The first four initial sharp bounds of logarithmic coefficient and sharp
second Hankel determinant of logarithmic coefficients for this defined function family.

Here, we passing to remark the fact that one can extend the suggested results investigated in this
article, for some other subfamilies of holomorphic functions and also the interested can use the Dq

derivative operator (see for example [35–38]) and can generalize the work presented here.
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