Research article

Some fractional integral inequalities via $ h $-Godunova-Levin preinvex function

  • Received: 01 February 2022 Revised: 17 March 2022 Accepted: 28 March 2022 Published: 23 May 2022
  • MSC : 26D10, 26D15, 26D10, 26D53, 05A30

  • In recent years, integral inequalities are investigated due to their extensive applications in several domains. The aim of the paper is to investigate certain new fractional integral inequalities which include Hermite-Hadamard inequality and different forms of trapezoid type inequalities related to Hermite-Hadamard inequality for $ h $-Godunova-Levin preinvex function. Moreover, we compare our obtained results with the existing work in the literature and are represented by corollaries.

    Citation: Sabila Ali, Rana Safdar Ali, Miguel Vivas-Cortez, Shahid Mubeen, Gauhar Rahman, Kottakkaran Sooppy Nisar. Some fractional integral inequalities via $ h $-Godunova-Levin preinvex function[J]. AIMS Mathematics, 2022, 7(8): 13832-13844. doi: 10.3934/math.2022763

    Related Papers:

  • In recent years, integral inequalities are investigated due to their extensive applications in several domains. The aim of the paper is to investigate certain new fractional integral inequalities which include Hermite-Hadamard inequality and different forms of trapezoid type inequalities related to Hermite-Hadamard inequality for $ h $-Godunova-Levin preinvex function. Moreover, we compare our obtained results with the existing work in the literature and are represented by corollaries.



    加载中


    [1] C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of Hermite-Hadamard type for $k$-fractional conformable integrals, Australian J. Math. Anal. Appl., 16 (2019), 1–9.
    [2] K. S. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 245. https://doi.org/10.1186/s13660-019-2197-1 doi: 10.1186/s13660-019-2197-1
    [3] K.S. Niasr, A. Tassadiq, G. Rahman, A. Khan, Some inequalities via fractional conformable integral operators, J. Inequal. Appl., 2019 (2019), 217. https://doi.org/10.1186/s13660-019-2170-z doi: 10.1186/s13660-019-2170-z
    [4] F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Čebyšev type for conformable $k$-fractional integral operators, Symmetry, 2018 (2018), 614. https://doi.org/10.3390/sym10110614 doi: 10.3390/sym10110614
    [5] G. Rahman, K. S. Nisar, F. Qi, Some new inequalities of the Gruss type for conformable fractional integrals, AIMS Math., 3 (2018), 575–583.
    [6] G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Grüss type for conformable $k$-fractional integral operators, RACSAM, 114 (2020), 9. https://doi.org/10.1007/s13398-019-00731-3 doi: 10.1007/s13398-019-00731-3
    [7] G. Rahman, Z. Ullah, A. Khan, E. Set, K. S. Nisar, Certain Chebyshev type inequalities involving fractional conformable integral operators, Mathematics, 7 (2019), 364. https://doi.org/10.3390/math7040364 doi: 10.3390/math7040364
    [8] G. Rahmnan, T. Abdeljawad, F. Jarad, K. S. Nisar, Bounds of generalized proportional fractional integrals in general form via convex functions and their applications, Mathematics, 8 (2020), 113. https://doi.org/10.3390/math8010113 doi: 10.3390/math8010113
    [9] X. Z. Yang, G. Farid, W. Nazeer, Y. M. Chu, C. F. Dong, Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex function, AIMS Math., 5 (2020), 6325–6340.
    [10] M. Vivas-Cortez, M. A. Ali, A. Kashuri, H. Budak, A. Vlora, Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions, AIMS Math, 6 (2021), 9397–9421. https://doi.org/10.3934/math.2021546 doi: 10.3934/math.2021546
    [11] A. Guessab, Sharp Approximations Based on Delaunay Triangulations and Voronoi Diagrams, NSU Publishing and Printing center, 2022,386.
    [12] L. ER, Uber die fourierreihen, Ⅱ, Math. Naturwiss. Anz. Ungar. Akad. Wiss, 24 (1906), 369–390.
    [13] S. Mehmood, F. Zafar, N. Asmin, New Hermite-Hadamard-Fejér type inequalities for $(\eta_{1}, \eta_{2})$-convex functions via fractional calculus, ScienceAsia, 46 (2020), 102–108. https://doi.org/10.2306/scienceasia1513-1874.2020.012 doi: 10.2306/scienceasia1513-1874.2020.012
    [14] S. M. Aslani, M. R. Delavar, S. M. Vaezpour, Inequalities of Fejér type related to generalized convex functions, Int. J. Anal. Appl., 16 (2018), 38–49.
    [15] M. Rostamian Delavar, S. Mohammadi Aslani, De La Sen, M. Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals, J. Math., 2018 (2018). https://doi.org/10.1155/2018/5864091 doi: 10.1155/2018/5864091
    [16] M. E. Gordji, M. R. Delavar, M. De La Sen, On $\phi$-convex functions. J. Math. Inequalities, 10 (2016), 173–183. https://doi.org/10.7153/jmi-10-15 doi: 10.7153/jmi-10-15
    [17] M. E. Gordji, M. R. Delavar, S. S. Dragomir, Some inequalities related to $\eta$-convex functions, Preprint Rgmia Res. Rep. Coll., 18 (2015), 1–14.
    [18] M. R. Delavar, S. S. Dragomir, On $\eta$-convexity. J. Inequalities Appl., 20 (2017), 203–216. https://doi.org/10.7153/mia-20-14 doi: 10.7153/mia-20-14
    [19] M. Eshaghi, S. S. Dragomir, M. Rostamian Delavar, An inequality related to $\eta $-convex functions (Ⅱ), Int. J. Nonlinear Anal. Appl., 6 (2015), 27–33.
    [20] V. Jeyakumar, Strong and weak invexity in mathematical programming, University of Melbourne, Department of Mathematics, 55 (1984), 109–125.
    [21] A. Ben-Israel, B. Mond, What is invexity? J. Aust. Math. Soc., 28 (1986), 1–9. https://doi.org/10.1017/S0334270000005142 doi: 10.1017/S0334270000005142
    [22] M. A. Hanson, B. Mond, Convex transformable programming problems and invexity, J. Inform. Optim. Sci., 8 (1987), 201–207. https://doi.org/10.1080/02522667.1987.10698886 doi: 10.1080/02522667.1987.10698886
    [23] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [24] S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49–56. https://doi.org/10.1016/0022-247X(92)90233-4 doi: 10.1016/0022-247X(92)90233-4
    [25] A. Almutairi, A. Kilicman, New refinements of the Hadamard inequality on coordinated convex function, J. Inequal. Appl., 2019 (2019), 1–9.
    [26] S. S. Dragomir, Lebesgue integral inequalities of Jensen type for $\lambda $-convex functions, Armenian J. Math., 10 (2018), 1–19. https://doi.org/10.1186/s13660-019-2143-2 doi: 10.1186/s13660-019-2143-2
    [27] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [28] M. Samraiz, F. Nawaz, S. Iqbal, T. Abdeljawad, G. Rahman, K. S. Nisar, Certain mean-type fractional integral inequalities via different convexities with applications, J. Inequal. Appl., 2020 (2020), 1–19. https://doi.org/10.1186/s13660-020-02474-x doi: 10.1186/s13660-020-02474-x
    [29] C. Niculescu, L. E. Persson, Convex functions and their applications, (pp. xvi+-255), New York: Springer.
    [30] B. G. Pachpatte, On some integral inequalities involving convex functions, RGMIA Res. Rep. Collect., 3 (2000).
    [31] M. Tunc, On some new inequalities for convex functions, Turkish J. Math., 36 (2012), 245–251.
    [32] O. Almutairi, A. Kilicman, New fractional inequalities of midpoint type via s-convexity and their application, J. Inequal. Appl., 2019 (2019), 1–19. https://doi.org/10.1186/s13660-019-2215-3 doi: 10.1186/s13660-019-2215-3
    [33] O. Alabdali, A. Guessab, G. Schmeisser, Characterizations of uniform convexity for differentiable functions. Appl. Anal. Discrete Math., 13 (2019), 721–732. https://doi.org/10.2298/AADM190322029A doi: 10.2298/AADM190322029A
    [34] A. Guessab, O. Nouisser, G. Schmeisser, Enhancement of the algebraic precision of a linear operator and consequences under positivity, Positivity, 13 (2009), 693–707. https://doi.org/10.1007/s11117-008-2253-4 doi: 10.1007/s11117-008-2253-4
    [35] A. Guessab, Generalized barycentric coordinates and approximations of convex functions on arbitrary convex polytopes, Comput. Math. Appl., 66 (2013), 1120–1136. https://doi.org/10.1016/j.camwa.2013.07.014 doi: 10.1016/j.camwa.2013.07.014
    [36] J. E. Peajcariaac, Y. L. Tong, Convex functions, partial orderings, and statistical applications, (1992), Academic Press. https://doi.org/10.1016/S0076-5392(08)62813-1
    [37] X. Qiang, G. Farid, M. Yussouf, K. A. Khan, A. U. Rahman, New generalized fractional versions of Hadamard and Fejér inequalities for harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1–13. https://doi.org/10.1186/s13660-020-02457-y doi: 10.1186/s13660-020-02457-y
    [38] I. Iscan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. https://doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020
    [39] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Ann. Univ. Craiova-Mat., 34 (2007), 82–87.
    [40] S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Mathematics Preprint Archive, 2003 (2003), 463–817.
    [41] H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. https://doi.org/10.1016/j.jmaa.2016.09.018 doi: 10.1016/j.jmaa.2016.09.018
    [42] S. S. Dragomir, Integral inequalities of Jensen type for$\lambda$ -convex functions, Mat. Vestn., 68 (2016), 45–57.
    [43] M. E. Ozdemir, Some inequalities for the s-Godunova-Levin type functions, Math. Sci., 9 (2015), 27–32. https://doi.org/10.1007/s40096-015-0144-y doi: 10.1007/s40096-015-0144-y
    [44] S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311.
    [45] O. Almutairi, A. Kilicman, Some integral inequalities for h-Godunova-Levin preinvexity. Symmetry, 11 (2019), 1500. https://doi.org/10.3390/sym11121500 doi: 10.3390/sym11121500
    [46] G. H. Toader, Some generalizations of the convexity, In: Proc. Colloq. Approx. Optim, Cluj Napoca (Romania), 1984,329–338.
    [47] M. Rostamian Delavar, S. Mohammadi Aslani, M. De La Sen, Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals, J. Math., 2018 (2018). https://doi.org/10.1155/2018/5864091 doi: 10.1155/2018/5864091
    [48] E. K. Godunova, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numer. Math. Math. Phys., 138 (1985), 166.
    [49] E. D. Rainville, Special Functions, Chelsea Publ. Co., Bronx, 1971, New York.
    [50] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, arXiv preprint, (2008). arXiv: 0805.3823.
    [51] S. S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstr. Math., 32 (1999), 687–696. https://doi.org/10.1515/dema-1999-0403 doi: 10.1515/dema-1999-0403
    [52] I. Iscan, Hermite-Hadamard's inequalities for preinvex functions via fractional integrals and related fractional inequalities, arXiv Preprint, (2012). arXiv: 1204.0272.
    [53] M. Muddassar, M. I. Bhatti, M. Iqbal, Some new s-Hermite-Hadamard type inequalities for differentiable functions and their applications, Proc. Pakistan Academy Sci., 49 (2012), 9–17.
    [54] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [55] M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Hermite-Hadamard inequalities for s-Godunova-Levin preinvex functions, J. Adv. Math. Studies, 7 (2014), 12–19.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1801) PDF downloads(138) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog