Processing math: 100%
Research article

On employing linear algebra approach to hybrid Sheffer polynomials

  • Received: 05 July 2022 Revised: 29 September 2022 Accepted: 10 October 2022 Published: 26 October 2022
  • MSC : 15A15, 15A24, 33E30, 65QXX

  • By employing practical and effective matrix algebra, this article aims to investigate specific properties of truncated exponential-Sheffer polynomials. This method provides a valuable tool for researching multivariable special polynomial properties. The properties and association between the Pascal functional and Wronskian matrices are used to build the recursive equations and differential equation for these polynomials, as well as for several members of the truncated exponential-Sheffer family. The corresponding results for the truncated exponential-associated Sheffer and truncated exponential-Appell families is specified, as well as some examples are given. Finally a conclusion with a truncated exponential-Sheffer polynomial identity is provided.

    Citation: Mdi Begum Jeelani. On employing linear algebra approach to hybrid Sheffer polynomials[J]. AIMS Mathematics, 2023, 8(1): 1871-1888. doi: 10.3934/math.2023096

    Related Papers:

    [1] Raziya Sabri, Mohammad Shadab, Kotakkaran Sooppy Nisar, Shahadat Ali . A new family of differential and integral equations of hybrid polynomials via factorization method. AIMS Mathematics, 2022, 7(8): 13845-13855. doi: 10.3934/math.2022764
    [2] Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638
    [3] Hailun Wang, Fei Wu, Dongge Lei . A novel numerical approach for solving fractional order differential equations using hybrid functions. AIMS Mathematics, 2021, 6(6): 5596-5611. doi: 10.3934/math.2021331
    [4] Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439
    [5] Shahid Ahmad Wani, Kottakkaran Sooppy Nisar . Quasi-monomiality and convergence theorem for the Boas-Buck-Sheffer polynomials. AIMS Mathematics, 2020, 5(5): 4432-4443. doi: 10.3934/math.2020283
    [6] Yasmina Khiar, Esmeralda Mainar, Eduardo Royo-Amondarain, Beatriz Rubio . High relative accuracy for a Newton form of bivariate interpolation problems. AIMS Mathematics, 2025, 10(2): 3836-3847. doi: 10.3934/math.2025178
    [7] Yunbo Tian, Sheng Chen . Prime decomposition of quadratic matrix polynomials. AIMS Mathematics, 2021, 6(9): 9911-9918. doi: 10.3934/math.2021576
    [8] Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . On generalized Hermite polynomials. AIMS Mathematics, 2024, 9(11): 32463-32490. doi: 10.3934/math.20241556
    [9] Waleed Mohamed Abd-Elhameed, Anna Napoli . New formulas of convolved Pell polynomials. AIMS Mathematics, 2024, 9(1): 565-593. doi: 10.3934/math.2024030
    [10] Khadijeh Sadri, David Amilo, Kamyar Hosseini, Evren Hinçal, Aly R. Seadawy . A tau-Gegenbauer spectral approach for systems of fractional integro-differential equations with the error analysis. AIMS Mathematics, 2024, 9(2): 3850-3880. doi: 10.3934/math.2024190
  • By employing practical and effective matrix algebra, this article aims to investigate specific properties of truncated exponential-Sheffer polynomials. This method provides a valuable tool for researching multivariable special polynomial properties. The properties and association between the Pascal functional and Wronskian matrices are used to build the recursive equations and differential equation for these polynomials, as well as for several members of the truncated exponential-Sheffer family. The corresponding results for the truncated exponential-associated Sheffer and truncated exponential-Appell families is specified, as well as some examples are given. Finally a conclusion with a truncated exponential-Sheffer polynomial identity is provided.



    Special polynomials with two variables are critical from the standpoint of applications. These polynomials make it simple to derive a variety of useful identities and aid in the introduction of new families of special polynomials. Bretti et al. [5], established the general classes of two-variable Appell polynomials in utilising the features of an iterated isomorphism linked to Laguerre-type exponentials. Several writers investigated the two variable forms of the Hermite, Laguerre, and truncated exponential polynomials, as well as their generalisations (see [3,6,7,8].

    The truncated exponential polynomials (TEP) em(u) possess the series[1]:

    mi=0uii!=em(u). (1.1)

    Many issues in optics and quantum physics use these polynomials. The features of these polynomials aren't well understood. The literatures of Dattoli et al. [7] provided the first detailed research of some properties of these polynomials.

    The Succeeding series formulation can be used to deduce the most notable features of these polynomials, and the integral illustration for em(u) is given as:

    +0eξ(u+ξ)mdξ=m!em(u) (1.2)

    which being a significant outcome of relation [1]:

    +0eξξmdξ=m!. (1.3)

    Consequently, em(u) are defined [7,p. 596 (4)]:

    m=0em(u)tm=eut1t. (1.4)

    Dattoli et al. [7] developed a 2-variable extension of the truncated exponential polynomials(TEP), which is being useful in the evaluation of integrals involving products of special functions and in a variety of optics and quantum mechanics situations.

    We recall that the following generating relation [7] for 2-variable TEP is given by

    m=0[2]em(u,v)tm=eut1vt2 (1.5)

    and the succeeding series relation

    [m2]i=0vkum2i(m2i)!=[2]em(u,v). (1.6)

    Recalling the generating relation of higher order 2-variable TEP [7,p. 599 (31)]

    m=0[r]em(u,v)tm=eut1vtr (1.7)

    and the succeeding series relation:

    [mr]i=0viumri(mri)!=[r]em(u,v). (1.8)

    In light of the expressions (1.7), (1.5) and (1.4), we find

    [2]em(u,v)=e(2)m(u,v),em(u)=e(1)m(u,1). (1.9)

    Note down that

    Um(v)=[2]em(0,v), (1.10)

    where Um(v) denotes the second-order Chebyshev polynomials given by the generating relation [1]

    m=0Um(v)tm=1(12ut+t2),|t|<1;u1. (1.11)

    We know that the class of Sheffer sequences [14] is an important class which appears in a variety of problems in applied mathematics, theoretical physics, approximation theory, and other disciplines of mathematics.

    m=0fmtmm!=f(t),f0=0,f10 (1.12)

    and

    m=0gmtmm!=g(t),g00. (1.13)

    sm(u) is determined uniquely in Roman [12] by two formal power series and it is given by exponential generating relation for sm(u) as

    m=0sm(u)tmm!=euf1(t)g(f1(t)),uC, (1.14)

    where the compositional inverse of f(t) is f1(t).

    It should be noted that for g(t)=1, the sm(u) reduces to sm(u) called associated-Sheffer sequence and for f(t)=t, it reduces to Am(u) known as the Appell sequence [2].

    These sequences are given by the generating relations

    m=0sm(u)tmm!=euf1(t) (1.15)

    and

    m=0Am(u)tmm!=eutg(t), (1.16)

    respectively.

    In the table below, chosen members of the Sheffer, associated Sheffer, and Appell polynomial families are listed:

    Table 1.  Certain members of the Sheffer-Appell and associated Sheffer families.
    Sheffer family
    S. No. g(t);f(t);f1(t) Generating function Polynomials
    Ⅰ. et24;t2;2t e2utt2=m=0Hm(u)tmm! Hermite polynomials
    Hm(u)[1]
    Ⅱ. (1t)γ;ln(1t);1et exp(γt+u(1et))=m=0a(γ)m(u)tmm! Actuarial polynomials
    a(γ)m(u) [12]
    Ⅲ. (1t)(p+1) 1(1t)p+1eut=m=0G(p)m(u)tmm! MIller-Lee polynomials
    G(p)m(u) [1]
    Ⅳ. et+12 2et+1eut=m=0Em(u)tmm! Euler polynomials
    Em(u) [11]
    Associated Sheffer family
    S. No. f(t); f1(t) Generating function Polynomials
    Ⅰ. ln(1+t); et1 exp(u(et1))=m=0ϕm(u)tmm! Exponential polynomials
    ϕn(x) [4]
    Ⅱ. et1et+1; log(1+t1t) (1+t1t)u=m=0Mm(u)tmm! Mittag-Leffler polynomials
    Mm(u) [12]

     | Show Table
    DownLoad: CSV

    The truncated exponential-Sheffer polynomials are introduced and studied by Khan et al. [9] in 2014. Recalling that the truncated exponential-Sheffer polynomials (TESP) e(r)sm(u,v) are defined by the following generating function:

    1g(f1(t))(1v(f1(t))r)exp(xf1(t))=m=0e(r)sm(u,v)tmm!,u,vC, (1.17)

    where f1(t) is the compositional inverse of f(t).

    Note. It should be noted that for g(t)=1, the truncated exponential-Sheffer sequence e(r)sm(u,v) becomes the truncated exponential-associated Sheffer sequence e(r)sm(u,v) and for f(t)=t, it becomes the truncated exponential-Appell sequence e(r)Am(u,v).

    We review some definitions and concepts related to the Pascal and Wronskian matrices which will be used for derivation of the results in Sections 2, 3 and 5.

    Let {j(u)=k=0aktii!=F|aiC} be power series in the C-algebra. The generalized Pascal functional matrix [15] of an analytic function g(t) for g(t)F is a square matrix of order (m+1) denoted by Pm[g(t)] and defined as:

    (Pm[g(t)])j,k={(jk)g(jk)(t),ifjk,j,k=0,1,2,,n0,otherwise. (1.18)

    It should be noted that g(i) represents the ith order derivative of g and gi denotes the ith power of g throughout the article.

    Also, Wronskian matrix of the nth order of an analytic functions g1(t),g2(t),g3(t),,gm(t) is an (m+1)×m matrix defined by:

    Wm[g1(t),g2(t),g3(t),,gm(t)]=[g1(t)g2(t)g3(t)gm(t)g1(t)g2(t)g3(t)gm(t)g(n)1(t)g(n)2(t)g(n)3(t)g(n)m(t)]. (1.19)

    It is important to note that in the expressions Pm[g(x,t)]t=0 and Wm[g(x,t)]t=0, we consider t as working variable and x is as a parameter.

    We recall certain important properties and relationships between the Pascal functional and Wronskian matrices [16].

    For any a,bC and any analytic functions g(t),g(t)F, the following properties hold true:

    Pm[ag(t)+bg(t)]=aPm[g(t)]+bPm[f(t)]. (1.20)
    Wm[ag(t)+bg(t)]=aWm[g(t)]+bWm[f(t)]. (1.21)
    Pm[g(t)]Pm[f(t)]=Pm[f(t)]Pm[g(t)]=Pm[g(t)f(t)]. (1.22)
    Pm[g(t)]Wm[f(t)]=Pm[f(t)]Wm[g(t)]=Wm[(gf)(t)]. (1.23)
    Wm[f(g(t))]t=0=Wm[1,g(t),g2(t),g3(t),,gn(t)]t=0Λ1nWm[f(t)]t=0, (1.24)

    where Λm= diag[0!,1!,2!,,m!]; g(0)=0 and g(0)0.

    Further, for any analytic functions g1(t),g2(t),,gm(t) and f(t), the following property holds true:

    Pm[f(t)]Wm[g1(t),g2(t),,gm(t)]=Wm[(gg1)(t),(gg2)(t),,(ggm)(t)]. (1.25)

    The significance of the two variable forms of special polynomials in applications, as well as recent work on Sheffer sequences using a matrix approach [10,16], provides an incentive to develop recursive formulas and differential equations for truncated exponential-Sheffer polynomials using the generalised Pascal functional matrix of an analytic function and the Wronskian matrix of several analytic functions. Section 2 establishes several recursive formulas for truncated exponential-Sheffer polynomials e(r)sm(u,v). The differential equations for these polynomials are derived in Section 3. In Section 4, we look at few cases that provide solutions for some hybrid special polynomials. The identity for the truncated exponential-Sheffer polynomial sequences is determined in the final section.

    To utilize the Wronskian matrices, the vector form of the TESP is required.

    The TES vector denoted by ¯e(r)sm(u,v) is defined as:

    ¯e(r)sm(u,v)=[e(r)s0(u,v)e(r)s1(u,v)e(r)s2(u,v)...e(r)sm(u,v)]T, (2.1)

    where {e(r)sm(u,v)} is the TESP sequence defined by Eq (1.17).

    Since exp(uf1(t))g(f1(t))(1v(f1(t))r) is analytic, therefore by Taylor's expansion, it follows that

    e(r)sk(u,v)=(ddt)kexp(uf1(t))g(f1(t))(1v(f1(t))r)|t=0,k0. (2.2)

    In view of Eq (2.2), the truncated exponential-Sheffer vector (2.1) can be expressed as:

    ¯e(r)sm(u,v)=[e(r)s0(u,v)e(r)s1(u,v)e(r)s2(u,v)...e(r)sm(u,v)]T=Wm[exp(uf1(t))g(f1(t))(1v(f1(t))r)]t=0. (2.3)

    The following Lemma must be proved before proceeding with the formulation of the recursive formulas for the truncated exponential-Sheffer polynomial sequence.

    Lemma 2.1. The following property holds for the truncated exponential-Sheffer polynomial sequence e(r)sm(u,v):

    Wm[e(r)s0(u,v),e(r)s1(u,v),e(r)s2(u,v),...,e(r)sm(u,v)]TΛ1n=Wm[1,f1(t),(f1(t))2,,(f1(t))n]t=0Λ1nPm[1g(t)(1vtr)]t=0Pm[ext]t=0. (2.4)

    Proof. It follows from using property (1.24) in the r.h.s. of Eq (2.3) that

    [e(r)s0(u,v)e(r)s1(u,v)e(r)s2(u,v)...e(r)sm(u,v)]T=Wm[1,f1(t),(f1(t))2,,(f1(t))n]t=0Λ1n×Wm[extg(t)(1vtr)]t=0. (2.5)

    For, Wm[ext]t=0=[1xx2xn]T and using relation (1.23), the above expression can be written as

    [e(r)s0(u,v)e(r)s1(u,v)e(r)s2(u,v)...e(r)sm(u,v)]T=Wm[1,f1(t),(f1(t))2,,(f1(t))n]t=0Λ1n×Pm[1g(t)(1vtr)]t=0[1xx2xn]T. (2.6)

    Division by k! and differentiation of (2.6) k times with regard to x results in

    1k![e(r)s(k)0(u,v)e(r)s(k)1(u,v)e(r)s(k)2(u,v)...e(r)s(k)n(u,v)]T
    =Wm[1,f1(t),(f1(t))2,,(f1(t))n]t=0Λ1n
    ×Pm[1g(t)(1vtr)]t=0[001(k+1k)x(k+2k)x2(nk)xnk]T. (2.7)

    The left part of (2.7) is the kth column of

    Wm[e(r)s0(u,v)e(r)s1(u,v)e(r)s2(u,v)...e(r)sm(u,v)]TΛ1n

    and the right part of (2.7) is the kth column of

    Wm[1,f1(t),(f1(t))2,,(f1(t))n]t=0Λ1nPm[1g(t)(1vtr)]t=0Pm[ext]t=0.

    Thus (2.4) is proved.

    Next, for e(r)sm(u,v) certain recursive formulas are established.

    First, we expresses e(r)sm+1(u,v) in terms of e(r)sm(u,v) by deriving a recursive formula and its derivatives in the following manner.

    Theorem 2.2. For e(r)sm(u,v), the succeeding recursive formula holds:

    mk=0(xδk+ryμk+ηk)e(r)s(k)n(u,v)k!=e(r)sm+1(u,v),n0, (2.8)

    where

    1g(0)=e(r)s0(u,v);(1f(t))(k)|t=0=δk;(tr1(1vtr)f(t))(k)|t=0=μk

    and

    (g(t)g(t)f(t))(k)|t=0=ηk.

    Proof. In light of (1.19) and (2.2), we find

    [e(r)s1(u,v)e(r)s2(u,v)e(r)s3(u,v)...e(r)sm+1(u,v)]T=Wm[ddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0. (2.9)

    Using expressions (1.22)–(1.24) in a suitable manner and differentiating Wm[ddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0, we find

    Wm[ddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0=Wm[(x+ry(f1(t))r11v(f1(t))rg(f1(t))g(f1(t)))(1f(f1(t)))(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0=Wm[1,f1(t),(f1(t))2,,(f1(t))n]t=0Λ1n×Pm[1g(t)(1vtr)]t=0Pm[exp(xt)]t=0Wm[(x+rytr11vtrg(t)g(t))1f(t)]t=0, (2.10)

    which in light of Lemma 2.1 becomes

    Wm[ddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0=Wm[e(r)s0(u,v),e(r)s1(u,v),e(r)s2(u,v),,e(r)sm(u,v)]TΛ1n×Wm[(xf(t)+rytr1(1vtr)f(t)g(t)g(t)f(t))]t=0
    =[e(r)s0(u,v)000e(r)s1(u,v)e(r)s1(u,v)1!00e(r)s2(u,v)e(r)s2(u,v)1!e(r)s2(u,v)2!0e(r)sm(u,v)e(r)sm(u,v)1!e(r)smx,y)2!e(r)s(n)m(u,v)m!][xδ0+ryμ0+η0xδ1+ryμ1+η1xδm+ryμn+ηm]. (2.11)

    Assertion (2.8) is obtained by comparing the last rows of (2.9) and (2.11).

    Remark 2.3. For g(t)=1 ηk=0 (k0), thus for g(t)=1 and as a result of Theorem 2.1, we arrive at the following conclusion.

    Corollary 2.4. For e(r)sn(u,v), the succeeding recursive relation holds

    mk=0(xδk+ryμk)e(r)s(k)n(u,v)k!=e(r)sm+1(u,v),n0, (2.12)

    where

    1=e(r)s0(u,v);(1f(t))(k)|t=0=δk;(tr1(1vtr)f(t))(k)|t=0=μk.

    Remark 2.5. Consequently for f(t)=t δ0=1; δk=0 (k0), thus for t=f(t) as a result of Theorem 2.1, we arrive at the following conclusion.

    Corollary 2.6. For the e(r)Am(u,v), the succeeding recursive formula holds

    xe(r)Am(u,v)+mk=0(ryϑk+σk)e(r)A(k)m(u,v)k!=e(r)Am+1(u,v),n0, (2.13)

    where

    1g(0)=e(r)A0(u,v);(tr1(1vtr))(k)|t=0=ϑk;(g(t)g(t))(k)|t=0=σk.

    Further, a pure recursive formula for the truncated exponential-Sheffer polynomials is derived by proving the result.

    Theorem 2.7. For e(r)sm(u,v), the succeeding recursive formula holds.

    xe(r)sm(u,v)+mk=0(mk)(ςk+θk)e(r)snk(u,v)nk=1(mk)ϵke(r)sm+1k(u,v)=ϵ0e(r)sm+1(u,v),n0, (2.14)

    where

    1g(0)=e(r)s0(u,v);(f(f1(t)))(k)|t=0=(1(f1(t)))(k)|t=0=ϵk;
    ((f1(t))r1(1v(f1(t))r)f(f1(t)))(k)|t=0=ςk;(g(f1(t))g(f1(t)))(k)|t=0=θk.

    Proof. In light of property (1.23), the expression Wm[f(f1(t))ddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0 takes the form:

    Wm[f(f1(t))ddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0=Pm[ddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0Wm[f(f1(t))]t=0=[e(r)s1(u,v)000e(r)s2(u,v)e(r)s1(u,v)00e(r)s3(u,v)(21)e(r)s2(u,v)e(r)s1(u,v)0e(r)sm+1(u,v)(n1)e(r)sm(u,v)(n2)e(r)sn1(u,v)e(r)s1(u,v)][ϵ0ϵ1ϵ2ϵn]. (2.15)

    When differentiation is performed in the same expression and properties (1.21) and (1.23) are used, it follows that

    Wm[f(f1(t))ddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0=xWm[exp(uf1(t))g(f1(t))(1v(f1(t))r)]t=0+Pm[exp(uf1(t))g(f1(t))(1v(f1(t))r)]t=0×Wm[ry(f1(t))r11v(f1(t))rg(f1(t))g(f1(t))]t=0=x[e(r)s0(u,v)e(r)s1(u,v)e(r)s2(u,v)e(r)sm(u,v)]+[e(r)s0(u,v)000e(r)s1(u,v)e(r)s0(u,v)00e(r)s2(u,v)(21)e(r)s1(u,v)e(r)s0(u,v)0e(r)sm(u,v)(n1)e(r)sn1(u,v)(n2)e(r)sn2(u,v)e(r)s0(u,v)][ryς0+θ0ryς1+θ1ryς2+θ2ryςm+θm]. (2.16)

    Assertion (2.14) is established by comparing the last rows of (2.15) and (2.13).

    Remark 2.8. Since g(t)=1 θk=0 (k0), thus for g(t)=1 and as a result of Theorem 2.2, we arrive at the following conclusion.

    Corollary 2.9. For e(r)sn(u,v), the succeeding pure recursive formula holds.

    xe(r)sm(u,v)+mk=0(mk)ςke(r)snk(u,v)nk=1(mk)ϵke(r)sm+1k(u,v)=ϵ0e(r)sm+1(u,v),n0, (2.17)

    where

    1g(0)=e(r)s0(u,v);(f(f1(t)))(k)|t=0=(1(f1(t)))(k)|t=0=ϵk;
    ((f1(t))r1(1v(f1(t))r)f(f1(t)))(k)|t=0=ςk.

    Remark 2.10. Since f(t)=t ϵ0=1; ϵk=0 (k0), thus for f(t)=t.

    Corollary 2.11. For e(r)Am(u,v), the succeeding pure recursive formula holds

    xe(r)sm(u,v)+mk=0(mk)(τk+υk)e(r)snk(u,v)=e(r)sm+1(u,v),n0, (2.18)

    where

    1g(0)=e(r)s0(u,v);(tr1(1vtr)f(t))(k)|t=0=τk;(g(t)g(t))(k)|t=0=υk.

    Finally, by proving the following result, we derive a pure recursive formula that provides a representation of e(r)sm+1(u,v) in terms of e(r)snk(u,v) (k=0,1,2,cdotsn).

    Theorem 2.12. For e(r)sm(u,v), the succeeding pure recursive formula holds:

    mk=0(mk)(xϕk+ryξk+ψk)e(r)snk(u,v)=e(r)sm+1(u,v),n0, (2.19)

    where

    1g(0)=e(r)s0(u,v);(1f(f1(t)))(k)|t=0=ϕk;((f1(t))r1(1v(f1(t))r)f(f1(t)))|t=0=ξk;
    (g(f1(t))g(f1(t))1f(f1(t)))(k)|t=0=ψk.

    Proof. Differentiating Wm[ddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0 and then using (1.23), we have

    Wm[ddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0=Pm[(x+ry(f1(t))r11v(f1(t))rg(f1(t))g(f1(t)))1f(f1(t))]t=0Wm[exp(uf1(t))g(f1(t))(1v(f1(t))r)]t=0=[(xϕ0+ryξ0)+ψ000(xϕ1+ryξ1)+ψ1(xϕ0+ryξ0)+ψ00(xϕ2+ryξ2)+ψ2(21)((xϕ1+ryξ1)+ψ1)0(xϕn+ryξn)+ψn(n1)((xϕn1+ryξn1)+ψn1)(xϕ0+ryξ0)+ψ0]. (2.20)

    Assertion (2.19) is established by comparing the last rows of (2.9) and (2.20).

    Remark 2.13. Since g(t)=1 ψk=0 (k0), therefore for g(t)=1and as a result of Theorem 2.3, we arrive at the following conclusion.

    Corollary 2.14. For Lsn(u,v), the succeeding pure recursive formula holds

    mk=0(mk)(xϕk+ryξk)e(r)snk(u,v)=e(r)sm+1(u,v),n0, (2.21)

    where

    1g(0)=e(r)s0(u,v);(1f(f1(t)))(k)|t=0=ϕk;((f1(t))r1(1v(f1(t))r)f(f1(t)))|t=0=ξk.

    Remark 2.15. Noting down for f(t)=tϕ0=1; ϕk=0 (k0). Thus, taking f(t)=t, in Theorem 2.3, we deduce the consequence of Theorem 2.3.

    Corollary 2.16. For e(r)Am(u,v), the succeeding pure recursive formula holds

    xe(r)snk(u,v)+mk=0(mk)(ryχk+ωk)e(r)snk(u,v)=e(r)sm+1(u,v),n0,

    where

    1g(0)=e(r)s0(u,v);(tr1(1ytr)f(t))|t=0=χk;(g(t)g(t)1f(t))(k)|t=0=ωk.

    The differential equation satisfied by the truncated exponential-Sheffer polynomials e(r)sm(u,v) is derived in the following section.

    We prove the following result in order to derive the differential equation for the truncated exponential-Sheffer polynomials e(r)sm(u,v).

    Theorem 3.1. The following differential equation is satisfied by the truncated exponential-Sheffer polynomials e(r)sm(u,v).

    nk=1(βkx+ryγk+αk)kxke(r)sm(u,v)k!ne(r)sm(u,v)=0, (3.1)

    where

    (g(t)g(t)f(t)f(t))(k)|t=0=αk;(f(t)f(t))(k)|t=0=βk;(tr1f(t)(1vtr)f(t))(k)|t=0=γk.

    Proof. In light of (1.23), the relation Wn[tddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0 takes the form

    Wm[tddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0=Pm[t]t=0Wm[ddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0=[00000001000000020000000300000000n10000000n0][e(r)s1(u,v)e(r)s2(u,v)e(r)s3(u,v)e(r)sm(u,v)e(r)sm+1(u,v)]. (3.2)

    On the other hand, by performing differentiation in the same expression and appropriately applying properties (1.23)–(1.25), we have

    Wm[tddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0=Wm[1,f1(t),(f1(t))2,,(f1(t))n]t=0Λ1nPm[1(1vtr)g(t)]t=0Pm[ext]t=0×Wm[(x+rytr1(1vtr))f(t)f(t)g(t)g(t)f(t)f(t)]=Wm[1,f1(t),(f1(t))2,,(f1(t))n]t=0Λ1nPm[1(1vtr)g(t)]t=0Pm[ext]t=0×Wm[(xf(t)f(t)+(rytr11vtr)f(t)f(t)g(t)g(t)f(t)f(t))]. (3.3)

    In light of Lemma 2.1, (3.3) becomes

    Wm[tddt(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0=(Wm[e(r)s0(u,v),e(r)s1(u,v),e(r)s2(u,v),,e(r)sm(u,v)])T×Λ1nWm[(xf(t)f(t)+(rytr11vtr)f(t)f(t)g(t)g(t)f(t)f(t))]t=0=[e(r)s0(u,v)000e(r)s1(u,v)e(r)s1(u,v)1!00e(r)s2(u,v)e(r)s2(u,v)1!e(r)ss2(u,v)2!0e(r)sm(u,v)e(r)sm(u,v)1!e(r)sm(u,v)2!e(r)s(n)m(u,v)m!][xβ0+ryγ0+α0xβ1+ryγ1+α1xβm+ryγm+αm]. (3.4)

    Assertion (3.1) is proved by comparing the last rows of (3.2) and (3.4) and in light of the fact that

    f(0)=0α0=β0=γ0=0.

    Remark 3.2. For g(t)=1, the polynomials e(r)sm(u,v) reduces to the polynomials e(r)sn(u,v) and since g(t)=1αk=0(k1), the succeeding consequence of Theorem 3.1 is obtained.

    Corollary 3.3. The polynomials e(r)sn(u,v) satisfy the succeeding differential equation

    nk=1(xβk+ryγk)kxke(r)sn(u,v)k!ne(r)sn(u,v)=0, (3.5)

    where

    (f(t)f(t))(k)|t=0=βkand(tr1f(t)(1vtr)f(t))=γk.

    Remark 3.4. For f(t)=t, the polynomials e(r)sm(u,v) reduces to the polynomials e(r)Am(u,v) and since f(t)=tβ1=1; βk=0(k1), therefore, for f(t)=t, the succeeding consequence of Theorem 3.1 is obtained.

    Corollary 3.5. The polynomials e(r)Am(u,v) satisfy the succeeding differential equation

    xxe(r)Am(u,v)+nk=1(ryπk+Ak)kxke(r)Am(u,v)k!ne(r)Am(u,v)=0, (3.6)

    where

    (tg(t)g(t))(k)|t=0=Ak;(tr1vtr)(k)|t=0=πk.

    The differential equation and recursive formulas for certain members of the truncated exponential-Sheffer and truncated exponential-associated Sheffer families are derived in the following section.

    We use Theorem 3.1 to derive the differential equation and Theorems 2.1–2.3 to find the recursive formulas for certain members of the truncated exponential-Sheffer family.

    Example 4.1, For e(tν)m,f(t)=tν=g(t) and νt=f1(t), the Sheffer polynomials become the generalized Hermite polynomials Hn,m,ν(x) and consequently the truncated exponential-Sheffer polynomials become the truncated exponential-generalized Hermite polynomials e(r)Hn,m,ν(u,v).

    It folllows from Theorem 3.1 that

    mm!νm=αm;αk=0(km),β1=1;βk=0(k1),(tr1vtr)(k)|t=0=γk. (4.1)

    Inserting (4.1) into expression (3.1), the differential equation for the truncated exponential-generalized Hermite polynomials e(r)Hn,m,ν(u,v) is obtained as follows

    ne(r)Hn,m,ν(u,v)=(xmνmm1xm1)xe(r)Hn,m,ν(u,v)+nk=1ryγkkxke(r)Hn,m,ν(u,v)k!. (4.2)

    Similarly, in light of Theorems 2.1–2.3, the recursive formulas for the truncated exponential-generalized Hermite polynomials e(r)Hn,m,ν(u,v) are obtained as follows

    1=e(r)H0,m,ν(u,v), (4.3)
    (xmνm1m1xm1)e(r)Hn,m,ν(u,v)+nk=0ryμke(r)H(k)n,m,ν(u,v)k!=e(r)Hm+1,m,ν(u,v),n0, (4.4)
    νxe(r)Hn,m,ν(u,v)+(nm1)m!e(r)Hnm+1,m,ν(u,v)
    +νnk=0(mk)ςke(r)Hnk,m,ν(u,v)=e(r)Hm+1,m,ν(u,v),n0, (4.5)

    and

    νxe(r)Hn,m,ν(u,v)(nm1)m!νe(r)Hnm+1,m,ν(u,v)
    +nk=0(mk)ryξke(r)Hnk,m,ν(u,v)=e(r)Hm+1,m,ν(u,v),n0. (4.6)

    Example 4.2. For (1t)κ1=g(t) and tt1=f1(t), the Sheffer polynomials become the generalized Laguerre polynomials Lκn(x) and consequently the truncated exponential-Sheffer polynomials become the generalized truncated exponential-Laguerre polynomials e(r)Lκn(u,v).

    From Theorem 3.1, we find

    α1=(κ+1);αk=0(k1),β1=1;β2=2;βk=0(k1,2),γk=(tr(t1)1vtr)(k)|t=0. (4.7)

    Inserting (4.7) into (3.1), the succeeding differential equation for e(r)Lκn(u,v) is obtained

    (xκ1)(x)e(r)Lκn(u,v)x2x2e(r)Lκn(u,v)+nk=1ryγkkxke(r)Lκn(u,v)k!=ne(r)Lκn(u,v). (4.8)

    Similarly, in light of Theorems 2.1–2.3, the succeeding recursive formulas for e(r)Lκn(u,v) are obtained

    1=e(r)Lκn(u,v), (4.9)
    e(r)Lκm+1(u,v)=(x+κ+1)e(r)Lιn(u,v)+(2xκ1)xe(r)Lκn(u,v)x2x2e(r)Lκn(u,v)
    +nk=0ryμkkxke(r)Lκn(u,v)k!,n0, (4.10)
    e(r)Lκn(u,v)=(x+κ+1+2n)e(r)Lκn(u,v)(nκ+n+2n(n1))e(r)Lκn1(u,v)
    nk=0(mk)ςke(r)Lκnk(u,v),n0, (4.11)
    e(r)Lκm+1(u,v)=(xκ1)e(r)Lκn(u,v)+nk=1m!(nk)!(x(k+1)+(κ+1))e(r)Lκnk(u,v)
    +nk=0(mk)ξke(r)Lκnk(u,v),n0. (4.12)

    Next, The differential equation is then derived using Corollary 3.1, and the recursive formulas for certain members of the truncated exponential-associated Sheffer family are derived using Corollaries 2.1, 2.3, and 2.5.

    Example 4.3. For ln(1+t)=f(t) and et1=f1(t), the associated Sheffer polynomials reduces to the exponential polynomials ϕn(x) and consequently the truncated exponential-associated Sheffer polynomials become the truncated exponential-exponential polynomials e(r)ϕn(u,v).

    It follows from Corollary 3.1

    β2=1=β1;(1)k(k2)!=βk(k1,2). (4.13)

    Inserting (4.13) into (3.5), the succeeding differential equation for polynomials e(r)ϕn(u,v) is obtained:

    ne(r)ϕn(u,v)=x(x12!2x2)e(r)ϕn(u,v)+nk=3((1)k(k2)!x+ryγk)kyke(r)ϕn(u,v)k!. (4.14)

    Similarly, Corollaries 2.1, 2.3, and 2.5 are used to obtain the recursive formulas for the polynomials e(r)ϕn(u,v)

    1=e(r)ϕ0(u,v), (4.15)
    x(1+x)e(r)ϕn(u,v)+nk=0ryμke(r)ϕn(u,v)=e(r)ϕm+1(u,v),n0, (4.16)
    xe(r)ϕn(u,v)+nk=1(mk)ςke(r)ϕmk(u,v)mk=1(mk)(1)ke(r)ϕm+1k(u,v)=e(r)ϕm+1(u,v),n0, (4.17)

    and

    nk=0(mk)(x+ryξk)e(r)ϕnk(u,v),n0=e(r)ϕm+1(u,v). (4.18)

    In the following section, we look at an identity for truncated exponential-Sheffer polynomials.

    The approach used in the preceding sections can be extended to yield additional results. As an example, we prove the following result to derive an identity for the truncated exponential-Sheffer polynomial sequences.

    Theorem 5.1. The following identity for the truncated exponential-Sheffer polynomials e(r)sm(u,v) holds true

    1m+1m+1k=1Λkk!e(r)s(k)m+1(u,v)=e(r)sm(u,v),n0, (5.1)

    where f(k)(0)=Λk.

    Proof. In light of property (1.23), expression Wm[t(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0 takes the the form as given under

    Pm[t]t=0Wm[exp(uf1(t))g(f1(t))(1v(f1(t))r)]t=0=Wm[t(exp(uf1(t))g(f1(t))(1v(f1(t))r))]t=0. (5.2)

    In contrast, using Lemma 2.1 and the properties (1.22)–(1.24), we have

    Wm[f(f1(t))exp(uf1(t))g(f1(t))(1v(f1(t))r)]t=0=Wm[1,f1(t),,(f1(t))n]t=0Λ1mWm[f(t)exp(ut)g(t)(1vtr)]t=0=Wm[1,f1(t),,(f1(t))n]t=0Λ1mPm[1g(t)(1vtr)]t=0Pm[exp(ut)]t=0Wm[f(t)]t=0=Wm[e(r)s0(u,v),e(r)s1(u,v),,e(r)sm(u,v)]TΛ1mWm[f(t)]t=0=[e(r)s0(u,v)000e(r)s1(u,v)e(r)s1(u,v)1!00e(r)s2(u,v)e(r)s2(u,v)1!e(r)s2(u,v)2!0e(r)sm(u,v)e(r)sm(u,v)1!e(r)sm(u,v)2!e(r)s(n)m(u,v)m!][Λ0Λ1Λ2Λm]. (5.3)

    Assertion (5.1) is proved by comparing the nth rows of (5.2) and (5.3) and replacing m by m+1.

    To demonstrate the application of Theorem 5.1, consider the following examples in the form of a table.

    Table 2.  Certain special cases of truncated exponential-Sheffer, associated-Sheffer and Appell polynomial family.
    S. No. Cases Name of the polynomial Identity
    Ⅰ. Λk=(ln(1t))(k)|t=0 Truncated exponential-actuarial polynomials e(r)A(γ)m(u,v)=1m+1((e(r)a(γ)m+1(u,v))
    e(r)A(γ)m(u,v)
    +m+1k=2(e(r)a(γ)m+1(u,v))kk)
    Ⅱ. Λk=(ln(1+t))(k)|t=0 Truncated exponential-exponential polynomials e(r)ϕm(u,v)=1m+1(e(r)ϕm+1(u,v)
    e(r)ϕm(u,v)
    +m+1k=2(1)k1e(r)ϕ(k)m+1(u,v)k)
    Ⅲ. Λk=(t)(k)|t=0 Truncated exponential-Miller-Lee polynomials e(r)G(m)m(u,v)=1m+1(e(r)G(m)m+1(u,v))
    e(r)G(m)m(u,v)

     | Show Table
    DownLoad: CSV

    The recursive formulas and differential equations are critical in the analysis of algorithms [13]. These appear in infinite impulse response (IIR) digital filters. The attempt to model population dynamics gave rise to recurrence relations. Fibonacci numbers, for example, were once used as a model for rabbit population growth.

    Hence we provided some specific properties of truncated exponential-Sheffer polynomials and multi variable special polynomial properties. The properties and association between the Pascal functional and Wronskian matrices are used to build the recursive equations and differential equation for these polynomials, as well as for several members of the truncated exponential-Sheffer family. The corresponding results for the truncated exponential-associated Sheffer and truncated exponential-Appell families are provided with some examples.

    The author declares that there is no conflict of interest.



    [1] L. C. Andrews, Special functions for engineers and applied mathematicians, New York: Macmillan Publishing Company, 1985.
    [2] P. Appell, Sur une classe de polynôLmes, Ann. Sci. I'École Norm. Sup., 9 (1880), 119–144. https://doi.org/10.24033/asens.186 doi: 10.24033/asens.186
    [3] P. Appell, J. K. de Fˊeriet, Fonctions hypergˊeomˊetriques et hypersphˊeriques: Polynˆomes d'Hermite, Paris: Gauthier-Villars, 1926.
    [4] E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258–277. https://doi.org/10.2307/1968431 doi: 10.2307/1968431
    [5] G. Bretti, C. Cesarano, P. E. Ricci, Laguerre-type exponentials and generalized Appell polynomials, Comput. Math. Appl., 48 (2004), 833–839. https://doi.org/10.1016/j.camwa.2003.09.031 doi: 10.1016/j.camwa.2003.09.031
    [6] G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: A byproduct of the monomiality principle, Advanced Special Functions and Applications, 2000.
    [7] G. Dattoli, C. Cesarano, D. Sacchetti, A note on truncated polynomials, Appl. Math. Comput., 134 (2003), 595–605. https://doi.org/10.1016/S0096-3003(01)00310-1 doi: 10.1016/S0096-3003(01)00310-1
    [8] G. Dattoli, S. Lorenzutta, A. M. Mancho, A. Torre, Generalized polynomials and associated operational identities, J. Comput. Appl. Math., 108 (1999), 209–218. https://doi.org/10.1016/S0377-0427(99)00111-9 doi: 10.1016/S0377-0427(99)00111-9
    [9] S. Khan, G. Yasmeen, N. Ahmad, On a new family related to truncated exponential and Sheffer polynomials, J. Math. Anal. Appl., 418 (2014), 921–937. https://doi.org/10.1016/j.jmaa.2014.04.028 doi: 10.1016/j.jmaa.2014.04.028
    [10] D. S. Kim, T. Kim, A matrix approach to some identities involving Sheffer polynomial sequences, Appl. Math. Comput., 253 (2015), 83–101. https://doi.org/10.1016/j.amc.2014.12.048 doi: 10.1016/j.amc.2014.12.048
    [11] E. D. Rainville, Special functions, New York: The Macmillan Company, 1960.
    [12] S. Roman, The umbral calculus, New York: Dover Publications, 1984.
    [13] R. Sedgewick, F. Flajolet, An introduction to the analysis of algorithms, Pearson Education India, 2013.
    [14] I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J., 5 (1939), 590–622. https://doi.org/10.1215/S0012-7094-39-00549-1 doi: 10.1215/S0012-7094-39-00549-1
    [15] Y. Yang, C. Micek, Generalized Pascal functional matrix and its applications, Linear Algebra Appl., 423 (2007), 230–245. https://doi.org/10.1016/j.laa.2006.12.014 doi: 10.1016/j.laa.2006.12.014
    [16] H. Youn, Y. Yang, Differential equation and recursive formulas of Sheffer polynomial sequences, Int. Scholarly Res. Not., 2011 (2011), 476462. https://doi.org/10.5402/2011/476462 doi: 10.5402/2011/476462
  • This article has been cited by:

    1. Mdi Begum Jeelani, Abeer S. Alnahdi, Approximation by Operators for the Sheffer–Appell Polynomials, 2022, 14, 2073-8994, 2672, 10.3390/sym14122672
    2. William Ramírez, Alejandro Urieles, Mumtaz Riyasat, María José Ortega, Luis Siado, A new extension of generalized Pascal-type matrix and their representations via Riordan matrix, 2024, 30, 1405-213X, 10.1007/s40590-024-00609-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1371) PDF downloads(51) Cited by(2)

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog