Research article Special Issues

A new family of differential and integral equations of hybrid polynomials via factorization method

  • Received: 18 December 2021 Revised: 19 April 2022 Accepted: 10 May 2022 Published: 24 May 2022
  • MSC : 05A15, 33C45, 33E20, 44A45

  • In this study, we investigate differential and integral equations of some hybrid families of truncated exponential-based Sheffer polynomials. We also derive some integro-differential equation and new recurrence relations for the truncated exponential based Sheffer polynomials by using the factorization method. We also discuss some special cases as illustrative examples.

    Citation: Raziya Sabri, Mohammad Shadab, Kotakkaran Sooppy Nisar, Shahadat Ali. A new family of differential and integral equations of hybrid polynomials via factorization method[J]. AIMS Mathematics, 2022, 7(8): 13845-13855. doi: 10.3934/math.2022764

    Related Papers:

  • In this study, we investigate differential and integral equations of some hybrid families of truncated exponential-based Sheffer polynomials. We also derive some integro-differential equation and new recurrence relations for the truncated exponential based Sheffer polynomials by using the factorization method. We also discuss some special cases as illustrative examples.



    加载中


    [1] L. C. Andrews, Special functions for engineers and applied mathematicians, New York: Macmillan, 1985.
    [2] P. Appell, Sur une classe de polynomes, Ann. Sci. Ecole. Norm. S., 9 (1880), 119–144. https://doi.org/10.24033/asens.186 doi: 10.24033/asens.186
    [3] J. Choi, S. Sabee, M. Shadab, Some identities associated with 2-variable truncated exponential based Sheffer polynomial sequences, Commun. Korean Math. S., 35 (2020), 533–546. https://doi.org/10.4134/CKMS.c190104 doi: 10.4134/CKMS.c190104
    [4] G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle, In: Proceedings of the Melfi school on advanced topics in mathematics and physics, Aracne, Rome, 2000,147–164.
    [5] G. Dattoli, C. Cesarano, D. Sacchetti, A note on the monomiality principle and generalized polynomials, J. Math. Anal. Appl., 227 (1997), 98–111.
    [6] G. Dattoli, C. Cesarano, D. Sacchetti, A note on truncated polynomials, Appl. Math. Comput., 134 (2003), 595–605. https://doi.org/10.1016/S0096-3003(01)00310-1 doi: 10.1016/S0096-3003(01)00310-1
    [7] G. Dattoli, M. Migliorati, H. M Srivastava, A class of Bessel summation formulas and associated operational method, Fract. Calc. Appl. Anal., 7 (2004), 169–176.
    [8] L. Infeld, T. E. Hull, The factorization method, Rev. Mod. Phys., 23 (1951), 21. https://doi.org/10.1103/RevModPhys.23.21 doi: 10.1103/RevModPhys.23.21
    [9] N. Khan, M. Ghayasuddin, M. Shadab, Some generating relations of extended Mittag-Leffler function, Kyungpook Math. J., 59 (2019), 325–333.
    [10] S. Khan, M. Riyasat, Differential and integral equation for $2$-iterated Appell polynomials, J. Comput. Appl. Math., 306 (2016), 116–132. https://doi.org/10.1016/j.cam.2016.03.039 doi: 10.1016/j.cam.2016.03.039
    [11] S. Khan, M. Riyasat, Differential and integral equations for the $2$-iterated Bernoulli, $2$-iterated Euler and Bernoulli-Euler polynomials, Georgian Math. J., 27 (2020), 375–389. https://doi.org/10.1515/gmj-2018-0062 doi: 10.1515/gmj-2018-0062
    [12] S. Khan, G. Yasmin, N. Ahmad, On a new family related to truncated Exponential and Sheffer polynomials, J. Math. Anal. Appl., 418 (2014), 921–937. https://doi.org/10.1016/j.jmaa.2014.04.028 doi: 10.1016/j.jmaa.2014.04.028
    [13] S. Khan, G. Yasmin, S. A. Wani, Diffential and integral equations for Legendre-Laguerre based hybrid polynomials, Ukr. Math. J., 73 (2021), 479–497. https://doi.org/10.1007/s11253-021-01937-8 doi: 10.1007/s11253-021-01937-8
    [14] D. S. Kim, T. Kim, Degenerate Sheffer sequences and $\lambda$-Sheffer sequences, J. Math. Anal. Appl., 493 (2021), 124521. https://doi.org/10.1016/j.jmaa.2020.124521 doi: 10.1016/j.jmaa.2020.124521
    [15] T. Kim, D. S. Kim, On $\lambda$-Bell polynomials associated with umbral calculus, Russ. J. Math. Phys., 24 (2017), 69–78. https://doi.org/10.1134/S1061920817010058 doi: 10.1134/S1061920817010058
    [16] M. X. He, P. E. Ricci, Differential equation of the Appell polynomials via factorization method, J. Comput. Appl. Math., 139 (2002), 231–237. https://doi.org/10.1016/S0377-0427(01)00423-X doi: 10.1016/S0377-0427(01)00423-X
    [17] M. A. Ozarslan, B. Yilmaz, A set of finite order differential equations for the Appell polynomials, J. Comput. Appl. Math., 259 (2014), 108–116. https://doi.org/10.1016/j.cam.2013.08.006 doi: 10.1016/j.cam.2013.08.006
    [18] F. Marcellan, S. Jabee, M. Sahdab, Analytic properties of Touchard based hybrid polynomials via operational techniques, Bull. Malays. Math. Sci. Soc., 44 (2021), 223–242. https://doi.org/10.1007/s40840-020-00945-4 doi: 10.1007/s40840-020-00945-4
    [19] S. Roman, The umbral calculus, New York: Springer, 2005.
    [20] I. M. Sheffer, Some properties of polynomials sets of type zero, Duke Math. J., 5 (1939), 590–622. https://doi.org/10.1215/S0012-7094-39-00549-1 doi: 10.1215/S0012-7094-39-00549-1
    [21] H. M. Srivastava, M. A. Ozarslan, B. Yilmaz, Some families of differential equation associated with the hermite based Appell polynomials and other classes of the hermite-based polynomials, Filomat, 28 (2014), 695–708. https://doi.org/10.2298/FIL1404695S doi: 10.2298/FIL1404695S
    [22] J. F. Steffensen, The poweroid, an extension of the mathematical notion of power, Acta Math., 73 (1941), 333–366. https://doi.org/10.1007/BF02392231 doi: 10.1007/BF02392231
    [23] B. Yılmaz, M. A. Özarslan, Differential equations for the extended $2$D Bernoulli and Euler polynomials, Adv. Differ. Equ., 2013 (2013), 107. https://doi.org/10.1186/1687-1847-2013-107 doi: 10.1186/1687-1847-2013-107
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1530) PDF downloads(85) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog