Citation: Shuhai Li, Lina Ma, Huo Tang. Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators[J]. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015
[1] | Hari Mohan Srivastava, Muhammad Arif, Mohsan Raza . Convolution properties of meromorphically harmonic functions defined by a generalized convolution $ q $-derivative operator. AIMS Mathematics, 2021, 6(6): 5869-5885. doi: 10.3934/math.2021347 |
[2] | Caihuan Zhang, Shahid Khan, Aftab Hussain, Nazar Khan, Saqib Hussain, Nasir Khan . Applications of $ q $-difference symmetric operator in harmonic univalent functions. AIMS Mathematics, 2022, 7(1): 667-680. doi: 10.3934/math.2022042 |
[3] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On $ q $-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
[4] | Alina Alb Lupaş, Shujaat Ali Shah, Loredana Florentina Iambor . Fuzzy differential subordination and superordination results for $ q $ -analogue of multiplier transformation. AIMS Mathematics, 2023, 8(7): 15569-15584. doi: 10.3934/math.2023794 |
[5] | Murugusundaramoorthy Gangadharan, Vijaya Kaliyappan, Hijaz Ahmad, K. H. Mahmoud, E. M. Khalil . Mapping properties of Janowski-type harmonic functions involving Mittag-Leffler function. AIMS Mathematics, 2021, 6(12): 13235-13246. doi: 10.3934/math.2021765 |
[6] | Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi . On fuzzy differential subordination associated with $ q $-difference operator. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336 |
[7] | Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya . On 2-variable $ q $-Hermite polynomials. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506 |
[8] | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of $ q $-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577 |
[9] | Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi . Applications of fuzzy differential subordination theory on analytic $ p $ -valent functions connected with $ \mathfrak{q} $-calculus operator. AIMS Mathematics, 2024, 9(8): 21239-21254. doi: 10.3934/math.20241031 |
[10] | Ekram E. Ali, Miguel Vivas-Cortez, Rabha M. El-Ashwah . New results about fuzzy $ \mathbf{\gamma } $-convex functions connected with the $ \mathfrak{q} $-analogue multiplier-Noor integral operator. AIMS Mathematics, 2024, 9(3): 5451-5465. doi: 10.3934/math.2024263 |
An analytic function s:U={z:|z|<1}→C is subordinate to an analytic function t:U→C and write s(z)≺t(z), if there exists a complex value function ω which maps U into itself with ω(0)=0and|ω(z)|<1(z∈U) such that s(z)=t(ω(z))(z∈U). Furthermore, if the function t is univalent in U, then we have the following equivalence (see [1]):
s(z)≺t(z)⟺s(0)=t(0)ands(U)⊂t(U). |
Let A define the class of functions f that are analytic in the open unit disc U of the form
f(z)=z+∞∑k=2akzk. |
The theory of (p,q)-calculus (or post quantum calculus [2]) operators are used in various areas of science and also in geometric function theory. For 0<q≤p≤1 and f∈A, Chakrabarti and Jagannathan [2] defined the (p,q)-derivative operator Dp,q:A→A by
Dp,qf(z)={f(pz)−f(qz)(p−q)z,p≠q,z≠0,limq→p−f(pz)−f(qz)(p−q)z,p=q,z≠0, | (1.1) |
where
Dp,qf(z)=1+∞∑k=2[k]p,qakzk−1 | (1.2) |
and
[k]p,q=pk−qkp−q={k∑ℓ=1pℓ−1q(k−1)−(ℓ−1),p≠q,kpk−1,p=q. | (1.3) |
From (1.1), we have
limz→0Dp,qf(z)=1 and limp→1−Dp,pf(z)=D1,1f(z)=f′(z). |
Next, we introduce the (p,q)-derivative operator in the class of meromorphic functions.
Suppose M be the class of functions f that are meromorphic analytic in the punctured disk U∗=U∖{0}={z:0<|z|<1} of the form
f(z)=1z+∞∑k=1akzk. | (1.4) |
Now, we define the (p,q)-post quantum derivative operator ˜dp,q:M→M by
˜dp,qf(z)={f(pz)−f(qz)(p−q)z,p≠q,z∈U∗,limq→p−f(pz)−f(qz)(p−q)z,p=q,z∈U∗. | (1.5) |
Using (1.4) and (1.5), we have
˜dp,qf(z)=−1pqz2+∞∑k=1[k]p,qakzk−1 (k∈N), | (1.6) |
where 0<q≤p≤1 and [k]p,q is defined by (1.3).
Let λ≥0,0<q≤p≤1,m∈N0=N∪{0} and f(z)∈M, we introduce the generalized (p,q)-post quantum calculus operator ˜Dm,λp,q:M→M as follows,
˜D0,0p,qf(z)=f(z),˜D1,λp,qf(z)=(1−λ)pqz˜dp,qf(z)+λpqz(z˜dp,qf(z)))′+2(λ+1)z=˜Dλp,qf(z), | (1.7) |
˜D2,λp,qf(z)=˜Dλp,q(˜Dλp,qf(z)) | (1.8) |
and in general,
˜Dm,λp,qf(z)=˜Dλp,q(˜Dm−1,λp,qf(z))(m≥1,z∈U∗). | (1.9) |
After a simple calculation, we can obtain the following conclusion
˜Dm,λp,qf(z)=1z+∞∑k=1{[(k−1)λ+1]pq[k]p,q}makzk, | (1.10) |
where [k]p,q is defined by (1.3). For simple of notation, we let
ωk(λ,p,q):=[(k−1)λ+1]pq[k]p,q. | (1.11) |
Obviously, for λ=0, the operator ˜Dm,0p,qf(z)=Lmp,qf(z) reduces to the (p,q)-Sǎlǎgean operator [3].
A complex valued harmonic function f in a simply connected domain D⊂C has the canonical representation f=h+¯g, where h and g are analytic in D and g(z0)=0 for some prescribed point z0∈D. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that |h′(z)|>|g′(z)| in D (see [4,5]).
Denote by MH the class of meromorphic univalent and harmonic functions f that are sense preserving in U∗ and have the following form
f(z)=h(z)+¯g(z)=1z+∞∑k=1akzk+∞∑k=1¯bkzk,|b1|<1, | (1.12) |
where h(z) and g(z) are analytic in U∗ and U respectively. The class MH was studied in [6,7,8,9,10].
Let λ≥0,0<q≤p≤1,m∈N0 and f∈MH, we now define the operator ˜Dm,λp,q:MH→MH as
˜Dm,λp,qf(z)=˜Dm,λp,qh(z)+¯˜Dm,λp,qg(z), | (1.13) |
where
˜Dm,λp,qh(z)=1z+∞∑k=1ωk(λ,p,q)akzk,˜Dm,λp,qg(z)=∞∑k=1ωk(λ,p,q)bkzk, | (1.14) |
with ωk(λ,p,q) defined by (1.11).
Assume that F be fixed meromorphic harmonic function given by
F(z)=H(z)+¯G(z)=1z+∞∑k=1Akzk+¯∞∑k=1Bkzk,|B1|<1. | (1.15) |
For f given by (1.12) and F given by (1.15), we define the convolution (or Hadamard product) of F and f by
(f∗F)(z):=1z+∞∑k=1akAkzk+¯∞∑k=1bkBkzk=(F∗f)(z). | (1.16) |
Also, we denote by T(T⊂MH) the class of meromorphic harmonic functions f of the following form
f(z)=h(z)+¯g(z)=1z+∞∑k=1|ak|zk−∞∑k=1|bk|¯zk (z∈U∗). | (1.17) |
Throughout this paper, we shall assume λ≥0,0<q≤p≤1,m∈N0 and −1≤B<A≤1.
Let
ϕ(z)=1z+∞∑k=1ukzk+∞∑k=1¯vkzk | (1.18) |
be harmonic in U∗ with uk>0 and vk>0.
Taking
LHf(z)=zh′(z)−¯zg′(z),L2Hf(z)=LH(LHf(z)),f∈MH. |
Now, using the operator ˜Dm,λp,q and subordination relationship, we define the following two classes.
Definition 1. Let the function f∈MH of the form (1.12). The function f∈Mp,qϕ(λ,m,A,B) if and only if
−LH(˜Dm,λp,qf∗ϕ)(z)(˜Dm,λp,qf∗ϕ)(z)≺1+Az1+Bz | (1.19) |
and also the function f∈Kp,qϕ(λ,m,A,B) if and only if
−L2H(˜Dm,λp,qf∗ϕ)(z)LH(˜Dm,λp,qf∗ϕ)(z)≺1+Az1+Bz, | (1.20) |
where
˜Dm,λp,q(f∗ϕ)(z)=1z+∞∑k=1ωmk(λ;p,q)ukakzk+∞∑k=1ωmk(λ;p,q)vk¯bkzk | (1.21) |
with ωk(λ;p,q) given by (1.11).
We let
˜Mp,qϕ(λ,m,A,B)=T∩Mp,qϕ(λ,m,A,B) |
and
˜Kp,qϕ(λ,m,A,B)=T∩Kp,qϕ(λ,m,A,B). |
The classes Mp,qϕ(λ,m,A,B) and Kp,qϕ(λ,m,A,B) reduce to the well-known subclasses of MH as well as many new ones. For example, let ϕ(z)=1z+∑∞k=1(zk+ˉzk), we have
M1,1ϕ(0,1,1−2γ,−1)=MHS∗(γ)={f∈MH:Re[−zh′(z)−¯zg′(z)h(z)+¯g(z)]>γ} |
and
K1,1ϕ(0,1,1−2γ,−1)=MCH(γ)={f∈MH:Re[−zh″(z)+h′(z)+¯zg″(z)+g′(z)h′(z)−¯g′(z)]>γ}, |
where γ∈[0,1).
The classes MHS∗(γ) and MCH(γ) were studied by Jahangiri [9].
In particular, the classes MHS∗(0)=MHS∗ (Meromorphically harmonic starlike functions) and MCH(0)=MCH (Meromorphically harmonic convex functions) were studied by Jahangiri and Silverman [10].
In this paper, the sufficient and necessary conditions of coefficients are discussed. As what we have hoped, distortion estimates, extreme points and convolution properties for the above-defined classes are also obtained.
First of all, we provide the sufficient conditions of coefficients for the classes defined in Definition 1.
Theorem 1. Let f=h+¯g be given by (1.12) and ωk(λ;p,q) given by (1.11).
(i) The sufficient condition for f to be sense-preserving and meromorphic harmonic univalent in U∗ and f∈Mp,qϕ(λ,m,A,B) is
∞∑k=1[ξk,m(p,q)|ak|+μk,m(p,q)|bk|]≤1, | (2.1) |
where
{k≤ξk,m(p,q):=[k(1−B)+(1−A)]ukωmk(λ;p,q)A−B,k≤μk,m(p,q):=[k(1−B)−(1−A)]vkωmk(λ;p,q)A−B. | (2.2) |
(ii) The sufficient condition for f to be sense-preserving and meromorphic harmonic univalent in U∗ and f∈Kp,qϕ(λ,m,A,B) is
∞∑k=1k[ξk,m(p,q)|ak|+μk,m(p,q)|bk|]≤1, | (2.3) |
where ξk,m(p,q) and μk,m(p,q) are given by (2.2).
Proof. (i) For 0<|z1|≤|z2|<1, we obtain
|f(z1)−f(z2)h(z1)−h(z2)|≥1−|g(z1)−g(z2)h(z1)−h(z2)|=1−|z1z2∑∞k=1bk(zk1−zk2)(z1−z2)−z1z2∑∞k=1ak(zk1−zk2)|>1−∑∞k=1k|bk|1−∑∞k=1k|ak|≥1−∑∞k=1μk,m(p,q)|bk|1−∑∞k=1ξk,m(p,q)|ak|≥0, |
which proves univalence. Note that f is sense-preserving harmonic in U∗. This is because
|h′(z)|≥1|z|2−∞∑k=1k|ak||z|k−1>1−∞∑k=1ξk,m(p,q)|ak|≥∞∑k=1μk,m(p,q)|bk|>∞∑k=1k|bk||z|k−1≥|g′(z)|. |
Next, we show that if the inequality (2.1) holds, then the required condition (1.19) is satisfied.
By means of Definition 1 and relationship of subordination, the function f∈Mp,qϕ(λ,m,A,B) iff there exists an analytic function ϖ(z) satisfying ϖ(0)=0,|ϖ(z)|<1(z∈U) such that
−LH(Dm,λp,qf∗ϕ)(z)Dm,λp,qf∗ϕ(z)=1+Aϖ(z)1+Bϖ(z), |
or equivalently
|LH(Dm,λp,qf∗ϕ)(z)+Dm,λp,qf∗ϕ(z)ADm,λp,qf∗ϕ(z)+BLH(Dm,λp,qf∗ϕ)(z)|<1. |
We only need to show that
|ADm,λp,qf∗ϕ(z)+BLH(Dm,λp,qf∗ϕ)(z)|−|LH(Dm,λp,qf∗ϕ)(z)+Dm,λp,qf∗ϕ(z)|>0(z∈U∗). | (2.4) |
Letting
{σk,j=(A+(−1)j−1kB)ωmk(λ;p,q),j=1,2,θk,j=(k+(−1)j−1)ωmk(λ;p,q),j=1,2. | (2.5) |
Therefore, from (2.1) we get
|ADm,λp,qf∗ϕ(z)+BLH(Dm,λp,qf∗ϕ)(z)|−|LH(Dm,λp,qf∗ϕ)(z)+Dm,λp,qf∗ϕ(z)|=|(A−B)1z+∞∑k=1σk,1ukakzk+∞∑k=1σk,2vk¯bkzk|−|−∞∑k=1θk,1ukakzk+∞∑k=1θk,2vk¯bkzk|≥(A−B)1|z|+∞∑k=1σk,1uk|ak||z|k−∞∑k=1σk,2vk|bk||z|k−∞∑k=1θk,1uk|ak||z|k−∞∑k=1θk,2vk|bk||z|k=(A−B)1|z|[1−∞∑k=1ξk,m(p,q)|ak||z|k+1−∞∑k=1μk,m(p,q)|bk||z|k+1]>(A−B)1|z|[1−∞∑k=1ξk,m(p,q)|ak|−∞∑k=1μk,m(p,q)|bk|]≥0. |
Hence, we complete the proof of (i). Also, applying the same method as (i), we can obtain (ii).
The harmonic univalent function
f(z)=1z+∞∑k=1A−Bukωmk(λ,p,q)[k(1−B)+(1−A)]xkzk+A−Bvkωmk(λ,p,q)[k(1−B)−(1−A)]¯ykzk, | (2.6) |
where ∑∞k=1(|xk|+|yk|)=1, shows that the coefficient bound given by (2.1) is sharp.
Theorem 2. Let f=h+¯g be given by (1.17). Then
(i) f∈˜Mp,qϕ(λ,m,A,B) iff (2.1) holds true.
(ii) f∈˜Kp,qϕ(λ,m,A,B) iff (2.3) holds true.
Proof. (i) It appears from (1.17) that ˜Mp,qϕ(λ,m,A,B)⊂Mp,qϕ(λ,m,A,B). In view of Theorem 1, it is straightforward to show that if f∈˜Mp,qϕ(λ,m,A,B), then (2.1) holds true. Next, we use the method in [11] to prove.
Let f∈˜Mp,qϕ(λ,m,A,B), then it satisfies (1.19) or equivalently
|∑∞k=1θk,1uk|ak|zk+∑∞k=1θk,2vk|bk|ˉzk(A−B)1z+∑∞k=1σk,1uk|ak|zk−∑∞k=1σk,2vk|bk|ˉzk|<1(z∈U∗). | (2.7) |
From (2.7), we get
Re{∑∞k=1θk,1uk|ak|zk+∑∞k=1θk,2vk|bk|ˉzk(A−B)1z+∑∞k=1σk,1uk|ak|zk−∑∞k=1σk,2vk|bk|ˉzk}<1, | (2.8) |
which holds for all z∈U∗. Setting z=r(0<r<1) in (2.8), we get
∑∞k=1θk,1uk|ak|rk+1+∑∞k=1θk,2vk|bk|rk+1(A−B)+∑∞k=1σk,1uk|ak|rk+1−∑∞k=1σk,2vk|bk|rk+1<1. | (2.9) |
Thus, from (2.9) we have
∞∑k=1[ξk,m(p,q)|ak|+μk,m(p,q)|bk|]rk+1<1(0<r<1), | (2.10) |
where ξk,m(p,q) and μk,m(p,q) are given by (2.2).
Putting
Sn=n∑k=1(ξk,m(p,q)|ak|+μk,m(p,q)|bk|). |
For the series ∑∞k=1[ξk,m(p,q)|ak|+μk,m(p,q)|bk|], {Sn} is the nondecreasing sequence of partial sums of it. Moreover, by (2.10) it is bounded by 1. Therefore, it is convergent and
∞∑k=1(ξk,m(p,q)|ak|+μk,m(p,q)|bk|)=limn→∞Sn≤1. |
Thus, we get the inequality (2.1). Similarly, it is easy to prove (ii) of Theorem 2.
Clearly, from Theorem 2, we have
˜Kp,qϕ(λ,m,A,B)⊂˜Mp,qϕ(λ,m,A,B). | (2.11) |
Next, we give the extreme points of these classes.
Theorem 3. Let Xk≥0,Yk≥0,∑∞k=0Xk+∑∞k=1Yk=1,ξk,m(p,q) and μk,m(p,q) be given by (2.2).
(i) If f∈˜Mp,qϕ(λ,m,A,B). Then f∈clco˜Mp,qϕ(λ,m,A,B) iff
f(z)=∞∑k=0Xkhk+∞∑k=1Ykgk(z∈U∗), | (2.12) |
where
{h0=1z,hk=1z+1ξk,m(p,q)zk,k≥1,gk=1z−1μk,m(p,q)ˉzk,k≥1. | (2.13) |
(ii) If f∈˜Kp,qϕ(λ,m,A,B). Then f∈clco˜Kp,qϕ(λ,m,A,B) iff the condition (2.12) holds and
{h0=1z,hk=1z+1kξk,m(p,q)zk,k≥1,gk=1z−1kμk,m(p,q)ˉzk,k≥1. | (2.14) |
Proof. From (2.12) we get
f(z)=(X0+∞∑k=1[Xk+Yk])1z+∞∑k=11ξk,m(p,q)Xkzk−∞∑k=11μk,m(p,q)Yk¯zk. |
Since 0≤Xk≤1(k=0,1,2,⋯), we obtain
∞∑k=1ξk,m(p,q)1ξk,m(p,q)Xk+∞∑k=1μk,m(p,q)1μk,m(p,q)Yk=∞∑k=1Xk+Yk=1−X0≤1. |
It follows, from (i) of Theorem 2, that f∈˜Mp,qϕ(λ,m,A,B).
Conversely, if f∈˜Mp,qϕ(λ,m,A,B), then
|ak|≤1ξk,m(p,q) and |bk|≤1μk,m(p,q). |
Putting Xk=ξk,m(p,q)|ak|,Yk=μk,m(p,q)|bk| and X0=1−∑∞k=1Xk−∑∞k=1Yk≥0, we obtain
f(z)=1z+∞∑k=1|ak|zk−∞∑k=1|bk|¯zk=(∞∑k=0Xk+∞∑k=1Yk)1z+∞∑k=11ξk,m(p,q)Xkzk−∞∑k=11μk,m(p,q)Yk¯zk=∞∑k=0hk(z)Xk+∞∑k=1gk(z)Yk. |
Thus f can be expressed in the form of (2.12). The remainder of the proof is analogous to (i) in Theorem 3 and so we omit.
Next, using Theorem 2, we proceed to discuss the distortion theorems for functions of these classes.
Theorem 4. Let f=h+¯g be of the form (1.17), |z|=r∈(0,1), ξk,m(p,q) and μk,m(p,q) are defined by (2.2), {ξk,m(p,q)} and {μk,m(p,q)} are non-decreasing sequences. If f∈˜Mp,qϕ(λ,m,A,B), then
1r−rmin{ξ1,m(p,q),μ1,m(p,q)}≤|f(z)|≤1r+rmin{ξ1,m(p,q),μ1,m(p,q)}. |
Proof. For f∈˜Mp,qϕ(λ,m,A,B), using Theorem 2 and (2.1), we have
|f(z)|=|1z+∞∑k=1|ak|zk−∞∑k=1|bk|¯zk|≤1r+1min{ξ1,m(p,q),μ1,m(p,q)}∞∑k=1(ξk,m(p,q)|ak|+μk,m(p,q)|bk|)r≤1r+1min{ξ1,m(p,q),μ1,m(p,q)}r |
and
|f(z)|≥1r−(∞∑k=1|ak|+∞∑k=1|bk|)r≥1r−1min{ξ1,m(p,q),μ1,m(p,q)}r. |
The result is sharp and the extremal function is
f(z)=1z−1min{ξ1,m(p,q),μ1,m(p,q)}z. |
So, we complete the proof of Theorem 4.
By virtue of Theorem 4, we obtain the following covering result.
Theorem 5. Let ξk,m(p,q) and μk,m(p,q) be given by (2.2). If f∈˜Mp,qϕ(λ,m,A,B), then
{w:|w|<1−1min{ξ1,m(p,q),μ1,m(p,q)}}⊂f(U∗). |
Theorem 6. The classes ˜Mp,qϕ(λ,m,A,B) and ˜Kp,qϕ(λ,m,A,B) are closed under convex combinations.
Remark 1. By taking the special values of the parameters λ,p,q,m,A,B and ϕ in Theorems 1-6, it is easy to show the corresponding results for the classes MHS∗(γ) and MCH(γ) which are defined in Section 1.
Especially, let λ=0,p=q=m=1,A=1−2γ,B=−1,0≤γ<1 and ϕ(z)=1z+∑∞k=1(zk+ˉzk) in Theorem 2, we can obtain the results of Theorems 1 and 7 in [9].
Corollary 1. Let f=h+¯g be given by (1.17). Then
(i) f∈MHS∗(γ) iff
∞∑k=1k+γ1−γ|ak|+k−γ1−γ|bk|≤1. |
(ii) f∈MCH∗(γ) iff
∞∑k=1k(k+γ)1−γ|ak|+k(k−γ)1−γ|bk|≤1. |
Next, in order to obtain the convolution properties of functions belonging to the classes ˜Mp,qϕ(λ,m,A,B) and ˜Kp,qϕ(λ,m,A,B), we now introduce a new class of harmonic functions.
Definition 2. Let δ≥0, the function f=h+¯g of the form (1.17) belongs to the class ˜Lδ,p,qϕ(λ,m,A,B) if and only if
∞∑k=1kδξk,m(p,q)|ak|+∞∑k=1kδμk,m(p,q)|bk|≤1, | (3.1) |
where ξk,m(p,q) and μk,m(p,q) are defined by (2.2).
Obviously, for any positive integer δ, we have the following inclusion relation:
˜Lδ,p,qϕ(λ,m,A,B)⊂˜Kp,qϕ(λ,m,A,B)⊂˜Mp,qϕ(λ,m,A,B). | (3.2) |
Let the harmonic functions ft(t=1,2,⋯,ρ) and Fl(l=1,2,⋯,η) of the following form
ft(z)=ht(z)+¯gt(z)=1z+∞∑k=1|ak,t|zk−∞∑k=1|bk,t|¯zk,|b1,t|<1 | (3.3) |
and
Fl(z)=Hl(z)+¯Gl(z)=1z+∞∑k=1|Ak,l|zk−∞∑k=1|Bk,l|¯zk,|B1,ℓ|<1. | (3.4) |
We define the Hadamard product (or convolution) of ft and Fℓ by
(ft∗Fl)(z):=1z+∞∑k=1|ak,t||Ak,l|zk−∞∑k=1|bk,t||Bk,l|¯zk=:(Fl∗ft)(z), | (3.5) |
where t=1,2,⋯,ρ and l=1,2,⋯,η.
Using Theorem 2, we obtain the following results.
Theorem 7. Let ft of the form (3.3) be in the class ˜Kp,qϕ(λ,m,A,B)(t=1,2,⋯,ρ) and Fl of the form (3.4) be in the class ˜Mp,qϕ(λ,m,A,B)(l=1,2,⋯,η). Then the Hadamard product (f1∗f2∗⋯∗fρ∗F1∗F2∗⋯∗Fη)(z) belongs to the class ˜Lδ,p,qϕ(λ,m,A,B), where δ=2ρ+η−1.
Proof. Using the method in [8] to prove the theorem. Putting
χ(z)=(f1∗f2∗⋯∗fρ∗F1∗F2∗⋯∗Fη)(z). | (3.6) |
From (3.6) we have
χ(z)=1z+∞∑k=1(ρ∏t=1|ak,t|η∏l=1|Ak,l|)zk−∞∑k=1(ρ∏t=1|bk,t|η∏l=1|Bk,l|)¯zk. | (3.7) |
According to Definition 2, we only need to show that
∞∑k=1k2ρ+η−1ξk,m(p,q)(ρ∏t=1|ak,t|η∏l=1|Ak,l|)+∞∑k=1k2ρ+η−1μk(p,q)(ρ∏t=1|bk,t|η∏l=1|Bk,l|)≤1, | (3.8) |
where ξk,m(p,q) and μk,m(p,q) are defined by (2.2).
For ft∈˜Kp,qϕ(λ,m,A,B), we obtain
∞∑k=1kξk,m(p,q)|ak,t|+∞∑k=1kμk,m(p,q)|bk,t|≤1, | (3.9) |
for every t=1,2,⋯,ρ. Therefore
kξk,m(p,q)|ak,t|≤1 and kμk,m(p,q)|bk,t|≤1. | (3.10) |
Further, by ξk,m(p,q)≥k and μk,m(p,q)≥k, we have
|ak,t|≤k−2and|bk,t|≤k−2 (t=1,2,⋯,ρ). | (3.11) |
Also, since Fl∈˜Mp,qϕ(λ,m,A,B), we have
∞∑k=1ξk,m(p,q)|Ak,l|+∞∑k=1μk,m(p,q)|Bk,l|≤1 (l=1,2,⋯,η). | (3.12) |
Hence we obtain
|Ak,l|≤k−1and|Bk,l|≤k−1 (l=1,2,⋯,η). | (3.13) |
Using (3.11) for t=1,2,⋯,ρ, (3.13) for l=1,2,⋯,η−1 and (3.12) for l=η, we obtain
∞∑k=1k2ρ+η−1ξk,m(p,q)(ρ∏t=1|ak,t|η−1∏l=1|Ak,l|)|Ak,η|+∞∑k=1k2ρ+η−1μk,m(p,q)(ρ∏t=1|bk,t|η−1∏l=1|Bk,l|)|Bk,η|≤∞∑k=2k2ρ+η−1(ξk,m(p,q)k−2ρk−(η−1))|Ak,η|+∞∑k=1k2ρ+η−1(μk,m(p,q)k−2ρk−(η−1))|Bk,η|=∞∑k=1ξk,m(p,q)|Ak,l|+∞∑k=1μk,m(p,q)|Bk,l|≤1, |
and therefore χ(z)∈˜Lδ,p,qϕ(λ,m,A,B),δ=2ρ+η−1. We note that the required estimate can also be obtained by using (3.11) for t=1,2,⋯,η−1; (3.13) for l=1,2,⋯,η and (3.9) for t=ρ.
Taking into account the Hadamard product of functions f1∗f2∗⋯∗fρ only, in the proof of Theorem 3.3, and using (3.11) for t=1,2,…,ρ−1; and relation (3.9) for t=ρ, we are led to
Corollary 2. Let the functions ft defined by (3.3) be in the class ˜Kp,qϕ(λ,m,A,B) for every t=1,2,…,ρ. Then the Hadamard product (f1∗f2∗⋯∗fρ)(z) belongs to the class ˜L2ρ−1,p,qϕ(λ,m,A,B).
Also, taking into account the Hadamard product of functions F1∗F2∗⋯∗Fη only, in the proof of Theorem 3.3, and using (3.13) for l=1,2,…,η−1; and relation (3.12) for l=η, we are led to
Corollary 3. Let the functions Fm,l defined by (3.4) be in the class ˜Mp,qϕ(λ,m,A,B) for every l=1,2,…,η. Then the Hadamard product (F1∗F2∗⋯∗Fη)(z) belongs to the class ˜Lη−1,p,qϕ(λ,m,A,B).
Remark 2. For different choices of the parameters λ,p,q,m,A,B and ϕ in Theorem 7, we can deduce some new results for each of the following univalent harmonic function classes MHS∗(γ) and MCH(γ) which are defined in Section 1.
This work was supported by Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2019MS01023; Grant No. 2020MS01011; Grant No. 2018MS01026) and Research Program of science and technology at Universities of Inner Mongolia Autonomous Region (Grant No. NJZZ19209; Grant No. NJZY20198).
The authors agree with the contents of the manuscript, and there is no conflict of interest among the authors.
[1] | P. L. Duren, Univalent functions, Springer-Verlag, New York, 1983. |
[2] | R. Chakrabarti, R. Jagannathan, On the representations of GLp, q(2), GLp, q(1|1) and noncommutative spaces, J. Phys. A: Math. Gen., 24 (1991), 5683-5703. |
[3] |
O. P. Ahuja, A. Cetinkaya, V. Ravichandran, Harmonic univalent functions defined by post quantum calculus operators, Acta Univ. Sapientiae, Mathematica, 11 (2019), 5-17. doi: 10.2478/ausm-2019-0001
![]() |
[4] | J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn., 9 (1984), 3-25. |
[5] | P. Duren, B. Bollobás, W. Fulton, A. Katok, F. Kirwan, P. Sarnak, et al., Harmonic Mappings in the Plane, Cambridge University Press, 2004. |
[6] | H. Aldweby, M. Darus, A new subclass of harmonic meromorphic functions involving quantum calculus, Journal of Classical Analysis, 6 (2015), 153-162. |
[7] | H. Bostanci, M. O¨ztürk, New classes of Salagean type meromorphic harmonic functions, International Journal of Mathematics Sciences, 2 (2008), 471-476. |
[8] | R. M. El-Ashwah, B. A. Frasin, Hadamard product of certain harmonic univalent meromorphic functions, Theory and Applications of Mathematics & Computer Science, , 5 (2015), 126-131. |
[9] | J. M. Jahangiri, Harmonic meromorphic starlike functions, B. Korean Math. Soc., 37 (2000), 291-301. |
[10] | J. M. Jahangiri, H. Silverman, Harmonic meromorphic univalent functions with negative coefficients, B. Korean Math. Soc., 36 (1999), 763-770. |
[11] | J. Dziok. On Janowski harmonic functions, Journal of Applied Analysis, 21 (2015), 99-107. |
1. | Adriana Cătaş, On the Fekete–Szegö Problem for Meromorphic Functions Associated with p,q-Wright Type Hypergeometric Function, 2021, 13, 2073-8994, 2143, 10.3390/sym13112143 |