The purpose of this manuscript is to present some fixed point results for a $ \Lambda $-Ćirić mapping in the setting of non-triangular metric spaces. Also, two numerical examples are given to support the theoretical study. Finally, under suitable conditions, the existence and uniqueness of a solution to a general Fredholm integral equation, a Riemann-Liouville fractional differential equation and a Caputo non-linear fractional differential equation are discussed as applications.
Citation: Hasanen A. Hammad, Hassen Aydi, Choonkil Park. Fixed point results for a new contraction mapping with integral and fractional applications[J]. AIMS Mathematics, 2022, 7(8): 13856-13873. doi: 10.3934/math.2022765
The purpose of this manuscript is to present some fixed point results for a $ \Lambda $-Ćirić mapping in the setting of non-triangular metric spaces. Also, two numerical examples are given to support the theoretical study. Finally, under suitable conditions, the existence and uniqueness of a solution to a general Fredholm integral equation, a Riemann-Liouville fractional differential equation and a Caputo non-linear fractional differential equation are discussed as applications.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
[2] | P. Saipara, P. Kumam, Y. Cho, Random fixed point theorems for Hardy-Rogers self-random operators with applications to random integral equations, Stochastics, 90 (2017), 297–311. https://doi.org/10.1080/17442508.2017.1346655 doi: 10.1080/17442508.2017.1346655 |
[3] | M. Sgroi, C. Vetro, Multi-valued $F$-contractions and the solution of certain functional and integral equations, Filomat, 27 (2013), 1259–1268. |
[4] | T. Kamran, M. Postolache, M. U. Ali, Q. Kiran, Feng and Liu type $F$-contraction in $b$-metric spaces with application to integral equations, J. Math. Anal., 7 (2016), 18–27. |
[5] | V. Joshi, D. Singh, A. Petrusel, Existence results for integral equations and boundary value problems via fixed point theorems for generalized $F$-contractions in $b$-metric-like spaces, J. Funct. Spaces, 2017 (2017), Article ID 1649864. https://doi.org/10.1155/20174/1649864 doi: 10.1155/20174/1649864 |
[6] | H. A. Hammad, M. De la Sen, Fixed-point results for a generalized almost $(s, q)$-Jaggi $F$-contraction-type on $b$-metric-like spaces, Math., 8 (2020), Paper No. 63. https://doi.org/10.3390/math8010063 |
[7] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Amsterdam: Gordon and Breach, 1993. |
[8] | I. Podlubny, Fractional Differential Equations, New York: Academic Press, 1999. |
[9] | C. Li, W. Deng, Remarks on fractional derivatives, Appl. Math. Comput., 187 (2007), 777–784. https://doi.org/10.1016/j.amc.2006.08.163 doi: 10.1016/j.amc.2006.08.163 |
[10] | F. Li, Mild solutions for fractional differential equations with nonlocal conditions, Adv. Difference Equ., 2010 (2010), Article ID 287861. https://doi.org/10.1155/2010/287861 doi: 10.1155/2010/287861 |
[11] | B. Ahmad, A. Alsaedi, Existence and uniqueness of solutions for coupled systems of higher order nonlinear fractional differential equations, Fixed Point Theory Appl., 2010 (2010), Article ID 364560. https://doi.org/10.1155/2010/364560 doi: 10.1155/2010/364560 |
[12] | H. A. Hammad, H. Aydi, M. De la Sen, Solutions of fractional differential type equations by fixed point techniques for multivalued contractions, Complexity, 2021 (2021), Article ID 5730853. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853 |
[13] | Y. Cui, Existence results for singular boundary value problem of nonlinear fractional differential equation, Abstr. Appl. Anal., 2011 (2011), Article ID 605614. https://doi.org/10.1155/2011/605614 doi: 10.1155/2011/605614 |
[14] | J. Mao, Z. Zhao, N. Xu, The existence and uniqueness of positive solutions for integral boundary value problems, Bull. Malays. Math. Sci. Soc., 34 (2011), 153–164. |
[15] | J. Liu, F. Li, L. Lu, Fixed point and applications of mixed monotone operator with superlinear nonlinearity, Acta Math. Scientia. Ser. A (Chinses Ed.), 23 (2003), 19—24. |
[16] | S. Xu, B. Jia, Fixed point theorems of $\phi$ concave-(-$\psi$) convex mixed monotone operators and applications, J. Math. Anal. Appl., 295 (2004), 645–657. https://doi.org/10.1016/j.jmaa.2004.03.049 doi: 10.1016/j.jmaa.2004.03.049 |
[17] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. |
[18] | S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x |
[19] | A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl., 2012 (2012), Paper No. 204. https://doi.org/10.1186/1687-1812-2012-204 |
[20] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. |
[21] | T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Math., 5 (2017), Paper No. 19. https://doi.org/10.3390/math5020019 |
[22] | N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Math., 6 (2018), Paper No. 194. https://doi.org/10.3390/math6100194 |
[23] | T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Math., 6 (2018), Paper No. 320. https://doi.org/10.3390/math6120320 |
[24] | M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), Paper No. 61. https://doi.org/10.1186/s13663-015-0312-7 |
[25] | F. Khojasteh, H. Khandani, Scrutiny of some fixed point results by $S$-operator without triangle inequality, Math. Slovaca, 70 (2020), 467–476. https://doi.org/10.1515/ms-2017-0364 doi: 10.1515/ms-2017-0364 |
[26] | S. Pourrazi, F. Khojasteh, M. Javahernia, H. Khandani, On non-triangular metric and $JS$-metric spaces and related consequences via $\widehat {Man}(\mathbb{R})$-contractions, J. Math. Anal., 10 (2019), 31–39. |
[27] | L. B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19–26. |
[28] | D. Wardowski, Fixed points of a new type of contractive mapping in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), Paper No. 94. https://doi.org/10.1186/1687-1812-2012-94 |
[29] | R. A. Rashwan, H. A. Hammad, A common random fixed point theorem of rational inequality in polish spaces with application, Facta Univ. Ser. Math. Inform., 32 (2017), 703–714. https://doi.org/10.22190/FUMI1705703R doi: 10.22190/FUMI1705703R |
[30] | El-S. El-Hady, E. Agrekci, On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative, J. Nonlinear Sci. Appl., 22 (2022), 325–332. |
[31] | K. Maazouz, R. Rodriguez-Lopez, Differential equations of arbitrary order under Caputo-Fabrizio derivative: Some existence results and study of stability, Math. Biosci. Eng., 19 (2022), 6234–6251. https://doi.org/10.3934/mbe.2022291 doi: 10.3934/mbe.2022291 |
[32] | El-S. El-Hady, E. Agrekci, On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative, J. Math. Comput. Sci., 22 (2021), 325–332. https://doi.org/10.22436/jmcs.022.04.02 doi: 10.22436/jmcs.022.04.02 |
[33] | M. Alghamdi, A. Aljehani, A. E. Hamza, Hyers-Ulam-Rassias stability of abstract second-order linear dynamic equations on time scales, J. Math. Comput. Sci., 24 (2022), 110–118. https://doi.org/10.22436/jmcs.024.02.02 doi: 10.22436/jmcs.024.02.02 |
[34] | A. Bartwal, R. C. Dimri, G. Prasad, Some fixed point theorems in fuzzy bipolar metric spaces, J. Nonlinear Sci. Appl., 13 (2020), 196–204. https://doi.org/10.22436/jnsa.013.04.04 doi: 10.22436/jnsa.013.04.04 |