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1. Introduction and preliminaries

The family of Sheffer polynomial sequences was introduced by I. M. Sheffer. The Sheffer sequence
is the one of the main classes of the polynomial sequence [20]. The Sheffer sequence arise in many
fields of applied mathematics and other branches of mathematics. With reference to application of
umbral composition of polynomial sequence, the set of Sheffer sequences is closed.

In physical problems, the class of 2-variable hybrid polynomials gives importance of its formation
as solution of different important differential equations again and again encountered in [14, 15].

The pervasive investigation of Appell and Sheffer sequences along with the structure of modern
umbral calculus collected by the Roman [19]. Roman [19] elaborated the following generating function
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of Sheffer sequence.
ex f −1(t)

g( f −1(t))
=

∞∑
n=0

S n(x)
tn

n!
, (1.1)

for all x in C, wherever f −1(t) is the inverse function of f (t) and f (t) is differently fixed by 2-power
series.

Let f (t) and g(t) be a delta and an invertible series respectively, are given by

f (t) =

∞∑
n=0

fn
tn

n!
, f1 , 0, f0 = 0, (1.2)

g(t) =

∞∑
n=0

gn
tn

n!
, g0 , 0. (1.3)

If g(t) = 1, then the Sheffer sequence is the associated Sheffer sequence and for the Appell sequence
g(t) = t [2]. These polynomials are appeared in number theory, physics, and various other branches
of mathematics. The class of the Sheffer sequence has some valuable sequences as Hermite, Bessel,
Laguerre polynomials etc. According to the physical applications, the Sheffer sequences are very
useful.

By the series [6, p.597 (14)], a noteworthy interest of a group of truncated polynomials is
presented. These polynomials [3, 18] come out in a vast variety of physical problems as optics,
quantum mechanics problems and furthermore play a job in the assessment of the integral including
result of special functions. 2-variables special polynomials are significant according to the
applications.

This is the series of truncated exponential polynomials en(x). [1]

en(x) =

n∑
k=0

xk

k!
. (1.4)

This is the first (n + 1) terms of Maclaurin series for ex. In many problems of quantum mechanics
and optics, these polynomials appears. In the beginning Dattoli [6] gave the systematic research of
these polynomials.

Generally, these polynomials have the properties which may be acquired by definition (1.4).
Truncated exponential polynomials can be addressed by the generating function [6, p. 596 (4)],

ext

(1 − t)
=

∞∑
n=0

en(x)tn. (1.5)

Now, we see the 2-variable higher order truncated polynomials are specified by the series [7, p.
174 (29)]

e(r)
n (x, y) =

[ n
r ]∑

k=0

ykx(n−rk)

(n − rk)!
, (1.6)
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the generating function of 2-variable truncated exponential polynomial (2VTP) [7, p.174 (30)]

ext

(1 − ytr)
=

∞∑
n=0

e(r)
n (x, y)

tn

n!
. (1.7)

There are the integral representation of truncated exponential

e(r)
n (x) =

1
n!

∫ +∞

0
e−ξ(x + ξ)ndξ,

where

n! =

∫ ∞

0
e−ξξndξ.

2. Truncated exponential based Sheffer polynomials

In 2014, Khan et al. introduced the two variables truncated-exponential-Sheffer
polynomials (2VTESP) and derived with the frame of reference of the operational method

exp(x f −1(t))
g( f −1(t))(1 − y( f −1(t))r)

=

∞∑
n=0

e(r) sn(x, y)
tn

n!
.

The generating function of Truncated exponential-Sheffer polynomial (2VTESP) e(r) sn(x, y)

1
g( f −1(t))

e(x f −1(t))C0(−y( f −1(t))r) =

∞∑
n=0

e(r) sn(x, y)
tn

n!
, (2.1)

1
g( f −1(t))

e(x f −1(t))e(D−1
y ( f −1(t))r) =

∞∑
n=0

e(r) sn(x, y)
tn

n!
, (2.2)

where C0(ax) is Tricomi function of order zero [1].
Since Cn(x) =

∑∞
n=0

(−1r)(x)r

r!(n+r)! , and where D−1
y is defined as the inverse derivative operator Dy = ∂

∂y , and
is specified by D−1

y { f (y)} =
∫ y

0
f (θ)dθ.

The two variables truncated exponential-Sheffer polynomials (2VTESP) er sn(x, y) are as stipulated
by series

e(r)S n(x, y) = n!
[ n

r ]∑
k=0

S n−rkyk

(n − rk)!
. (2.3)

In 2002, He and Ricci exploited the idea to derive the differential equations by the factorization
method for the Appell polynomials in [16] (see also, [17]). Recently, differential equations for
confluent type Sheffer polynomials are investigated by many authors [9, 10, 14, 15, 21, 23]. This
motivates to investigate the differential equations for the truncated exponential-Sheffer polynomials
by apply the factorization technique. We retrace a few initially allied to the factorization technique.
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The technique of factorization method is very useful to derive the differential and integro-differential
equations of hybrid class of polynomials.

Now, let us suppose that {Pn(x)}∞k=0 be a sequence of polynomials like as the deg(Pn(x)) = n, (n ∈
N0 := 0, 1, 2, 3, ...). The differential operators Q−n and Q+

n holding the properties

Q−n Pn(x) = Pn−1(x), (2.4)

Q+
n Pn(x) = Pn+1(x). (2.5)

Q−n known as the derivative operator and Q+
n the multiplicative operator. The principle of

monomiality [4, 22] and also related operational rules are applied in [5] to expand new families of
cospectral which leads to non-trivial generalized polynomials.

The differential equation for the class of hybrid polynomials

(Q−n+1Q+
n )Pn(x) = Pn(x), (2.6)

will be derived by the application of the operators Q−n and Q+
n . By applying this method for obtaining

the differential equation through the Eq (2.6) is called factorization method [8]. The factorization
method has the main purpose to present derivative operator Q−n and multiplicative operator Q+

n as the
Eq (2.6) holds.

3. Recurrence relation and differential equation

Now, we obtain some recurrence relations for the truncated exponential based Sheffer
polynomials (2VTESP) er sn(x, y).

Theorem 3.1. The following recurrence relation for the truncated exponential-Sheffer
polynomials (2VTESP) e(r) sn(x, y) holds true

e(r) sn+1(x, y) =

(x + α0)er sn(x, y) +

n∑
k=1

(
n
k

)
αker S n−k(x, y)

+
n!

(n − r + 1)!
rD−1

y e(r)S n−r+1(x, y)
)

1
f ′(t)

, (3.1)

coefficients {αk}k∈N0 can be express by

g′(t)
g(t)

=

∞∑
k=0

αk

k!
tk. (3.2)

Proof. Differentiate the Eq (2.2) with respect to t, we have

∞∑
n=0

e(r) sn+1(x, y)
tn

n!
=

1
g( f −1(t))

exp(D−1
y ( f −1(t))r + x f −1(t))

×

(
rD−1

y ( f −1(t))r−1 + x +
g′( f −1(t))
g( f −1(t))

)
)

1
f ′( f −1(t))

. (3.3)
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Using the Eqs (3.2) and (2.2) in the Eq (3.3), and then in the left hand side we use the Cauchy
product rulers follows

∞∑
n=0

e(r) sn+1(x, y)
tn

n!
=

∞∑
n=0

 n∑
k=0

(
n
k

)
αker sn−k(x, y)

+ xe(r) sn(x, y) +
n!

(n − r + 1)!
rD−1

y e(r)S n−r+1(x, y)
)

tn

n!
1

f ′( f −1(t))
.

On comparing the coefficients of equal power of t, on the both sides of the above equation and after
that solving the equation with t = f −1(t), then we get Eq (3.1). �

Now, we derive shift operators for truncated exponential-Sheffer polynomial (2VTESP).

Theorem 3.2. The shift operators for the truncated exponential-Sheffer polynomials (2VTESP)
e(r) sn(x, y) are as follows

x£−n =
1
n

Dx, (3.4)

y£−n =
1
n

DyD−(r−1)
x , (3.5)

x£+
n =

(x + α0) +

n∑
k=1

αk

k!
Dk

x + rD−1
y Dr−1

x

 1
f ′(t)

, (3.6)

y£+
n =

(x + α0) +

n∑
k=1

αk

k!
Dk

yD−k(r−1)
x + rDr−2

y D−(r−1)2

x

 1
f ′(t)

, (3.7)

where Dx =
∂

∂x
,Dy =

∂

∂y
and D−1

x =

∫ x

0
f (ξ)dξ.

Proof. First, the generating function of truncated exponential-Sheffer polynomials (2VTESP) will be
differentiated and then comparing the coefficients of equal powers of t, we get

∂

∂x

(
e(r)

n
S n(x, y)

)
= ne(r)S n−1(x, y). (3.8)

So that
1
n
∂

∂x
(e(r) sn(x, y)) = e(r) sn−1(x, y).

Consequently,

x£−n [e(r) sn(x, y)] =
1
n

Dx{e(r) sn(x, y)} = e(r) sn−1(x, y), (3.9)

which proves (3.4).
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Next, differentiate the generating function (2.2) and then comparing the coefficients of equal powers
of t, we get

∂

∂y
{e(r) sn(x, y)} =

n!
(n − r)!

{e(r) sn−r(x, y)}. (3.10)

From the Eq (3.8), it can be observed that

∂

∂y
{e(r) sn(x, y)} = n

∂r−1

∂r−1
x

e(r) sn−1(x, y).

Thus

y£−n [e(r) sn(x, y)] =
1
n!

DyD−(r−1)
x {e(r) sn(x, y)} = e(r) sn−1(x, y), (3.11)

which proves (3.5).

Next, to obtain the raising operator

e(r) sn−k(x, y) =
(

x£−n−k+1x£−n−k+2........x£
−
n
)

e(r) sn(x, y),

which on using Eq (3.9), gives

e(r) sn−k(x, y) =
(n − k)!

n!
Dk

xe(r) sn(x, y). (3.12)

Now, by using the Eq (3.12) in Eq (3.1)

x£+
n {e(r) sn(x, y)} = e(r) sn+1(x, y),

can be given by

x£+
n =

(x + α0) +

n∑
k=1

αk

k!
Dk

x + rD−1
y D(r−1)

x

 1
f ′(t)

,

which proves (3.6).

Now, for y£+ obtain the raising operator, considered the relation

e(r) sn−k(x, y) =
(

y£−n−k+1y£−n−k+2........y£
−
n−k+1

)
e(r) sn−k(x, y),

which on using Eq (3.11), gives

e(r) sn−k(x, y) =
(n − k)!

n!
Dk

yDk(1−r)
x {e(r) sn(x, y)}. (3.13)

Using above equation in (3.1), we obtain

y£+
n {ev

nS n(x, y)} = e(r) sn+1(x, y),

y£+
n =

(x + α0) +

n∑
k=1

αk

k!
Dk

yD−k(r−2)
x + rD(r−2)

y D−(r−1)2

 1
f ′(t)

,

which proves Eq (3.7). �
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Theorem 3.3. The differential equation for truncated exponential-Sheffer polynomials (2VTESP)
e(r) sn(x, y) satisfy the following equation{(x + α0)Dx +

n∑
k=1

αk

k!
Dk+1

x + ryDr
x}

1
f ′(t)

− n

 e(r) sn(x, y) = 0. (3.14)

Proof. Considering the factorization method for the derivation of differential equation

x£−n+1x£+
n {e(r) sn(x, y)} = e(r) sn(x, y),

Putting the values of the shift operators from Eqs (3.5) and (3.7), we get{(x + α0)Dx +

n∑
k=1

αk

k!
Dk+1

x + rD−1
y D(r−1)

x Dx}
1

f ′(t)
− n

 e(r) sn(x, y) = 0,

or {(x + α0)Dx +

n∑
k=1

αk

k!
Dk+1

x + rD−1
y Dr

x}
1

f ′(t)
− n

 e(r) sn(x, y) = 0,

which proves (3.14). �

4. Integro-differential equation for truncated exponential-Sheffer polynomials

Theorem 4.1. The following integro-differential equation of truncated exponential-Sheffer
polynomials holds true {(x + α0)Dx +

n∑
k=1

αk

k!
Dk

yDxD−k(r−1)
x

+ rD(r−2)
y D−(r−1)2+1

x }
1

f ′(t)
− nDx

)
e(r) sn(x, y) = 0. (4.1)

Proof. By using the factorization method, and the pair of shift operators x£−n+1 and y£+
n , we have

assertion

x£−n+1y£+
n {e(r) sn(x, y)} = e(r) sn(x, y).

Putting the value of shift operator in above equation, we get (4.1). �

Corollary 4.1. By differentiating the equation of integro-differential equation n -times with respect to
y, then we find a partial differential equation of truncated exponential-Sheffer polynomials{(x + α0)DxDn

y +

n∑
k=1

αk

k!
Dn+k

y D−k(r−1)+1
x

+ rD(r−2)+n
y D(r−1)2+1

x }
1

f ′(t)
− nDxDn

y

)
e(r) sn(x, y) = 0. (4.2)
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5. Integral equation for truncated exponential based Sheffer polynomials

Integral equations appear in engineering and logical applications. The applications of integral
equations can be observed in different directions of scientific fields like quantum physics, water waves
diffraction problems etc. [11, 13].

Theorem 5.1. The following homogeneous Volterra integral equation of the truncated exponential-
Sheffer polynomials holds true

φ(x) = −
α1

ry

(
Pr−2

xr−3

(r − 3)!
+ Pr−3

xr−4

(r − 4)!
+ ...... + P2(x) + P1

)
−
α0

ry

(
Pr−2

xr−2

(r − 2)!
+ Pr−3

xr−3

(r − 3)!
+ P2

x2

2!
+ Px + nRn−1

)
−

1
ry

(
Pr−2

xr−1

(r − 1)!
+ Pr−3

xr−2

(r − 2)!
+ ...... + P2

x3

2!
+ Px2 + nRn − 1x

)
+

n f ′(t)
ry

(
Pr−2

xr−1

(r − 1)!
+ Pr−2

xr−2

(r − 2)!
+ ........ + P1

x2

2!
+ nRn−1x + Rn

)
−

1
ry

∫ x

0

(
α1

(x − ξ)r−3

(r − 3)!
+ (x + α0)

(x − ξ)r−2

(r − 2)!
− n

(x − ξ)r−1

(r − 1)!

)
φ(ξ)dξ. (5.1)

Proof. Consider the differential equation of truncated exponential-Sheffer polynomial for k = 1 in the
following form (

[{ryDr
x + (x + α0)Dx + α1D2

x}
1

f ′(t)
− n]

1
ry

)
e(r) sn(x, y) = 0. (5.2)

The generating function (2.2) with y = 0 can be presented

1
g( f −1(t))

e(x f −1(t)) =

∞∑
n=0

e(r) sn(x, 0)
tn

n!
=

∞∑
n=0

sn(x)
tn

n!
.

By using A(t) = 1
g( f −1(t)) [12, p.923] with Substituting the series expression of exponential in left

hand side and then apply Cauchy product rule, we have

sn(x) =

n∑
k=0

(
n
k

)
sn−kxk.

The initial condition can be obtained as

e(r) sn(x, 0) = sn(x) =

n∑
k=0

(
n
k

)
sn−kxk.

Letting sn(x) = Rn. Then the derivative of sn(x) with respect to x

d
dx e(r) sn(x, 0) = nsn−1(x) = n

n∑
k=0

(
n − 1

k

)
sn−1−kxk = nRn−1,
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d2

dx2 e(r) sn(x, 0) = n(n − 1)sn−2(x) =

1∏
k=0

(n − k)Rn−2 = P1.

Since Rn = e(r) An(x) =sn(x), we have

Dr−2
x = {e(r) sn(x, 0)} = n(n − 1)(n − 2)......(n − r + 3)Rn−r+2 = Pr−3 =

r−3∏
k=0

(n − k)Rn−r+2,

Dr−1
x {e(r) sn(x, 0)} = n(n − 1)(n − 2)........(n − r + 1)Rn−r+1 = Pr−2 =

r−2∏
k=0

(n − k)Rn−r+1.

Consider the equation
Dr

x{e(r) sn(x, y)} = φ(x). (5.3)

On integrating the Eq (5.3) with initial conditions, we get

Dr−1
x {e(r) sn(x, y)} =

∫ x

0
φ(ξ)dξ + Pr−2,

Dr−2
x {e(r) sn(x, y)} =

∫ x

0
φ(ξ)d2ξ + Pr−3.

D2
x{e(r) sn(x, y)} =

∫ x

0
φ(ξ)dξr−2 + Pr−2

xr−3

(r − 3)!
+ Pr−3

xr−4

(r − 4)!
+ ..... + P2x + P1,

Dx{e(r) sn(x, y)} =

∫ x

0
φ(ξ)dξr−1 + Pr−2

xr−2

(r − 2)!
+ Pr−3

xr−3

(r − 3)!
+ ....... + P1x + .... + nRn − 1,

e(r) sn(x, y) =

∫ x

0
φ(ξ)dξr + Pr − 2

xr−1

(r − 1)!
+ Pr−3

xr−2

(r − 2)!
+ .... + P1

x2

2!
+ nRn−1x + Rn, (5.4)

where

Pr−s =

r−s∏
k=0

(n − k)Rn−r+(s−1), s = r − 1, r − 2, ....3, 2.

Using the expression (5.4) in Eq (5.2), we obtain

φ(x) = −
(x + α0)

ry

(∫ x

0
φ(ξ)dξr−1 + Pr−2

xr−2

(r − 2)!
+ Pr−3

xr−3

(r − 3)!
+ P2

x2

2!
+ P1

x
1!

+ nRn−1

)
−
α1

ry

(∫ x

0
φ(ξ)dξr−2 + Pr−2

xr−3

(r − 3)!
+ Pr−3

xr−4

(r − 4)!
+ .... + P2x + P1

)
+

n f ′(t)
ry

(∫ x

0
φ(ξ)dξ + Pr−2

xr−1

(r − 1)!
+ Pr−3

xr−2

(r − 2)!
+ ..... + P1

x2

2!
+ nRn−1x + Rn

)
,

which proves assertion (5.1). �
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6. Conclusions

We derive differential equation, shift operators, and integral equation for the truncated-exponential
based Sheffer polynomials by the factorization method in the present investigation. The development
of these type techniques may be useful in different scientific areas. The truncated exponential-Sheffer
polynomials (2VTESP) and for their relatives can be taken in further investigations of mathematical
and engineering sciences.
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