In this paper, we prove that two admissible meromorphic functions on an annulus must be linked by a quasi-Möbius transformation if they share some pairs of small function with multiplicities truncated by $ 4 $. We also give the representation of Möbius transformation between two admissible meromorphic functions on an annulus if they share four pairs of values with multiplicities truncated by $ 4 $. In our results, the zeros with multiplicities more than a certain number are not needed to be counted if their multiplicities are bigger than a certain number.
Citation: Hongzhe Cao. Two meromorphic functions on annuli sharing some pairs of small functions or values[J]. AIMS Mathematics, 2021, 6(12): 13311-13326. doi: 10.3934/math.2021770
In this paper, we prove that two admissible meromorphic functions on an annulus must be linked by a quasi-Möbius transformation if they share some pairs of small function with multiplicities truncated by $ 4 $. We also give the representation of Möbius transformation between two admissible meromorphic functions on an annulus if they share four pairs of values with multiplicities truncated by $ 4 $. In our results, the zeros with multiplicities more than a certain number are not needed to be counted if their multiplicities are bigger than a certain number.
[1] | T. B. Cao, Z. S. Deng, On the uniqueness of meromorphic functions that share three or two finite sets on annuli, Proc. Indian Acad. Sci., 122 (2012), 203–220. |
[2] | T. B. Cao, H. X. Yi, H. Y. Xu, On the multiple values and uniqueness of meromorphic functions on annuli, Comput. Math. Appl., 58 (2009), 1457–1465. doi: 10.1016/j.camwa.2009.07.042 |
[3] | T. Czubiak, G. Gundersen, Meromorphic functions that share pairs of values, Complex Var. Elliptic Equ., 34 (1997), 35–46. |
[4] | A. Y. Khrystiyanyn, A. A. Kondratyuk, On the Nevanlinna theory for meromorphic functions on annuli I, Mat. Stud., 23 (2005), 19–30. |
[5] | A. Y. Khrystiyanyn, A. A. Kondratyuk, On the Nevanlinna theory for meromorphicfunctions on annuli II, Mat. Stud., 24 (2005), 57–68. |
[6] | P. Li, C. C. Yang, On two meromorphic functions that share pairs of small functions, Complex Var. Elliptic Equ., 32 (1997), 177–190. |
[7] | M. Lund, Z. Ye, Nevanlinna theory of meromorphic functions on annuli, Sci. China Math., 53 (2010), 547–554. doi: 10.1007/s11425-010-0037-3 |
[8] | R. Nevanlinna, Zur theorie der meromorphen funktionen, Acta Math., 46 (1925), 1–99. doi: 10.1007/BF02543858 |
[9] | V. A. Nguyen, S. D. Quang, Two meromorphic functions sharing four pairs of small functions, Bull. Korean Math. Soc., 54 (2017), 1159–1171. |
[10] | H. T. Phuong, N. V. Thin, On fundamental theorems for holomorphic curves on the annuli, Ukra. Math. J., 67 (2015), 1111–1115. doi: 10.1007/s11253-015-1138-5 |
[11] | S. D. Quang, A. H. Tran, H. H. Giang, Two meromorphic functions on annuli sharing few small functions with truncated Complex, Anal. Oper. Theory, 13 (2019), 1693–1711. doi: 10.1007/s11785-018-0808-3 |
[12] | S. D. Quang, L. N. Quynh, Two meromorphic functions sharing some pairs of small functions regardless of multiplicities, Int. J. Math., 25 (2014), 1450014. doi: 10.1142/S0129167X14500141 |
[13] | S. D. Quang, A. H. Tran, Two meromorphic functions on annuli sharing some pairs of values, Indagationes Math., 29 (2018), 561–579. doi: 10.1016/j.indag.2017.10.007 |
[14] | K. Yamanoi, The second main theorem for small functions and related problems, Acta Math., 192 (2004), 225–294. doi: 10.1007/BF02392741 |
[15] | H. X. Yi, C. C. Yang, Uniqueness Theory of Meromorphic Functions, Pure and Applied Mathematics Monographs, Science Press, Beijing, 1995. |