In this study, we investigate differential and integral equations of some hybrid families of truncated exponential-based Sheffer polynomials. We also derive some integro-differential equation and new recurrence relations for the truncated exponential based Sheffer polynomials by using the factorization method. We also discuss some special cases as illustrative examples.
Citation: Raziya Sabri, Mohammad Shadab, Kotakkaran Sooppy Nisar, Shahadat Ali. A new family of differential and integral equations of hybrid polynomials via factorization method[J]. AIMS Mathematics, 2022, 7(8): 13845-13855. doi: 10.3934/math.2022764
In this study, we investigate differential and integral equations of some hybrid families of truncated exponential-based Sheffer polynomials. We also derive some integro-differential equation and new recurrence relations for the truncated exponential based Sheffer polynomials by using the factorization method. We also discuss some special cases as illustrative examples.
[1] | L. C. Andrews, Special functions for engineers and applied mathematicians, New York: Macmillan, 1985. |
[2] | P. Appell, Sur une classe de polynomes, Ann. Sci. Ecole. Norm. S., 9 (1880), 119–144. https://doi.org/10.24033/asens.186 doi: 10.24033/asens.186 |
[3] | J. Choi, S. Sabee, M. Shadab, Some identities associated with 2-variable truncated exponential based Sheffer polynomial sequences, Commun. Korean Math. S., 35 (2020), 533–546. https://doi.org/10.4134/CKMS.c190104 doi: 10.4134/CKMS.c190104 |
[4] | G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle, In: Proceedings of the Melfi school on advanced topics in mathematics and physics, Aracne, Rome, 2000,147–164. |
[5] | G. Dattoli, C. Cesarano, D. Sacchetti, A note on the monomiality principle and generalized polynomials, J. Math. Anal. Appl., 227 (1997), 98–111. |
[6] | G. Dattoli, C. Cesarano, D. Sacchetti, A note on truncated polynomials, Appl. Math. Comput., 134 (2003), 595–605. https://doi.org/10.1016/S0096-3003(01)00310-1 doi: 10.1016/S0096-3003(01)00310-1 |
[7] | G. Dattoli, M. Migliorati, H. M Srivastava, A class of Bessel summation formulas and associated operational method, Fract. Calc. Appl. Anal., 7 (2004), 169–176. |
[8] | L. Infeld, T. E. Hull, The factorization method, Rev. Mod. Phys., 23 (1951), 21. https://doi.org/10.1103/RevModPhys.23.21 doi: 10.1103/RevModPhys.23.21 |
[9] | N. Khan, M. Ghayasuddin, M. Shadab, Some generating relations of extended Mittag-Leffler function, Kyungpook Math. J., 59 (2019), 325–333. |
[10] | S. Khan, M. Riyasat, Differential and integral equation for $2$-iterated Appell polynomials, J. Comput. Appl. Math., 306 (2016), 116–132. https://doi.org/10.1016/j.cam.2016.03.039 doi: 10.1016/j.cam.2016.03.039 |
[11] | S. Khan, M. Riyasat, Differential and integral equations for the $2$-iterated Bernoulli, $2$-iterated Euler and Bernoulli-Euler polynomials, Georgian Math. J., 27 (2020), 375–389. https://doi.org/10.1515/gmj-2018-0062 doi: 10.1515/gmj-2018-0062 |
[12] | S. Khan, G. Yasmin, N. Ahmad, On a new family related to truncated Exponential and Sheffer polynomials, J. Math. Anal. Appl., 418 (2014), 921–937. https://doi.org/10.1016/j.jmaa.2014.04.028 doi: 10.1016/j.jmaa.2014.04.028 |
[13] | S. Khan, G. Yasmin, S. A. Wani, Diffential and integral equations for Legendre-Laguerre based hybrid polynomials, Ukr. Math. J., 73 (2021), 479–497. https://doi.org/10.1007/s11253-021-01937-8 doi: 10.1007/s11253-021-01937-8 |
[14] | D. S. Kim, T. Kim, Degenerate Sheffer sequences and $\lambda$-Sheffer sequences, J. Math. Anal. Appl., 493 (2021), 124521. https://doi.org/10.1016/j.jmaa.2020.124521 doi: 10.1016/j.jmaa.2020.124521 |
[15] | T. Kim, D. S. Kim, On $\lambda$-Bell polynomials associated with umbral calculus, Russ. J. Math. Phys., 24 (2017), 69–78. https://doi.org/10.1134/S1061920817010058 doi: 10.1134/S1061920817010058 |
[16] | M. X. He, P. E. Ricci, Differential equation of the Appell polynomials via factorization method, J. Comput. Appl. Math., 139 (2002), 231–237. https://doi.org/10.1016/S0377-0427(01)00423-X doi: 10.1016/S0377-0427(01)00423-X |
[17] | M. A. Ozarslan, B. Yilmaz, A set of finite order differential equations for the Appell polynomials, J. Comput. Appl. Math., 259 (2014), 108–116. https://doi.org/10.1016/j.cam.2013.08.006 doi: 10.1016/j.cam.2013.08.006 |
[18] | F. Marcellan, S. Jabee, M. Sahdab, Analytic properties of Touchard based hybrid polynomials via operational techniques, Bull. Malays. Math. Sci. Soc., 44 (2021), 223–242. https://doi.org/10.1007/s40840-020-00945-4 doi: 10.1007/s40840-020-00945-4 |
[19] | S. Roman, The umbral calculus, New York: Springer, 2005. |
[20] | I. M. Sheffer, Some properties of polynomials sets of type zero, Duke Math. J., 5 (1939), 590–622. https://doi.org/10.1215/S0012-7094-39-00549-1 doi: 10.1215/S0012-7094-39-00549-1 |
[21] | H. M. Srivastava, M. A. Ozarslan, B. Yilmaz, Some families of differential equation associated with the hermite based Appell polynomials and other classes of the hermite-based polynomials, Filomat, 28 (2014), 695–708. https://doi.org/10.2298/FIL1404695S doi: 10.2298/FIL1404695S |
[22] | J. F. Steffensen, The poweroid, an extension of the mathematical notion of power, Acta Math., 73 (1941), 333–366. https://doi.org/10.1007/BF02392231 doi: 10.1007/BF02392231 |
[23] | B. Yılmaz, M. A. Özarslan, Differential equations for the extended $2$D Bernoulli and Euler polynomials, Adv. Differ. Equ., 2013 (2013), 107. https://doi.org/10.1186/1687-1847-2013-107 doi: 10.1186/1687-1847-2013-107 |