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1. Introduction

Fixed point theory is an active field of research with wide range of applications in numerous
directions. It is interested with the results about stating that due to some conditions a self mapping
T on a set Λ possesses one or more fixed points. Fixed point theory began almost immediately after
the classical analysis started its quick development. The main next growth was investigated by the need
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to establish existence results for problems dealing with integral and differential equations. Hence, the
fixed point theory began a pure analytical theory.

The Banach contraction principle [1] is one of the most nice theorems in fixed point theory. Due
to its application in variant fields such as biology, physics, computer science, chemistry and several
branches of mathematics, this classical famous theorem has been improved, extended and generalized
in nonlinear analysis.

In mathematics, the Fredholm integral equation is an integral equation whose solution is due to
Fredholm operators and the study of Fredholm kernels. Several types of numerical and analytical
methods and numerical methods were used to solve this problem. One of useful techniques to solve
such equations is the usage of fixed point method, see [2–6]. Fractional differential equations appear
in many fields such as physics, mechanics, chemistry, economics, engineering and biological sciences,
etc.; see for example [7–12]. The theory of fractional differential (evolution) equations is a useful
branch of mathematics by which variant physical phenomena in several fields of engineering and
science can be studied. In the recent years, there has been a remarkable development in partial
and ordinary differential equations using fractional derivatives. Many authors studied the existence
and uniqueness of positive solutions for (nonlinear) fractional differential equation boundary value
problems, see [13, 14]. Among them, new existence results in Banach spaces by using the fractional
derivatives and fixed point theorems have been presented, see [15, 16].

In last years, many generalizations of standard metric spaces related to generalizing the Banach
contraction theorem have been investigated. Most of known fixed point achievements in literature
are given by taking into account the triangle inequality or other its generalizations (b-metric [17],
partial metric [18], dislocated metric [19], G-metric [20], extended b-metric [21], controlled metric
[22], double controlled metric [23], etc). Many works appeared in order to make weaker the triangle
inequality. Amon them, Jleli and Samet [24] introduced a new metric setting, called as a JS-metric
involving the power of sequences, covering some generalized metrics, as the b-metric, the dislocated
metric and the modular metric. Recently, Khojasteh and Khandani [25] initiated the notion of non-
triangular metric spaces in order to weaken the condition suggested in [24]. Their concept is based on
the fact that if the limit of a convergent sequence exists, it is unique. Some fixed point results using
manageable functions are presented in [26].

When the triangle inequality is omitted, the results becomes more difficult to establish. However,
several real applications suffer from the lack of the triangle inequality, and so the related results will
be more interesting and nice. Our paper goes with this point of view. In particular, we deal with a
non-triangulat metric space. We will prove some related fixed point results involving Ćirić [27] and
Wardowski [28] contraction mappings. Some concrete examples are provided. At the end, by applying
our obtained results we ensure the existence of solutions of a Fredholm integral equation, a Riemann-
Liouville fractional differential equation and a Caputo non-linear fractional differential equation.

2. Background and material

This part is devoted to present the initial characteristics of contraction mappings and some
previously defined ideas with references.

Definition 2.1. [25] Let ∇ be a non-empty set and ` : ∇2 → [0,∞) be a mapping satisfying, for all
ϑ, θ, ς ∈ ∇,
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(n1) `(ϑ, ϑ) = 0;
(n2) `(ϑ, θ) = `(θ, ϑ);
(n3) for a sequence {ϑi}i∈N ∈ ∇ with limi→∞ `(ϑi, ϑ) = 0 and limi→∞ `(ϑi, θ) = 0, we have ϑ = θ.

Then ` is called a non-triangular metric and the pair (∇, `) is called a non-triangular metric space
(NTMS, for short).

The definition of a Ćirić contraction mapping is stated as follows:

Definition 2.2. [27] A self mapping ζ on a metric space (∇, `) is called a Ćirić contraction if there
exists ~ ∈ (0, 1

2 ) so that the inequality below holds:

`(ζϑ, ζθ) ≤ ~ (`(ϑ, ζϑ) + `(θ, ζθ)) , ∀ϑ, θ ∈ ∇.

In 2012, Wardowski [28] generalized the Banach contraction mapping [1] and introduced some
different forms for contraction mappings. His definition is stated as follows:

Definition 2.3. Assume that Λ : R+ → R is a function justifying

(Λi) Λ is strictly increasing;
(Λii) for each sequence {ϑi}i∈N of positive numbers with limi→∞ ϑi = 0⇔ limi→∞Λ(ϑi) = −∞;
(Λiii) there is a constant µ ∈ (0, 1) so that limi→0+ (ϑi)µΛ(ϑi) = 0.

Let Σ be the family of all functions Λ : R+ → R fulfilling (i)-(iii). A function ζ : ∇ → ∇ is called a
Λ−contraction if the following inequality

`(ζϑ, ζθ) > 0⇒ α + Λ (`(ζϑ, ζθ)) ≤ Λ (`(ϑ, θ)) . (2.1)

holds for all ϑ, θ ∈ ∇ and Λ ∈ Σ.

Based on the inequality (2.1), the same author presented some various contractions as follows: For
all ϑ, θ ∈ Λ with ζϑ , ζθ,

(i) Λ1(ϑ) = ln(ϑ), `(ζϑ,ζθ)
`(ϑ,θ) ≤ e−α,

(ii) Λ2(ϑ) = ln(ϑ) + ϑ, `(ζϑ, ζθ)e`(ζϑ,ζθ) ≤ `(ϑ, θ)e`(ϑ,θ)−α,

(iii) Λ3(ϑ) = −1
√
ϑ
, `(ζϑ, ζθ)

(
1 + `

√
`(ϑ, θ)

)2
≤ `(ϑ, θ),

(iv) Λ4(ϑ) = ln(ϑ2 + ϑ), `(ζϑ, ζθ)(1 + `(ζϑ, ζθ))) ≤ e−α`(ϑ, θ)(1 + `(ϑ, θ)),

where {Λi : i = 1, 2, 3, 4} ∈ Σ.

It should be noted that, the inequality (2.1) yields that the mapping ` is contractive. Hence, every
Λ−contraction is continuous.

Rashwan and Hasanen [29] added a new function to the family Σ but the shape of the contraction
under this function is not known until now. This function takes the form Λ(ϑ) = −1

r√
ϑ
, where r > 1 and

ϑ > 0.
Now, we merge the results of Ćirić and Wardowski to obtain the following contraction mapping in

the context of NTMSs.
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Definition 2.4. Let (∇, `) be an NTMS. We say that ζ : ∇ → ∇ is a Λ−Ćirić mapping if there exists
~ ∈ (0, 1) such that for each ϑ, θ ∈ ∇ with % > 0, we have

% + Λ (`(ζϑ, ζθ)) ≤ Λ
(
~
[
`(ϑ, ζϑ) + `(θ, ζθ)

])
. (2.2)

Clearly, the inequality (2.2) reduces to (2.1), if we take Λ(ϑ) = ln(ϑ).

Definition 2.5. [25] Let (∇, `) be an NTMS. A mapping ζ : ∇ → ∇ is called asymptotically regular if
for all {ϑi} ⊂ ∇, limi→∞ ` (ζϑi, ζϑi+1) = 0.

Definition 2.6. [25] Let (∇, `) be an NTMS. A sequence {ϑi} ⊂ ∇ is said to be

• convergent to the point ϑ ∈ ∇ if limi→∞ ` (ϑi, ϑ) = 0,
• a Cauchy sequence if limi, j→∞ `

(
ϑi, ϑ j

)
= 0.

If every Cauchy sequence in ∇ converges to some element ϑ ∈ ∇, then the NTMS (∇, `) is called
complete.

3. Novel results

This part is devoted to discuss the existence and uniqueness of an FP for the Λ−Ćirić mapping under
asymptotic regularity in the setting of an NTMS.

Theorem 3.1. Let (∇, `) be a complete NTMS. Then a Λ−Ćirić mapping ζ : ∇ → ∇ owns a unique FP.

Proof. Let ϑ0 be an arbitrary point in ∇ and define a sequence {ϑi}i≥1 by ϑi+1 = ζϑi and ϑi = ζ iϑ0 for
all i ∈ N.

Based on the definition of ζ, we get

% + Λ (`(ζϑ, ζθ)) ≤ Λ
(
~
[
`(ϑ, ζϑ) + `(θ, ζθ)

])
, for some % > 0.

It follows that, for some ~ ∈ (0, 1
2 ),

Λ (`(ζϑ, ζθ)) < Λ
(
~
[
`(ϑ, ζϑ) + `(θ, ζθ)

])
.

From (Λi), we can write

`(ζϑ, ζθ) < $
[
`(ϑ, ζϑ) + `(θ, ζθ)

]
, ∀ϑ, θ ∈ ∇. (3.1)

Putting ϑ = ϑi−1 and θ = ϑi in (3.1), we have

`(ϑi, ϑi+1) = `(ζϑi−1, ζϑi) < $
[
`(ϑi−1, ζϑi−1) + `(ϑi, ζϑi)

]
= $ [`(ϑi−1, ϑi) + `(ϑi, ϑi+1)] ,

which implies that
`(ϑi, ϑi+1) < ρ`(ϑi−1, ϑi), for all i ∈ N, (3.2)

where ρ = $
1−$ < 1. Effecting the function Λ on both sides of (3.1), we obtain

Λ (`(ϑi, ϑi+1)) < Λ (ρ`(ϑi−1, ϑi)) .
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Hence,
Λ (`(ϑi, ϑi+1)) ≤ Λ (ρ`(ϑi−1, ϑi)) − %, for some % > 0.

Similarly, one can write

Λ (`(ϑi−1, ϑi)) ≤ Λ
(
ρ2`(ϑi−2, ϑi−1)

)
− 2%, for some % > 0.

Following the same scenario, for some % > 0, we find that

Λ (`(ζϑi−1, ζϑi)) = Λ (`(ϑi, ϑi+1)) ≤ Λ
(
ρi`(ϑ0, ϑ1)

)
− i%. (3.3)

Letting i→ ∞ in (3.3), we conclude that

lim
i→∞

Λ (`(ζϑi−1, ζϑi)) = −∞.

Using (Λii), we have
lim
i→∞

`(ζϑi−1, ζϑi) = 0. (3.4)

This shows that the sequence {ζϑi} is asymptotically regular and hence the sequence {ϑi+1} or {ϑi}.

Now, we prove that {ζϑi} is a Cauchy sequence. Indeed, for i, j ∈ N with j ≥ i, putting ϑ = ϑi and
θ = ϑ j in (2.2), we have

`(ζϑi, ζϑ j) < $
[
`(ϑi, ζϑi) + `(ϑ j, ζϑ j)

]
= $

[
`(ζϑi−1, ζϑi) + `(ζϑ j−1, ζϑ j)

]
. (3.5)

Taking the limit as i→ ∞ in (3.5) and using (3.4), we have

`(ζϑi, ζϑ j)→ 0 as i→ ∞.

This proves that the sequence {ζϑi} is Cauchy in ∇. Since (∇, `) is complete, there is a point ϑ∗ ∈ ∇
such that

lim
i→∞

ζϑi = ϑ∗. (3.6)

In order to obtain an FP of ζ, choosing ϑ = ϑi and θ = ϑ∗ in (2.2), we get

% + Λ (`(ζϑi, ζϑ
∗)) ≤ Λ

(
~
[
`(ϑi, ζϑi) + `(ϑ∗, ζϑ∗)

])
, for some % > 0.

Hence,
`(ζϑi, ζϑ

∗) ≤ ~
[
`(ϑi, ζϑi) + `(ϑ∗, ζϑ∗)

]
.

As i→ ∞ in the above inequality and using (3.6), we can write

(1 − ~)`(ϑ∗, ζϑ∗) ≤ 0,

since ~ < 1. Then the above inequality holds only if `(ϑ∗, ζϑ∗) = 0, that is, ϑ∗ = ζϑ∗. Hence, ϑ∗ is an
FP of ζ. For the uniqueness, let ϑ̂ ∈ ∇ be another distinct FP of ζ, i.e.,

ϑ∗ = ζϑ∗ and ϑ̂ = ζϑ̂.

Selecting ϑ = ϑ∗ and θ = ϑ̂ in (2.2), we have

% + Λ
(
`(ζϑ∗, ζϑ̂)

)
≤ Λ

(
~
[
`(ϑ∗, ζϑ∗) + `(ϑ̂, ζϑ̂)

])
, for some % > 0.

Hence,
`(ϑ∗, ϑ̂) = `(ζϑ∗, ζϑ̂) ≤ ~

[
`(ϑ∗, ζϑ∗) + `(ϑ̂, ζϑ̂)

]
= 0.

This implies that ϑ∗ = ϑ̂. This completes the proof. �
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The following results follow immediately from Theorem 3.1.

Corollary 3.2. Let (∇, `) be a complete NTMS and ζ be a self-mapping such that

`(ζϑ, ζθ) < ~min {`(ϑ, ζϑ), `(θ, ζθ)} ,

for all ϑ, θ ∈ ∇, where ~ ∈ (0, 1
2 ). Then ζ owns a unique FP in ∇.

Proof. For each ϑ, θ ∈ ∇, it’s easy to see that

`(ζϑ, ζθ) < ~min {`(ϑ, ζϑ), `(θ, ζθ)} ≤ ~
[
`(ϑ, ζϑ) + `(θ, ζθ)

]
.

Since Λ is monotonically increasing, we obtain

Λ (`(ζϑ, ζθ)) < Λ
(
~
[
`(ϑ, ζϑ) + `(θ, ζθ)

])
.

For some constant % > 0, we can write

% + Λ (`(ζϑ, ζθ)) ≤ Λ
(
~
[
`(ϑ, ζϑ) + `(θ, ζθ)

])
.

This implies that ζ is a Λ−Ćirić mapping. Applying Theorem 3.1, we can find a unique FP of ζ. �

Corollary 3.3. Let (∇, `) be a complete NTMS and ζ be a self-mapping such that

`(ζϑ, ζθ) ≤ ~
(

`(ϑ, ζϑ) + `(θ, ζθ)
1 + `(ϑ, ζϑ) + `(θ, ζθ)

)
,

for all ϑ, θ ∈ ∇, where ~ ∈ (0, 1
2 ). Then ζ owns a unique FP in ∇.

Proof. Consider

`(ζϑ, ζθ) ≤ ~
(

`(ϑ, ζϑ) + `(θ, ζθ)
1 + `(ϑ, ζϑ) + `(θ, ζθ)

)
≤ ~ (`(ϑ, ζϑ) + `(θ, ζθ)) .

Then ζ is a Λ−Ćirić mapping. Hence, the desired result is obtained. �

To support our studies, we present the examples below.

Example 3.4. Let ∇ = [0,∞) and ` : ∇2 → [0,∞) be a metric described as

`(ϑ, θ) =


ϑ+θ
ϑ+θ+1 , if ϑ , θ, ϑ , 0, θ , 0,
0, if ϑ = θ,
ϑ
2 , if θ= 0,
θ
2 , if ϑ= 0.

Clearly, (∇, `) is an NTMS [25]. It is not a metric space. Define a self-mapping ζ by ζϑ = 1
17ϑ.

Consider for all ϑ, θ ∈ ∇,

Λ (`(ζϑ, ζθ)) = Λ

(
`

(
ϑ

17
,
θ

17

))
= Λ

(
ϑ + θ

ϑ + θ + 17

)
.
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Also,

Λ
(
~
[
`(ϑ, ζϑ) + `(θ, ζθ)

])
= Λ

(
1
3

[
`

(
ϑ,

ϑ

17

)
+ `

(
θ,

θ

17

)])
= Λ

(
6
[

ϑ

18ϑ + 17
+

θ

18θ + 17

])
≥ Λ

(
3
(

ϑ + θ

ϑ + θ + 17

))
,

where ~ = 1
3 . Let Λ ∈ Σ be a function defined by Λ(ϑ) = ln(ϑ), for ϑ > 0. Then

Λ (`(ζϑ, ζθ)) − Λ
(
~
[
`(ϑ, ζϑ) + `(θ, ζθ)

])
≤ ln

(
ϑ + θ

ϑ + θ + 17

)
− ln

(
3
(

ϑ + θ

ϑ + θ + 17

))
= ln


(

ϑ+θ
ϑ+θ+17

)
3
(

ϑ+θ
ϑ+θ+17

) = ln(
1
3

) = − ln (3) .

Therefore, ζ a Λ−Ćirić mapping with % = ln (3) > 0. According to Theorem 3.1, ζ has 0 as a unique
FP.

Example 3.5. Let ∇ =
{

1
2 j−4 : j ∈ N

}
∪{0} under the metric defined in Example 3.4. Then the pair (∇, `)

is an NTMS. Define a nonlinear mapping ζ : ∇ → ∇ by

ζϑ =

 { 1
22 j }, if ϑ ∈

{
1

22 j−4 ; j ∈ N
}
,

0, if ϑ = 0.

To prove that ζ is a Λ−Ćirić mapping, we discuss the following cases:

(i) If ϑ = 1
22 j−4 and θ = 1

22m−4 , for m > j ≥ 1, then one can write

Λ(`(ζϑ, ζθ)) = Λ

(
`

(
ζ

(
1

22 j−4

)
, ζ

(
1

22m−4

)))
= Λ

(
`

(
1

22 j ,
1

22m

))
= Λ

 1
22 j + 1

22m

1 + 1
22 j + 1

22m

 = Λ

(
22m + 22 j

22m + 22 j + 22m+2 j

)
. (3.7)

Also,

Λ
(
~
[
`(ϑ, ζϑ) + `(θ, ζθ)

])
= Λ

(
1
3

[
`

(
1

22 j−4 , ζ

(
1

22 j−4

))
+ `

(
1

22m−4 , ζ

(
1

22m−4

))])
= Λ

(
1
3

[
`

(
1

22 j−4 ,
1

22 j

)
+ `

(
1

22m−4 ,
1

22m

)])
= Λ

(
1
3

[
16

16 + 22 j +
16

16 + 22m

])
= Λ

(
16
3

[
32 + 22m + 22 j

256 + 16
(
22m + 22 j) + 22m+2 j

])
AIMS Mathematics Volume 7, Issue 8, 13856–13873.
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≥ Λ

(
3
2

[
22m + 22 j

22m + 22 j + 22m+2 j

])
. (3.8)

It follows from (3.7) and (3.8) that

Λ(`(ζϑ, ζθ)) − Λ
(
~
[
`(ϑ, ζϑ) + `(θ, ζθ)

])
≤ Λ

(
22m + 22 j

22m + 22 j + 22m+2 j

)
− Λ

(
3
2

[
22m + 22 j

22m + 22 j + 22m+2 j

])
= ln

(
22m + 22 j

22m + 22 j + 22m+2 j

)
− ln

(
3
2

[
22m + 22 j

22m + 22 j + 22m+2 j

])
= ln


(

22m+22 j

22m+22 j+22m+2 j

)
3
2

(
22m+22 j

22m+22 j+22m+2 j

) = ln
(
2
3

)
= − ln

(
3
2

)
� −0.4055.

(ii) If ϑ = 1
22 j−4 and θ = 0, then we have

Λ(`(ζϑ, ζθ)) = Λ

(
`

(
ζ

(
1

22 j−4

)
, ζ (0)

))
= Λ

(
`

(
1

22 j , 0
))

= Λ

 1
22 j

1 + 1
22 j

 = Λ

(
1

1 + 22 j

)
.

Also,

Λ
(
~
[
`(ϑ, ζϑ) + `(θ, ζθ)

])
= Λ

(
1
3

[
`

(
1

22 j−4 , ζ

(
1

22 j−4

))
+ ` (0, ζ0)

])
= Λ

(
1
3

[
`

(
1

22 j−4 ,
1

22 j

)])
= Λ

(
1
3

[
16

16 + 22 j

])
= Λ

(
16
3

[
1

16 + 22 j

])
≥ Λ

(
3
2

[
1

1 + 22 j

])
.

Hence,

Λ(`(ζϑ, ζθ)) − Λ
(
~
[
`(ϑ, ζϑ) + `(θ, ζθ)

])
≤ Λ

(
1

1 + 22 j

)
− Λ

(
3
2

[
1

1 + 22 j

])
= ln

(
1

1 + 22 j

)
− ln

(
3
2

[
1

1 + 22 j

])
= ln


(

1
1+22 j

)
3
2

[
1

1+22 j

] = ln
(
2
3

)
= − ln

(
3
2

)
� −0.4055.

(iii) If ϑ = 0 and θ = 1
22m−4 , then the proof follows immediately from Cases (i) and (ii).

Based on the above cases, we conclude that ζ is a Λ−Ćirić mapping with % = 0.4055 and Λ(ϑ) =

ln(ϑ) for ϑ > 0. So by Theorem 3.1, 0 is the unique FP of ζ.
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4. A general Fredholm integral equation

In this part, we apply Theorem 3.1 to discuss the existence and uniqueness of a unique solution to
a general Fredholm integral equation. This solution is equivalent to find a unique fixed point of the
mapping ζ.

Consider the following problem:

ϑ(τ)ϕ(τ) = e−%ν (τ) + e−%
∫ δ1

δ0

$(τ, s)ϕ(s)ds, ∀τ, s ∈ [δ0, δ1], % > 0, (4.1)

where ϕ(τ) ∈ C[δ0, δ1] is a continuous function, $ : [δ0, δ1] × [δ1, δ0] → R is a square integrable
function and ν : [δ0, δ1]→ R is a known function.

Assume that ∇ = (C[δ0, δ1],R) is the set of real continuous functions on [δ0, δ1] endowed with

`(ϑ, θ) = max
τ∈[δ1,δ0]

{|ϑ(τ) − θ(τ)|}, for each ϑ, θ ∈ ∇. (4.2)

Problem (4.1) will be considered under the following assumptions:

(p1) there exist functions ϑ1(τ) and ϑ2(τ) in C[δ0, δ1] so that ϑ2(τ) ≥ ϑ1(τ) for each ϑ1(τ), ϑ2(τ) > 0;
(p2) for some ϕ1(τ), ϕ2(τ) ∈ ∇ and for all τ ∈ [δ0, δ1], we have

ν2 (τ) +

∫ δ1

δ0

$2(τ, s)ϕ2(s)ds = (ϕ1(τ) − ϕ2(τ)) e%ϑ2(τ),

for any function ν2 (τ) ∈ R and % > 0.

Now, we can state and prove our main theorem in this section.

Theorem 4.1. Under the hypotheses (p1) and (p3), Eq (4.1) has a unique solution in ∇.

Proof. Define the mapping ζ : ∇ → ∇ by

ζ (ϕ1) (τ) =
ν1 (τ) +

∫ δ1

δ0
$1(τ, s)ϕ1(s)ds

e%ϑ1(τ)
, (4.3)

for all ϕ1(τ) ∈ ∇ and τ ∈ [δ0, δ1]. Using (4.3), we get

|ζ (ϕ2) (τ) − ζ (ϕ1) (τ)| =

∣∣∣∣∣∣∣∣
ν2 (τ) +

∫ δ1

δ0
$2(τ, s)ϕ2(s)ds

e%ϑ2(τ)
−
ν1 (τ) +

∫ δ1

δ0
$1(τ, s)ϕ1(s)ds

e%ϑ1(τ)

∣∣∣∣∣∣∣∣ .
From assumption (p1), ϑ2(τ) ≥ ϑ1(τ), i.e., 1

ϑ1(τ) ≥
1

ϑ2(τ) , we obtain 1
ϑ1(τ) >

1
2ϑ2(τ) . Applying this fact in

the above equation, we can write

|ζ (ϕ2) (τ) − ζ (ϕ1) (τ)| (4.4)

≤

∣∣∣∣∣∣∣∣
ν2 (τ) +

∫ δ1

δ0
$2(τ, s)ϕ2(s)ds

e%ϑ2(τ)
−
ν1 (τ) +

∫ δ1

δ0
$1(τ, s)ϕ1(s)ds

2e%ϑ2(τ)

∣∣∣∣∣∣∣∣
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=
1
2

∣∣∣∣∣∣∣∣
2ν2 (τ) + 2

∫ δ1

δ0
$2(τ, s)ϕ2(s)ds

e%ϑ2(τ)
−
ν1 (τ) +

∫ δ1

δ0
$1(τ, s)ϕ1(s)ds

e%ϑ2(τ)

∣∣∣∣∣∣∣∣
=

1
2

∣∣∣∣∣∣∣∣
ν2 (τ) +

∫ δ1

δ0
$2(τ, s)ϕ2(s)ds

e%ϑ2(τ)
+
ν2 (τ) +

∫ δ1

δ0
$2(τ, s)ϕ2(s)ds

e%ϑ2(τ)
−
ν1 (τ) +

∫ δ1

δ0
$1(τ, s)ϕ1(s)ds

e%ϑ2(τ)

∣∣∣∣∣∣∣∣ .
Applying the assumption (p2) in (4.5), one can write

|ζ (ϕ2) (τ) − ζ (ϕ1) (τ)|

≤
1
2

∣∣∣∣∣∣∣∣
ν2 (τ) +

∫ δ1

δ0
$2(τ, s)ϕ2(s)ds

e%ϑ2(τ)
+

(ϕ1(τ) − ϕ2(τ)) e2%ϑ2(τ)
e%ϑ2(τ)

−
ν1 (τ) +

∫ δ1

δ0
$1(τ, s)ϕ1(s)ds

e%ϑ2(τ)

∣∣∣∣∣∣∣∣
=

1
2

∣∣∣∣∣∣∣∣∣∣

e−%

(
ν2 (τ) +

∫ δ1

δ0
$2(τ, s)ϕ2(s)ds

)
ϑ2(τ)

− ϕ2(τ)e%


−


e−%

(
ν1 (τ) +

∫ δ1

δ0
$1(τ, s)ϕ1(s)ds

)
ϑ2(τ)

− ϕ1(τ)e%


∣∣∣∣∣∣∣∣∣∣

≤
1
2

∣∣∣∣∣∣∣∣∣∣

e−%

(
ν2 (τ) +

∫ δ1

δ0
$2(τ, s)ϕ2(s)ds

)
ϑ2(τ)

− ϕ2(τ)e−%


−


e−%

(
ν1 (τ) +

∫ δ1

δ0
$1(τ, s)ϕ1(s)ds

)
ϑ2(τ)

− ϕ1(τ)e−%


∣∣∣∣∣∣∣∣∣∣

≤
e−%

2


∣∣∣∣∣∣∣∣
ν2 (τ) +

∫ δ1

δ0
$2(τ, s)ϕ2(s)ds

ϑ2(τ)
− ϕ2(τ)


∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
ν1 (τ) +

∫ δ1

δ0
$1(τ, s)ϕ1(s)ds

ϑ2(τ)
− ϕ1(τ)


∣∣∣∣∣∣∣∣
 .

Since 1
ϑ1(τ) ≥

1
ϑ2(τ) , we have

|ζ (ϕ2) (τ) − ζ (ϕ1) (τ)| ≤
e−%

2


∣∣∣∣∣∣∣∣
ν1 (τ) +

∫ δ1

δ0
$1(τ, s)ϕ1(s)ds

ϑ1(τ)
− ϕ1(τ)

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
ν2 (τ) +

∫ δ1

δ0
$2(τ, s)ϕ2(s)ds

ϑ2(τ)
− ϕ2(τ)

∣∣∣∣∣∣∣∣


=
e−%

2
(|ζ (ϕ1) (τ) − ϕ1(τ)| + |ζ (ϕ2) (τ) − ϕ2(τ)|) .

Using (4.2), we obtain

e%` (ζ (ϕ2) , ζ (ϕ1)) ≤
1
2

[
` (ζ (ϕ1) , ϕ1) + ` (ζ (ϕ1) , ϕ1)

]
.
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Taking ~ = 1
2 and applying ln to both sides, we get

% + ln
[
` (ζ (ϕ2) , ζ (ϕ1))

]
≤ ln

[
~ (` (ζ (ϕ1) , ϕ1) + ` (ζ (ϕ1) , ϕ1))

]
, for some % > 0.

This implies that ζ is a Λ−Ćirić mapping with Λ(ϑ) = ln(ϑ) ∈ Σ. By Theorem 3.1, there exists a unique
FP of a mapping ζ, that is, the unique solution of the integral equation (4.1). �

5. Riemann-Liouville fractional order operator

In this part, we discuss the existence and uniqueness solution of a Riemann-Liouville fractional
order operator by Theorem 3.1. This operator is defined as follows: Assume that ϕ(τ) is a class
of functions, which have c + 1 continuous derivatives for all τ ∈ [0, δ], then the Riemann-Liouville
fractional derivative of the function ϕ(τ) with the order ε is described as

δDε
τϕ(τ) =

1
Γ(−ε + c + 1)

d
d(τ)c

∫ τ

δ

(τ − ϑ)c−εϕ(ϑ)dϑ

=

c∑
k=0

ϕ(k)(δ)(τ − δ)k−ε

Γ(k − ε + 1)
+

1
Γ(−ε + c + 1)

∫ τ

δ

(τ − ϑ)c−εϕ(c+1)(ϑ)dϑ, (5.1)

where c < ε ≤ c + 1 and τ ∈ [0, δ].
Assume that ∇ = (C[0, δ],R) is the set of real continuous functions on [0, δ] equipped with

`(ϑ, θ) = max
τ∈[0,δ]

|ϑ(τ) − θ(τ)| , for all ϑ, θ ∈ ∇.

The existence solution of the integral operator (5.1) will be discussed under the postulate below:

(IO) there exist functions ϕ1(τ) and ϕ2(τ) in ∇ so that for each τ ∈ [0, δ], we have ϕ1(τ) ≥ ϕ2(τ) and

ϕ(s)
1 (τ) − ϕ(s)

2 (τ) ≤ e−%
ϕ(s)

1 (τ) + ϕ(s)
2 (τ)

3

 ,
for all s ∈ (0,∞) and for some % > 0. Here ϕ(s)

1 (τ) refers to the sth-order derivative of the function
ϕ1.

Theorem 5.1. Riemann-Liouville fractional derivative operator (5.1) has a unique solution in ∇
provided that the postulate (IO) holds.

Proof. Define an operator ζ : ∇ → ∇ by

ζϕ(τ) =

c∑
k=0

ϕ(k)(δ)(τ − δ)k−ε

Γ(k − ε + 1)
+

1
Γ(c − ε + 1)

∫ τ

δ

(τ − ϑ)c−εϕ(c+1)(ϑ)dϑ, (5.2)

for all ϕ(τ) ∈ ∇ and τ ∈ [0, δ]. Then the unique solution of the integral operator (5.1) is equivalent to
find a unique FP of the operator (5.2). For each τ ∈ [0, δ] and c < ε ≤ c + 1, we have

|ζϕ1(τ) − ϕ1(τ)| + |ζϕ2(τ) − ϕ2(τ)|
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=

∣∣∣∣∣∣∣
c∑

k=0

ϕ(k)
1 (δ)(τ − δ)k−ε

Γ(k − ε + 1)
+

1
Γ(−ε + c + 1)

∫ τ

δ

(τ − ϑ)c−εϕ(c+1)
1 (ϑ)dϑ − ϕ1(ϑ)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
c∑

k=0

ϕ(k)
2 (δ)(τ − δ)k−ε

Γ(k − ε + 1)
+

1
Γ(−ε + c + 1)

∫ τ

δ

(τ − ϑ)c−εϕ(c+1)
2 (ϑ)dϑ − ϕ2(ϑ)

∣∣∣∣∣∣∣ . (5.3)

Consider

|ζϕ1(τ) − ζϕ2(τ)| =

∣∣∣∣∣∣∣
c∑

k=0

ϕ(k)
1 (δ)(τ − δ)k−ε

Γ(k − ε + 1)
+

1
Γ(−ε + c + 1)

∫ τ

δ

(τ − ϑ)c−εϕ(c+1)
1 (ϑ)dϑ

−

c∑
k=0

ϕ(k)
2 (δ)(τ − δ)k−ε

Γ(k − ε + 1)
−

1
Γ(−ε + c + 1)

∫ τ

δ

(τ − ϑ)c−εϕ(c+1)
2 (ϑ)dϑ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
c∑

k=0

(τ − δ)k−ε

Γ(k − ε + 1)

[
ϕ(k)

1 (δ) − ϕ(k)
2 (δ)

]
+

1
Γ(−ε + c + 1)

∫ τ

δ

(τ − ϑ)c−ε
[
ϕ(c+1)

1 (ϑ) − ϕ(c+1)
2 (ϑ)

]
dϑ

∣∣∣∣∣∣ .
Applying the condition (IO) and using (5.3), one can write

|ζϕ1(τ) − ζϕ2(τ)|

≤

∣∣∣∣∣∣∣
c∑

k=0

(τ − δ)k−ε

Γ(k − ε + 1)

[
ϕ(k)

1 (δ) − ϕ(k)
2 (δ)

]
+

1
Γ(−ε + c + 1)

∫ τ

δ

(τ − ϑ)c−ε
[
ϕ(c+1)

1 (ϑ) − ϕ(c+1)
2 (ϑ)

]
dϑ + ϕ2(ϑ) − ϕ1(ϑ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
c∑

k=0

(τ − δ)k−ε

Γ(k − ε + 1)

[
ϕ(k)

1 (δ) − ϕ(k)
2 (δ)

]
+

1
Γ(−ε + c + 1)

∫ τ

δ

(τ − ϑ)c−ε
[
ϕ(c+1)

1 (ϑ) − ϕ(c+1)
2 (ϑ)

]
dϑ −

[
ϕ1(ϑ) − ϕ2(ϑ)

]∣∣∣∣∣∣
≤

e−%

3

∣∣∣∣∣∣∣
c∑

k=0

(τ − δ)k−ε

Γ(k − ε + 1)

[
ϕ(k)

1 (δ) + ϕ(k)
2 (δ)

]
+

1
Γ(−ε + c + 1)

∫ τ

δ

(τ − ϑ)c−ε
[
ϕ(c+1)

1 (ϑ) + ϕ(c+1)
2 (ϑ)

]
dϑ −

[
ϕ1(ϑ) + ϕ2(ϑ)

]∣∣∣∣∣∣
=

e−%

3


∣∣∣∣∣∣∣

c∑
k=0

ϕ(k)
1 (δ)(τ − δ)k−ε

Γ(k − ε + 1)
+

1
Γ(−ε + c + 1)

∫ τ

δ

(τ − ϑ)c−εϕ(c+1)
1 (ϑ)dϑ − ϕ1(ϑ)

+

c∑
k=0

ϕ(k)
2 (δ)(τ − δ)k−ε

Γ(k − ε + 1)
+

1
Γ(−ε + c + 1)

∫ τ

δ

(τ − ϑ)c−εϕ(c+1)
2 (ϑ)dϑ − ϕ2(ϑ)

∣∣∣∣∣∣∣


=
e−%

3
(|ζϕ1(τ) − ϕ1(τ)| + |ζϕ2(τ) − ϕ2(τ)|) .

By (4.2), we have

e%` (ζ (ϕ2) , ζ (ϕ1)) ≤
1
3

[
` (ζ (ϕ1) , ϕ1) + ` (ζ (ϕ1) , ϕ1)

]
.
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Putting ~ = 1
3 and applying ln to both sides, we get

% + ln
[
` (ζ (ϕ2) , ζ (ϕ1))

]
≤ ln

[
~ (` (ζ (ϕ1) , ϕ1) + ` (ζ (ϕ1) , ϕ1))

]
, for some % > 0,

or equivalently

% + Λ (` (ζ (ϕ2) , ζ (ϕ1))) ≤ Λ (~ (` (ζ (ϕ1) , ϕ1) + ` (ζ (ϕ1) , ϕ1))) .

This implies that ζ is a Λ−Ćirić mapping with Λ(ϑ) = ln(ϑ) ∈ Σ. Based on Theorem 3.1, the mapping
ζ has a unique FP, which is the unique solution of the integral operator (5.1). �

6. Caputo non-linear fractional differential equation

There is no doubt that non-linear fractional differential equations play a great role in many
applications such as mathematical modeling, engineering, physics, and many real-world problems.
So, the goal of this part is to study the existence of a solution to non-linear fractional differential
equation of Caputo type by Theorem 3.1. El-Hady and Agrekci [30] studied the stability problem of
some fractional differential equations with Caputo derivatve in the sense of Hyers-Ulam and Hyers-
Ulam-Rassias based on some fixed point techniques.

Caputo’s formula for derivatives is presented as follows:

CDεϕ(τ) = Ξ(τ, ϕ(τ)), (6.1)

with boundary conditions

ϕ(0) = 0, ϕ(1) =

∫ δ

0
ϕ(ϑ)dϑ, δ ∈ (0, 1),

whereCDε represents the Caputo fractional derivative with order ε.Moreover, for a continuous function
ϕ : [0,∞)→ R, the Caputo fractional derivative with order ε is described as

CDεϕ(τ) =
1

Γ(c − ε)

∫ δ1

0
(δ1 − ϑ)c−ε−1ϕ(c)(ϑ)dϑ, c − 1 < ε ≤ c.

Let ∇ = C[0, 1] be the set of all real-valued continuous functions on [0, 1]. Define ` : ∇2 → [0,∞) by

`(ϑ, θ) = max
τ∈[0,1]

|ϑ(τ) − θ(τ)| , for each ϑ, θ ∈ ∇. (6.2)

Now, we consider the following hypotheses:

(h1) there exist continuous functions Ξ1,Ξ2 : [0, 1] × R→ R+ satisfying

Ξ(τ, ϕ2(τ)) − Ξ(τ, ϕ1(τ)) ≤
Ξ(τ, ϕ2(τ)) + Ξ(τ, ϕ1(τ))

4e%
,

for all τ ∈ [0, 1] and ϕ1, ϕ2 ∈ ∇;
(h2) there are ϕ1(τ), ϕ2(τ) ≥ 0 with ϕ1(τ) ≤ ϕ2(τ) such that

ϕ2(τ) − ϕ1(τ) ≤
ϕ2(τ) + ϕ1(τ)

4e%
,

for all ϕ1(τ), ϕ2(τ) ∈ ∇.
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We are ready to state and prove the main theorem in this section.

Theorem 6.1. Under hypotheses (h1) and (h2), the boundary value problem (6.1) has a unique solution
in ∇.

Proof. Let ζ : ∇ → ∇ be a mapping defined by

ζϕ(τ) =
1

Γ(ε)

∫ τ

0
(τ − ϑ)ε−1Ξ(ϑ, ϕ(ϑ))dϑ −

2τ(
2 − δ2) Γ(ε)

∫ 1

0
(1 − ϑ)ε−1Ξ(ϑ, ϕ(ϑ))dϑ

+
2τ(

2 − δ2) Γ(ε)

∫ δ

0

∫ ϑ

0
(ϑ − φ)ε−1Ξ(φ, ϕ(φ))dφdϑ, (6.3)

for τ ∈ [0, 1]. The function ϕ ∈ ∇ is a unique solution of the problem (6.1) if and only if ϕ = ζϕ, i.e., ϕ
is a unique FP of ζ. To achieve that, we shall prove that the ζ is a Λ−Ćirić mapping. Consider,

|ζϕ1(τ) − ϕ1(τ)| + |ζϕ2(τ) − ϕ2(τ)|

=

∣∣∣∣∣∣ 1
Γ(ε)

∫ τ

0
(τ − ϑ)ε−1Ξ(ϑ, ϕ1(ϑ))dϑ −

2τ(
2 − δ2) Γ(ε)

∫ 1

0
(1 − ϑ)ε−1Ξ(ϑ, ϕ1(ϑ))dϑ

+
2τ(

2 − δ2) Γ(ε)

∫ δ

0

∫ ϑ

0
(ϑ − φ)ε−1Ξ(φ, ϕ1(φ))dφdϑ − ϕ1(τ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
Γ(ε)

∫ τ

0
(τ − ϑ)ε−1Ξ(ϑ, ϕ2(ϑ))dϑ −

2τ(
2 − δ2) Γ(ε)

∫ 1

0
(1 − ϑ)ε−1Ξ(ϑ, ϕ2(ϑ))dϑ

+
2τ(

2 − δ2) Γ(ε)

∫ δ

0

∫ ϑ

0
(ϑ − φ)ε−1Ξ(φ, ϕ2(φ))dφdϑ − ϕ1(τ)

∣∣∣∣∣∣
=

∣∣∣∣∣ 1
Γ(ε)

∫ τ

0
(τ − ϑ)ε−1 [

Ξ(ϑ, ϕ1(ϑ)) + Ξ(ϑ, ϕ2(ϑ))
]
dϑ

−
2τ(

2 − δ2) Γ(ε)

∫ 1

0
(1 − ϑ)ε−1 [

Ξ(ϑ, ϕ1(ϑ)) + Ξ(ϑ, ϕ2(ϑ))
]
dϑ −

[
ϕ1(τ) + ϕ2(ϑ)

]∣∣∣∣∣∣ . (6.4)

Also, we obtain

|ζϕ2(τ) − ζϕ1(τ)|

=

∣∣∣∣∣∣ 1
Γ(ε)

∫ τ

0
(τ − ϑ)ε−1Ξ(ϑ, ϕ2(ϑ))dϑ −

2τ(
2 − δ2) Γ(ε)

∫ 1

0
(1 − ϑ)ε−1Ξ(ϑ, ϕ2(ϑ))dϑ

+
2τ(

2 − δ2) Γ(ε)

∫ δ

0

∫ ϑ

0
(ϑ − φ)ε−1Ξ(φ, ϕ2(φ))dφdϑ

−
1

Γ(ε)

∫ τ

0
(τ − ϑ)ε−1Ξ(ϑ, ϕ1(ϑ))dϑ +

2τ(
2 − δ2) Γ(ε)

∫ 1

0
(1 − ϑ)ε−1Ξ(ϑ, ϕ1(ϑ))dϑ

−
2τ(

2 − δ2) Γ(ε)

∫ δ

0

∫ ϑ

0
(ϑ − φ)ε−1Ξ(φ, ϕ1(φ))dφdϑ

∣∣∣∣∣∣
≤

∣∣∣∣∣ 1
Γ(ε)

∫ τ

0
(τ − ϑ)ε−1 [

Ξ(ϑ, ϕ2(ϑ)) − Ξ(ϑ, ϕ1(ϑ))
]
dϑ

−
2τ(

2 − δ2) Γ(ε)

∫ 1

0
(1 − ϑ)ε−1 [

Ξ(ϑ, ϕ2(ϑ)) − Ξ(ϑ, ϕ1(ϑ))
]
dϑ −

[
ϕ2(ϑ) − ϕ1(ϑ)

]
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+
2τ(

2 − δ2) Γ(ε)

∫ δ

0

∫ ϑ

0
(ϑ − φ)ε−1 [

Ξ(φ, ϕ2(φ)) − Ξ(φ, ϕ1(φ))
]
dφdϑ

∣∣∣∣∣∣ .
Applying the assumptions (h1), (h2) and using (6.3), we get

|ζϕ2(τ) − ζϕ1(τ)|

≤
e−%

4

(∣∣∣∣∣ 1
Γ(ε)

∫ τ

0
(τ − ϑ)ε−1 [

Ξ(ϑ, ϕ2(ϑ)) + Ξ(ϑ, ϕ1(ϑ))
]
dϑ

−
2τ(

2 − δ2) Γ(ε)

∫ 1

0
(1 − ϑ)ε−1 [

Ξ(ϑ, ϕ2(ϑ)) + Ξ(ϑ, ϕ1(ϑ))
]
dϑ −

[
ϕ2(ϑ) + ϕ1(ϑ)

]
+

2τ(
2 − δ2) Γ(ε)

∫ δ

0

∫ ϑ

0
(ϑ − φ)ε−1 [

Ξ(φ, ϕ2(φ)) + Ξ(φ, ϕ1(φ))
]
dφdϑ

∣∣∣∣∣∣
)

=
e−%

4
(|ζϕ1(τ) − ϕ1(τ)| + |ζϕ2(τ) − ϕ2(τ)|) .

Using (6.2), we can write

e%` (ζ (ϕ2) , ζ (ϕ1)) ≤
1
4

[
` (ζ (ϕ1) , ϕ1) + ` (ζ (ϕ1) , ϕ1)

]
.

Letting ~ = 1
4 and applying ln to both sides, we obtain

% + ln
[
` (ζ (ϕ2) , ζ (ϕ1))

]
≤ ln

[
~ (` (ζ (ϕ1) , ϕ1) + ` (ζ (ϕ1) , ϕ1))

]
, for some % > 0,

or equivalently

% + Λ (` (ζ (ϕ2) , ζ (ϕ1))) ≤ Λ (~ (` (ζ (ϕ1) , ϕ1) + ` (ζ (ϕ1) , ϕ1))) .

Thus, the mapping ζ is a Λ−Ćirić mapping with Λ(ϑ) = ln(ϑ) ∈ Σ. According to Theorem 3.1, ζ has a
unique FP. This completes the proof. �

Open Question: It is clear that the space of interest lacks many assumptions and situations through
which we can address many applications. Among these situations, how can we study Hyers-Ulam-
Rassias and Hyers-Ulam stability (see [31–33]) of some fractional differential equation with Caputo
derivative?

7. Conclusions

In this work, we presented some fixed point results involving Λ−Ćirić mappings in the setting
of non-triangular metric spaces. We illustrated the obtained results by some concrete examples and
some applications. We solved a general Fredholm integral equation, a Riemann-Liouville fractional
differential equation and a Caputo non-linear fractional differential equation. As perspectives, it would
be interesting to extend the paper and give related applications to non classical metric spaces, like
fuzzy bipolar metric spaces [34].
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