Research article

Two meromorphic functions on annuli sharing some pairs of small functions or values

  • Received: 07 June 2021 Accepted: 31 August 2021 Published: 16 September 2021
  • MSC : 32H30, 32A22

  • In this paper, we prove that two admissible meromorphic functions on an annulus must be linked by a quasi-Möbius transformation if they share some pairs of small function with multiplicities truncated by $ 4 $. We also give the representation of Möbius transformation between two admissible meromorphic functions on an annulus if they share four pairs of values with multiplicities truncated by $ 4 $. In our results, the zeros with multiplicities more than a certain number are not needed to be counted if their multiplicities are bigger than a certain number.

    Citation: Hongzhe Cao. Two meromorphic functions on annuli sharing some pairs of small functions or values[J]. AIMS Mathematics, 2021, 6(12): 13311-13326. doi: 10.3934/math.2021770

    Related Papers:

  • In this paper, we prove that two admissible meromorphic functions on an annulus must be linked by a quasi-Möbius transformation if they share some pairs of small function with multiplicities truncated by $ 4 $. We also give the representation of Möbius transformation between two admissible meromorphic functions on an annulus if they share four pairs of values with multiplicities truncated by $ 4 $. In our results, the zeros with multiplicities more than a certain number are not needed to be counted if their multiplicities are bigger than a certain number.



    加载中


    [1] T. B. Cao, Z. S. Deng, On the uniqueness of meromorphic functions that share three or two finite sets on annuli, Proc. Indian Acad. Sci., 122 (2012), 203–220.
    [2] T. B. Cao, H. X. Yi, H. Y. Xu, On the multiple values and uniqueness of meromorphic functions on annuli, Comput. Math. Appl., 58 (2009), 1457–1465. doi: 10.1016/j.camwa.2009.07.042
    [3] T. Czubiak, G. Gundersen, Meromorphic functions that share pairs of values, Complex Var. Elliptic Equ., 34 (1997), 35–46.
    [4] A. Y. Khrystiyanyn, A. A. Kondratyuk, On the Nevanlinna theory for meromorphic functions on annuli I, Mat. Stud., 23 (2005), 19–30.
    [5] A. Y. Khrystiyanyn, A. A. Kondratyuk, On the Nevanlinna theory for meromorphicfunctions on annuli II, Mat. Stud., 24 (2005), 57–68.
    [6] P. Li, C. C. Yang, On two meromorphic functions that share pairs of small functions, Complex Var. Elliptic Equ., 32 (1997), 177–190.
    [7] M. Lund, Z. Ye, Nevanlinna theory of meromorphic functions on annuli, Sci. China Math., 53 (2010), 547–554. doi: 10.1007/s11425-010-0037-3
    [8] R. Nevanlinna, Zur theorie der meromorphen funktionen, Acta Math., 46 (1925), 1–99. doi: 10.1007/BF02543858
    [9] V. A. Nguyen, S. D. Quang, Two meromorphic functions sharing four pairs of small functions, Bull. Korean Math. Soc., 54 (2017), 1159–1171.
    [10] H. T. Phuong, N. V. Thin, On fundamental theorems for holomorphic curves on the annuli, Ukra. Math. J., 67 (2015), 1111–1115. doi: 10.1007/s11253-015-1138-5
    [11] S. D. Quang, A. H. Tran, H. H. Giang, Two meromorphic functions on annuli sharing few small functions with truncated Complex, Anal. Oper. Theory, 13 (2019), 1693–1711. doi: 10.1007/s11785-018-0808-3
    [12] S. D. Quang, L. N. Quynh, Two meromorphic functions sharing some pairs of small functions regardless of multiplicities, Int. J. Math., 25 (2014), 1450014. doi: 10.1142/S0129167X14500141
    [13] S. D. Quang, A. H. Tran, Two meromorphic functions on annuli sharing some pairs of values, Indagationes Math., 29 (2018), 561–579. doi: 10.1016/j.indag.2017.10.007
    [14] K. Yamanoi, The second main theorem for small functions and related problems, Acta Math., 192 (2004), 225–294. doi: 10.1007/BF02392741
    [15] H. X. Yi, C. C. Yang, Uniqueness Theory of Meromorphic Functions, Pure and Applied Mathematics Monographs, Science Press, Beijing, 1995.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1812) PDF downloads(80) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog