This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A numerical method based on a finite difference scheme using Shishkin mesh is presented. The proposed method is close to the first-order convergent. The discrete norm yields an error estimate and theoretical estimations are tested by numerical experiments.
Citation: V. Raja, E. Sekar, S. Shanmuga Priya, B. Unyong. Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition[J]. AIMS Mathematics, 2023, 8(7): 16691-16707. doi: 10.3934/math.2023853
This article focuses on a class of fourth-order singularly perturbed convection diffusion equations (SPCDE) with integral boundary conditions (IBC). A numerical method based on a finite difference scheme using Shishkin mesh is presented. The proposed method is close to the first-order convergent. The discrete norm yields an error estimate and theoretical estimations are tested by numerical experiments.
[1] | H. Chen, X. Feng, Z. Zhang, A recovery-based linear $C^0$ finite element method for a fourth-order singularly perturbed Monge-Ampère equation, Adv. Comput. Math., 47 (2021), 21. https://doi.org/10.1007/s10444-021-09847-w doi: 10.1007/s10444-021-09847-w |
[2] | Z. Cen, L. Liu, A. Xu, A second-order adaptive grid method for a nonlinear singularly perturbed problem with an integral boundary condition, J. Comput. Appl. Math., 385 (2021), 113205. https://doi.org/10.1016/j.cam.2020.113205 doi: 10.1016/j.cam.2020.113205 |
[3] | H. G. Debela, G. F. Duressa, Accelerated exponentially fitted operator method for singularly perturbed problems with integral boundary condition, Int. J. Differ. Equat., 2020 (2020), 9268181. https://doi.org/10.1155/2020/9268181 doi: 10.1155/2020/9268181 |
[4] | M. Denche, A. Kourta, Boundary value problem for second-order differential operators with integral conditions, Appl. Anal., 84 (2005), 1247–1266. https://doi.org/10.1080/00036810500287255 doi: 10.1080/00036810500287255 |
[5] | M. E. Durmaz, I. Amirali, G. M. Amiraliyev, An efficient numerical method for a singularly perturbed fredholm integro-differential equation with integral boundary condition, J. Appl. Math. Comput., 69 (2022), 505–528. https://doi.org/10.1007/s12190-022-01757-4 doi: 10.1007/s12190-022-01757-4 |
[6] | P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Robust computational techniques for boundary layers, Boca Raton: CRC Press, 2000. |
[7] | F. T. Fen, I. Y. Karaca, Positive solutions of nth-order impulsive differential equations with integral boundary conditions, An. Sti. U. Ovi. Co. Mat., 24 (2016), 243–261. https://doi.org/10.1515/auom-2016-0014 doi: 10.1515/auom-2016-0014 |
[8] | Y. Fu, H. Yao, The solution of nonlinear fourth-order differential equation with integral boundary conditions, J. Funct. Space., 2014 (2014), 890695. https://doi.org/10.1155/2014/890695 doi: 10.1155/2014/890695 |
[9] | N. Geetha, A. Tamilselvan, Parameter uniform numerical method for fourth order singularly perturbed turning point problems exhibiting boundary layers, Ain Shams Eng. J., 9 (2018), 845–853. https://doi.org/10.1016/j.asej.2016.04.018 doi: 10.1016/j.asej.2016.04.018 |
[10] | H. Guo, Z. Zhang, Q. Zou, A $c^0$ linear finite element method for biharmonic problems, J. Sci. Comput., 74 (2018), 1397–1422. https://doi.org/10.1007/s10915-017-0501-0 doi: 10.1007/s10915-017-0501-0 |
[11] | G. J. Jayalakshmi, A. Tamilselvan, Comparative study on difference schemes for singularly perturbed boundary turning point problems with robin boundary conditions, J. Appl. Math. Comput., 62 (2020), 341–360. https://doi.org/10.1007/s12190-019-01287-6 doi: 10.1007/s12190-019-01287-6 |
[12] | T. Jankowski, Positive solutions for fourth-order differential equations with deviating arguments and integral boundary conditions, Nonlinear Anal., 73 (2010), 1289–1299. https://doi.org/10.1016/j.na.2010.04.055 doi: 10.1016/j.na.2010.04.055 |
[13] | Y. Jia, M. Xu, Y. Lin, D. Jiang, An efficient technique based on least-squares method for fractional integro-differential equations, Alex. Eng. J., 64 (2023), 97–105. https://doi.org/10.1016/j.aej.2022.08.033 doi: 10.1016/j.aej.2022.08.033 |
[14] | M. Kudu, A parameter uniform difference scheme for the parameterized singularly perturbed problem with integral boundary condition, Adv. Differ. Equ., 2018 (2018), 170. https://doi.org/10.1186/s13662-018-1620-0 doi: 10.1186/s13662-018-1620-0 |
[15] | M. Kudu, I. Amirali, G. M. Amiraliyev, A second order accurate method for a parameterized singularly perturbed problem with integral boundary condition, J. Comput. Appl. Math., 404 (2022), 113894. https://doi.org/10.1016/j.cam.2021.113894 doi: 10.1016/j.cam.2021.113894 |
[16] | Y. Li, H. Zhang, Positive solutions for a nonlinear higher order differential system with coupled integral boundary conditions, J. Appl. Math., 2014 (2014), 901094. https://doi.org/10.1155/2014/901094 doi: 10.1155/2014/901094 |
[17] | R. K. Lodhi, H. K. Mishra, Solution of a class of fourth order singular singularly perturbed boundary value problems by quintic b-spline method, J. Nigerian Math. Soc., 35 (2016), 257–265. https://doi.org/10.1016/j.jnnms.2016.03.002 doi: 10.1016/j.jnnms.2016.03.002 |
[18] | R. Mahendran, V. Subburayan, Fitted finite difference method for third order singularly perturbed delay differential equations of convection diffusion type, Int. J. Comput. Method., 16 (2019), 1840007. https://doi.org/10.1142/S0219876218400078 doi: 10.1142/S0219876218400078 |
[19] | J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Fitted numerical methods for singular perturbation problems, Singapore: World scientific, 2012. |
[20] | H. K. Mishra, Fourth order singularly perturbed boundary value problems via initial value techniques, Appl. Math. Sci., 8 (2014), 619–632. https://doi.org/10.12988/AMS.2014.312676 doi: 10.12988/AMS.2014.312676 |
[21] | V. Raja, A. Tamilselvan, Fitted finite difference method for third order singularly perturbed convection diffusion equations with integral boundary condition, Arab J. Math. Sci., 25 (2019), 231–242. https://doi.org/10.1016/j.ajmsc.2018.10.002 doi: 10.1016/j.ajmsc.2018.10.002 |
[22] | V. Raja, A. Tamilselvan, Numerical method for a system of singularly perturbed convection diffusion equations with integral boundary conditions, Commun. Korean Math. Soc., 34 (2019), 1015–1027. https://doi.org/10.4134/CKMS.c180224 doi: 10.4134/CKMS.c180224 |
[23] | J. Stalin Christy Roja, A. Tamilselvan, Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type, J. Math. Model., 4 (2016), 79–102. |
[24] | E. Sekar, Second order singularly perturbed delay differential equations with non-local boundary condition, J. Comput. Appl. Math., 417 (2023), 114498. https://doi.org/10.1016/j.cam.2022.114498 doi: 10.1016/j.cam.2022.114498 |
[25] | E. Sekar, U. Bundit, Numerical scheme for singularly perturbed mixed delay differential equation on shishkin type meshes, Fractal Fract., 7 (2023), 43. https://doi.org/10.3390/fractalfract7010043 doi: 10.3390/fractalfract7010043 |
[26] | E. Sekar, A. Tamilselvan, Finite difference scheme for third order singularly perturbed delay differential equation of convection diffusion type with integral boundary condition, J. Appl. Math. Comput., 61 (2019), 73–86. https://doi.org/10.1007/s12190-019-01239-0 doi: 10.1007/s12190-019-01239-0 |
[27] | V. Shanthi, N. Ramanujam, A numerical method for boundary value problems for singularly perturbed fourth-order ordinary differential equations, Appl. Math. Comput., 129 (2002), 269–294. https://doi.org/10.1016/S0096-3003(01)00040-6 doi: 10.1016/S0096-3003(01)00040-6 |
[28] | Q. Wang, Y. Guo, Y. Ji, Positive solutions for fourth-order nonlinear differential equation with integral boundary conditions, Discrete Dyn. Nat. Soc., 2013 (2013), 292–297. https://doi.org/10.1155/2013/684962 doi: 10.1155/2013/684962 |
[29] | M. Xu, R. Lin, Q. Zou, A $c^0$ linear finite element method for a second-order elliptic equation in non-divergence form with cordes coefficients, Numer. Meth. Part. Differ. Equ., 39 (2023), 2244–2269. https://doi.org/10.1002/num.22965 doi: 10.1002/num.22965 |
[30] | M. Xu, C. Shi, A hessian recovery-based finite difference method for biharmonic problems, Appl. Math. Lett., 137 (2023), 108503. https://doi.org/10.1016/j.aml.2022.108503 doi: 10.1016/j.aml.2022.108503 |
[31] | M. Xu, E. Tohidi, J. Niu, Y. Fang, A new reproducing kernel-based collocation method with optimal convergence rate for some classes of bvps, Appl. Math. Comput., 432 (2022), 127343. https://doi.org/10.1016/j.amc.2022.127343 doi: 10.1016/j.amc.2022.127343 |
[32] | Y. Zhu, H. Pang, The shooting method and positive solutions of fourth-order impulsive differential equations with multi-strip integral boundary conditions, Adv. Differ. Equ., 2018 (2018), 5. https://doi.org/10.1186/s13662-017-1453-2 doi: 10.1186/s13662-017-1453-2 |