In this study, we use quantum calculus to prove Hermite-Hadamard and Ostrowski type inequalities for s-convex functions in the second sense. The newly proven results are also shown to be an extension of comparable results in the existing literature. Furthermore, it is provided that how the newly discovered inequalities can be applied to special means of real numbers.
Citation: Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon. Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for $ s $-convex functions in the second sense with applications[J]. AIMS Mathematics, 2021, 6(12): 13327-13346. doi: 10.3934/math.2021771
In this study, we use quantum calculus to prove Hermite-Hadamard and Ostrowski type inequalities for s-convex functions in the second sense. The newly proven results are also shown to be an extension of comparable results in the existing literature. Furthermore, it is provided that how the newly discovered inequalities can be applied to special means of real numbers.
[1] | M. Alomari, M. Darus, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives are $s$-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. doi: 10.1016/j.aml.2010.04.038 |
[2] | M. A. Ali, H. Budak, Z. Zhang, H. Yildrim, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Meth. Appl. Sci., 44 (2021), 4515–4540. doi: 10.1002/mma.7048 |
[3] | M. A. Ali, H. Budak, M. Abbas, Y. M. Chu, Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second $q^{b}$-derivatives, Adv. Differ. Equ., 2021 (2021), 7. doi: 10.1186/s13662-020-03163-1 |
[4] | M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 64. doi: 10.1186/s13662-021-03226-x |
[5] | M. A. Ali, Y. M. Chu, H. Budak, A. Akkurt, H. Yildrim, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ., 2021 (2021), 25. doi: 10.1186/s13662-020-03195-7 |
[6] | M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 2021, in press. |
[7] | M. A. Ali, H. Budak, A. Akkurt, Y. M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 2021, in press. |
[8] | N. Alp, M. Z. Sarikaya, M. Kunt, İ. İşcan, $q$ -Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. doi: 10.1016/j.jksus.2016.09.007 |
[9] | N. Alp, M. Z. Sarikaya, Hermite Hadamard's type inequalities for co-ordinated convex functions on quantum integral, Appl. Math. E-Notes, 20 (2020), 341–356. |
[10] | W. Al-Salam, Some fractional $q$ -integrals and $q$ -derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. doi: 10.1017/S0013091500011469 |
[11] | B. Bayraktar, V. C. Kudaev, Some new integral inequalities for $ \left(s, m\right) $-convex and $\left(\alpha, m\right) $-convex functions, Bull. Karaganda Univ. Math., 94 (2019), 15–25. doi: 10.31489/2019M2/15-25 |
[12] | S. Bermudo, P. Kórus, J. N. Valdés, On $q$ -Hermite-Hadamard inequalities for general convex functions, Acta Math. Hung., 162 (2020), 364–374. doi: 10.1007/s10474-020-01025-6 |
[13] | H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40 (2021), 199–215. doi: 10.22199/issn.0717-6279-2021-01-0013 |
[14] | H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. doi: 10.1007/s10957-020-01726-6 |
[15] | H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2020), 378–390. |
[16] | H. Budak, M. A. Ali, N. Alp, Y. M. Chu, Quantum Ostrowski type integral inequalities, J. Math. Inequal., 2021, in press. |
[17] | S. I. Butt, S. Yousuf, A. O. Akdemir, M. A. Dokuyucu, New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Solition Fract., 148 (2021), 111025. doi: 10.1016/j.chaos.2021.111025 |
[18] | S. I. Butt, A. O. Akdemir, N. Nadeem, N. Malaiki, İ. İşcan, T. Abdeljawad, $\left(m, n\right) $-Harmonically polynomial convex functions and some Hadamard type inequalities on the coordinates, AIMS Math., 6 (2021), 4677–4690. doi: 10.3934/math.2021275 |
[19] | M. Çakmak, Refinements of Bullen-type inequalities for $s$ -convex functions via Riemann–Liouville fractional integrals involving Gauss hypergeometric function, J. Interdiscip. Math., 22 (2019), 975–989. doi: 10.1080/09720502.2019.1698803 |
[20] | Y. M. Chu, S. Rashid, T. Abdeljawad, A. Khalid, H. Kalsoom, On new generalized unified bounds via generalized exponentially harmonically $s$-convex functions on fractal sets. Adv. Differ. Equ., 2021 (2021), 1–33. |
[21] | Y. M. Chu, A. Rauf, S. Rashid, S. Batool, Y. S. Hamed, Quantum estimates in two variable forms for Simpson-type inequalities considering generalized $\Psi$-convex functions with applications, Open Phy., 19 (2021), 305–326. doi: 10.1515/phys-2021-0031 |
[22] | S. S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for $s$ -convex functions in the second sense, Demonstr. Math., 32 (1999), 68–696. |
[23] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. |
[24] | T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using extended $\left(s, m\right) $ -convex functions, Appl. Math. Comput., 293 (2017), 358–369. |
[25] | T. S. Du, Y. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228. |
[26] | T. Ernst, The history of $q$-calculus and new method, Sweden: Department of Mathematics, Uppsala University, 2000. |
[27] | T. Ernst, A comprehensive treatment of $q$ -calculus, Springer, Basel, 2012. |
[28] | H. Hudzik, L. Maligranda, Some remarks on $s$-convex functions, Aequationes Math., 48 (1994), 100–111. doi: 10.1007/BF01837981 |
[29] | İ. İşcan, New refinements for integral and sum forms of Hölder inequality, J. Inequal. Appl., 2019 (2019), 1–11. doi: 10.1186/s13660-019-1955-4 |
[30] | F. H. Jackson, On a $q$-definite integrals. Quarterly J. Pure Appl. Math., 41 (1910), 193–203. |
[31] | S. Jhanthanam, T. Jessada, S. K. Ntouyas, K. Nonlaopon, On $q$-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. doi: 10.3390/math7070632 |
[32] | V. Kac, P. Cheung, Quantum calculus, Springer, New York, 2002. |
[33] | M. Kadakal, İ. İşcan, H. Kadakal, K. Bekar, On improvements of some integral inequalities, Researchgate, Preprint. |
[34] | M. A. Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of Hermite–Hadamard type for $s$-convex functions with applications, Open Math., 15 (2017), 1414–1430. doi: 10.1515/math-2017-0121 |
[35] | M. A. Khan, M. Noor, E. R. Nwaeze, Y. M. Chu, Quantum Hermite–Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 99. doi: 10.1186/s13662-020-02559-3 |
[36] | P. Kórus, An extension of the Hermite–Hadamard inequality for convex and $s$-convex functions, Aequat. Math., 93 (2019), 527–534. doi: 10.1007/s00010-019-00642-z |
[37] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. |
[38] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. |
[39] | E. R. Nwaeze, A. M. Tameru, New parameterized quantum integral inequalities via $\eta $-quasiconvexity, Adv. Differ. Equ., 2019 (2019), 425. doi: 10.1186/s13662-019-2358-z |
[40] | M. E. Özdemir, S. I. Butt, B. Bayraktar, J. Nasir, Several integral inequalities for $\left(\alpha, s, m\right) $-convex functions, AIMS Math., 5 (2020), 3906–3921. doi: 10.3934/math.2020253 |
[41] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, Boston, 1992. |
[42] | S. Rashid, A. Khalid, O. Bazighifan, G. I. Oros, New modifications of integral inequalities via $P$-convexity pertaining to fractional calculus and their applications, Mathematics, 9 (2021), 1753. doi: 10.3390/math9151753 |
[43] | S. Rashid, S. Parveen, H. Ahmad, Y. M. Chu, New quantum integral inequalities for some new classes of generalized $\psi$-convex functions and their scope in physical systems, Open Phy., 19 (2021), 35–50. |
[44] | S. Rashid, Z. Hammouch, R. Ashraf, D. Baleanu, K. S. Nasir, New quantum estimates in the setting of fractional calculus theory, Adv. Differ. Equ., 2020 (2020), 1–17. doi: 10.1186/s13662-019-2438-0 |
[45] | S. Rashid, S. I. Butt, S. Kanwal, H. Ahmed, M. K. Wang, Quantum integral inequalities with respect to Raina's function via coordinated generalized -convex functions with applications, J. Funct. Spaces, 2021 (2021). |
[46] | J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. doi: 10.1186/1687-1847-2013-282 |
[47] | M. Vivas-Cortez, M. A. Ali, A. Kashuri, I. B. Sial, Z. Zhang, Some new Newton's type integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12 (2020), 1476. doi: 10.3390/sym12091476 |
[48] | S. Zhao, S. I. Butt, W. Nazir, J. Nasir, M. Umar, Y. Liu, Some Hermite-Jensen-Mercer type inequalities for $k$-Caputo-fractional derivatives and related results, Adv. Differ. Equ., 2020 (2020), 1–17. doi: 10.1186/s13662-019-2438-0 |
[49] | J. Zhao, S. I. Butt, J. Nasir, Z. Wang, I. Tilli, Hermite-Jensen-Mercer type inequalities for Caputo fractional derivatives, J. Funct. Spaces, 2020 (2020), 7061549. |