Let G=(V,E) be a simple connected graph. A vertex x∈V(G) resolves the elements u,v∈E(G)∪V(G) if dG(x,u)≠dG(x,v). A subset S⊆V(G) is a mixed metric resolving set for G if every two elements of G are resolved by some vertex of S. A set of smallest cardinality of mixed metric generator for G is called the mixed metric dimension. In this paper trees and unicyclic graphs having mixed dimension three are classified. The main aim is to investigate the structure of a simple connected graph having mixed dimension three with respect to the order of graph, maximum degree of basis elements and distance partite sets of basis elements. In particular to find necessary and sufficient conditions for a graph to have mixed metric dimension 3. Moreover three separate algorithms are developed for trees, unicyclic graphs and in general for simple connected graph Jn≆Pn with n≥3 to determine "whether these graphs have mixed dimension three or not?". If these graphs have mixed dimension three, then these algorithms provide a mixed basis of an input graph.
Citation: Dalal Awadh Alrowaili, Uzma Ahmad, Saira Hameeed, Muhammad Javaid. Graphs with mixed metric dimension three and related algorithms[J]. AIMS Mathematics, 2023, 8(7): 16708-16723. doi: 10.3934/math.2023854
[1] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[2] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[3] | Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized κ–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177 |
[4] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[5] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[6] | Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538 |
[7] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[8] | Tahir Ullah Khan, Muhammad Adil Khan . Hermite-Hadamard inequality for new generalized conformable fractional operators. AIMS Mathematics, 2021, 6(1): 23-38. doi: 10.3934/math.2021002 |
[9] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[10] | Paul Bosch, Héctor J. Carmenate, José M. Rodríguez, José M. Sigarreta . Generalized inequalities involving fractional operators of the Riemann-Liouville type. AIMS Mathematics, 2022, 7(1): 1470-1485. doi: 10.3934/math.2022087 |
Let G=(V,E) be a simple connected graph. A vertex x∈V(G) resolves the elements u,v∈E(G)∪V(G) if dG(x,u)≠dG(x,v). A subset S⊆V(G) is a mixed metric resolving set for G if every two elements of G are resolved by some vertex of S. A set of smallest cardinality of mixed metric generator for G is called the mixed metric dimension. In this paper trees and unicyclic graphs having mixed dimension three are classified. The main aim is to investigate the structure of a simple connected graph having mixed dimension three with respect to the order of graph, maximum degree of basis elements and distance partite sets of basis elements. In particular to find necessary and sufficient conditions for a graph to have mixed metric dimension 3. Moreover three separate algorithms are developed for trees, unicyclic graphs and in general for simple connected graph Jn≆Pn with n≥3 to determine "whether these graphs have mixed dimension three or not?". If these graphs have mixed dimension three, then these algorithms provide a mixed basis of an input graph.
For a convex function σ:I⊆R→R on I with ν1,ν2∈I and ν1<ν2, the Hermite-Hadamard inequality is defined by [1]:
σ(ν1+ν22)≤1ν2−ν1∫ν2ν1σ(η)dη≤σ(ν1)+σ(ν2)2. | (1.1) |
The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used inequalities. The recently published papers [2,3,4] are focused on extending and generalizing the convexity and Hermite-Hadamard inequality.
The situation of the fractional calculus (integrals and derivatives) has won vast popularity and significance throughout the previous five decades or so, due generally to its demonstrated applications in numerous seemingly numerous and great fields of science and engineering [5,6,7].
Now, we recall the definitions of Riemann-Liouville fractional integrals.
Definition 1.1 ([5,6,7]). Let σ∈L1[ν1,ν2]. The Riemann-Liouville integrals Jϑν1+σ and Jϑν2−σ of order ϑ>0 with ν1≥0 are defined by
Jϑν1+σ(x)=1Γ(ϑ)∫xν1(x−η)ϑ−1σ(η)dη, ν1<x | (1.2) |
and
Jϑν2−σ(x)=1Γ(ϑ)∫ν2x(η−x)ϑ−1σ(η)dη, x<ν2, | (1.3) |
respectively. Here Γ(ϑ) is the well-known Gamma function and J0ν1+σ(x)=J0ν2−σ(x)=σ(x).
With a huge application of fractional integration and Hermite-Hadamard inequality, many researchers in the field of fractional calculus extended their research to the Hermite-Hadamard inequality, including fractional integration rather than ordinary integration; for example see [8,9,10,11,12,13,14,15,16,17,18,19,20,21].
In this paper, we consider the integral inequality of Hermite-Hadamard-Mercer type that relies on the Hermite-Hadamard and Jensen-Mercer inequalities. For this purpose, we recall the Jensen-Mercer inequality: Let 0<x1≤x2≤⋯≤xn and μ=(μ1,μ2,…,μn) nonnegative weights such that ∑ni=1μi=1. Then, the Jensen inequality [22,23] is as follows, for a convex function σ on the interval [ν1,ν2], we have
σ(n∑i=1μixi)≤n∑i=1μiσ(xi), | (1.4) |
where for all xi∈[ν1,ν2] and μi∈[0,1], (i=¯1,n).
Theorem 1.1 ([2,23]). If σ is convex function on [ν1,ν2], then
σ(ν1+ν2−n∑i=1μixi)≤σ(ν1)+σ(ν2)−n∑i=1μiσ(xi), | (1.5) |
for each xi∈[ν1,ν2] and μi∈[0,1], (i=¯1,n) with ∑ni=1μi=1. For some results related with Jensen-Mercer inequality, see [24,25,26].
In view of above indices, we establish new integral inequalities of Hermite-Hadamard-Mercer type for convex functions via the Riemann-Liouville fractional integrals in the current project. Particularly, we see that our results can cover the previous researches.
Theorem 2.1. For a convex function σ:[ν1,ν2]⊆R→R with x,y∈[ν1,ν2], we have:
σ(ν1+ν2−x+y2)≤2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]≤σ(ν1)+σ(ν2)−σ(x)+σ(y)2. | (2.1) |
Proof. By using the convexity of σ, we have
σ(ν1+ν2−u+v2)≤12[σ(ν1+ν2−u)+σ(ν1+ν2−v)], | (2.2) |
and above with u=1−η2x+1+η2y, v=1+η2x+1−η2y, where x,y∈[ν1,ν2] and η∈[0,1], leads to
σ(ν1+ν2−x+y2)≤12[σ(ν1+ν2−(1−η2x+1+η2y))+σ(ν1+ν2−(1+η2x+1−η2y))]. | (2.3) |
Multiplying both sides of (2.3) by ηϑ−1 and then integrating with respect to η over [0,1], we get
1ϑσ(ν1+ν2−x+y2)≤12[∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη+∫10ηϑ−1σ(ν1+ν2−(1+η2x+1−η2y))dη]=12[2ϑ(y−x)ϑ∫ν1+ν2−x+y2ν1+ν2−y((ν1+ν2−x+y2)−w)ϑ−1σ(w)dw+2ϑ(y−x)ϑ∫ν1+ν2−xν1+ν2−x+y2(w−(ν1+ν2−x+y2))ϑ−1σ(w)dw]=2ϑ−1Γ(ϑ)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)], |
and thus the proof of first inequality in (2.1) is completed.
On the other hand, we have by using the Jensen-Mercer inequality:
σ(ν1+ν2−(1−η2x+1+η2y))≤σ(ν1)+σ(ν2)−(1−η2σ(x)+1+η2σ(y)) | (2.4) |
σ(ν1+ν2−(1+η2x+1−η2y))≤σ(ν1)+σ(ν2)−(1+η2σ(x)+1−η2σ(y)). | (2.5) |
Adding inequalities (2.4) and (2.5) to get
σ(ν1+ν2−(1−η2x+1+η2y))+σ(ν1+ν2−(1+η2x+1−η2y))≤2[σ(ν1)+σ(ν2)]−[σ(x)+σ(y)]. | (2.6) |
Multiplying both sides of (2.6) by ηϑ−1 and then integrating with respect to η over [0,1] to obtain
∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη+∫10ηϑ−1σ(ν1+ν2−(1+η2x+1−η2y))dη≤2ϑ[σ(ν1)+σ(ν2)]−1ϑ[σ(x)+σ(y)]. |
By making use of change of variables and then multiplying by ϑ2, we get the second inequality in (2.1).
Remark 2.1. If we choose ϑ=1, x=ν1 and y=ν2 in Theorem 2.1, then the inequality (2.1) reduces to (1.1).
Corollary 2.1. Theorem 2.1 with
● ϑ=1 becomes [24, Theorem 2.1].
● x=ν1 and y=ν2 becomes:
σ(ν1+ν22)≤2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]≤σ(ν1)+σ(ν2)2, |
which is obtained by Mohammed and Brevik in [10].
The following Lemma linked with the left inequality of (2.1) is useful to obtain our next results.
Lemma 2.1. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and σ′∈L[ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)=(y−x)4∫10ηϑ[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη. | (2.7) |
Proof. From right hand side of (2.7), we set
ϖ1−ϖ2:=∫10ηϑ[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη=∫10ηϑσ′(ν1+ν2−(1−η2x+1+η2y))dη−∫10ηϑσ′(ν1+ν2−(1+η2x+1−η2y))dη. | (2.8) |
By integrating by parts with w=ν1+ν2−(1−η2x+1+η2y), we can deduce:
ϖ1=−2(y−x)σ(ν1+ν2−y)+2ϑ(y−x)∫10ηϑ−1σ(ν1+ν2−(1−η2x+1+η2y))dη=−2(y−x)σ(ν1+ν2−y)+2ϑ+1ϑ(y−x)ϑ+1∫ν1+ν2−x+y2ν1+ν2−yσ((ν1+ν2−x+y2)−w)ϑ−1σ(w)dw=−2(y−x)σ(ν1+ν2−y)+2ϑ+1Γ(ϑ+1)(y−x)ϑ+1Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2). |
Similarly, we can deduce:
ϖ2=2y−xσ(ν1+ν2−x)−2ϑ+1Γ(ϑ+1)(y−x)ϑ+1Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2). |
By substituting ϖ1 and ϖ2 in (2.8) and then multiplying by (y−x)4, we obtain required identity (2.7).
Corollary 2.2. Lemma 2.1 with
● ϑ=1 becomes:
1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)=(y−x)4∫10η[σ′(ν1+ν2−(1−η2x+1+η2y))−σ′(ν1+ν2−(1+η2x+1−η2y))]dη. |
● ϑ=1, x=ν1 and y=ν2 becomes:
1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)=(ν2−ν1)4∫10η[σ′(ν1+ν2−(1−η2ν1+1+η2ν2))−σ′(ν1+ν2−(1+η2ν1+1−η2ν2))]dη. |
● x=ν1 and y=ν2 becomes:
2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)=(ν2−ν1)4∫10ηϑ[σ′(ν1+ν2−(1−η2ν1+1+η2ν2))−σ′(ν1+ν2−(1+η2ν1+1−η2ν2))]dη. |
Theorem 2.2. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′| is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)2(1+ϑ)[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2]. | (2.9) |
Proof. By taking modulus of identity (2.7), we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4[∫10ηϑ|σ′(ν1+ν2−(1−η2x+1+η2y))|dη+∫10ηϑ|σ′(ν1+ν2−(1+η2x+1−η2y))|dη]. |
Then, by applying the convexity of |σ′| and the Jensen-Mercer inequality on above inequality, we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4[∫10ηϑ[|σ′(ν1)|+|σ′(ν2)|−(1+η2|σ′(x)|+1−η2)|σ′(y)|]dη+∫10ηϑ[|σ′(ν1)|+|σ′(ν2)|−(1−η2|σ′(x)|+1+η2)|σ′(y)|]dη]=(y−x)2(1+ϑ)[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2], |
which completes the proof of Theorem 2.2.
Corollary 2.3. Theorem 2.2 with
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)4[|σ′(ν1)|+|σ′(ν2)|−|σ′(x)|+|σ′(y)|2]. |
● ϑ=1, x=ν1 and y=ν2 becomes [27, Theorem 2.2].
● x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(ν2−ν1)4[|σ′(ν1)|+|σ′(ν2)|2]. |
Theorem 2.3. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′|q,q>1 is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4p√ϑp+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q], | (2.10) |
where 1p+1q=1.
Proof. By taking modulus of identity (2.7) and using Hölder's inequality, we get
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑp)1p{(∫10|σ′(ν1+ν2−(1−η2x+1+η2y))|qdη)1q+(∫10|σ′(ν1+ν2−(1+η2x+1−η2y))|qdη)1q}. |
Then, by applying the Jensen-Mercer inequality with the convexity of |σ′|q, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑp)1p{(∫10|σ′(ν1)|q+|σ′(ν2)|q−(1−η2|σ′(x)|q+1+η2|σ′(y)|q))1q+(∫10|σ′(ν1)|q+|σ′(ν2)|q−(1+η2|σ′(x)|q+1−η2|σ′(y)|q))1q}=(y−x)4p√ϑp+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q], |
which completes the proof of Theorem 2.3.
Corollary 2.4. Theorem 2.3 with
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)4p√p+1[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+3|σ′(y)|q4))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(3|σ′(x)|q+|σ′(y)|q4))1q]. |
● ϑ=1, x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(ν2−ν1)22p(1p+1)1p[|σ′(ν1)|+|σ′(ν2)|]. |
● x=ν1 and y=ν2 becomes:
|2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)|≤2ϑ−1−2qν2−ν1(1p+1)1p[|σ′(ν1)|+|σ′(ν2)|]. |
Theorem 2.4. Let σ:[ν1,ν2]⊆R→R be a differentiable function on (ν1,ν2) and |σ′|q,q≥1 is convex on [ν1,ν2] with ν1≤ν2 and x,y∈[ν1,ν2]. Then, we have:
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(ϑ+1)[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+(2ϑ+3)|σ′(y)|q2(ϑ+2)))1q+(|σ′(ν1)|q+|σ′(ν2)|q−((2ϑ+3)|σ′(x)|q+|σ′(y)|q2(ϑ+2)))1q]. | (2.11) |
Proof. By taking modulus of identity (2.7) with the well-known power mean inequality, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑ)1−1q{(∫10ηϑ|σ′(ν1+ν2−(1−η2x+1+η2y))|qdη)1q+(∫10ηϑ|σ′(ν1+ν2−(1+η2x+1−η2y))|qdη)1q}. |
By applying the Jensen-Mercer inequality with the convexity of |σ′|q, we can deduce
|2ϑ−1Γ(ϑ+1)(y−x)ϑ[Jϑ(ν1+ν2−y)+σ(ν1+ν2−x+y2)+Jϑ(ν1+ν2−x)−σ(ν1+ν2−x+y2)]−σ(ν1+ν2−x+y2)|≤(y−x)4(∫10ηϑ)1−1q{(∫10ηϑ[|σ′(ν1)|q+|σ′(ν2)|q−(1−η2|σ′(x)|q+1+η2|σ′(y)|q)])1q+(∫10ηϑ[|σ′(ν1)|q+|σ′(ν2)|q−(1+η2|σ′(x)|q+1−η2|σ′(y)|q)])1q}=(y−x)4(ϑ+1)[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+(2ϑ+3)|σ′(y)|q2(ϑ+2)))1q+(|σ′(ν1)|q+|σ′(ν2)|q−((2ϑ+3)|σ′(x)|q+|σ′(y)|q2(ϑ+2)))1q], |
which completes the proof of Theorem 2.4.
Corollary 5. Theorem 2.4 with
● q=1 becomes Theorem 2.2.
● ϑ=1 becomes:
|1y−x∫ν1+ν2−xν1+ν2−yσ(w)dw−σ(ν1+ν2−x+y2)|≤(y−x)8[(|σ′(ν1)|q+|σ′(ν2)|q−(|σ′(x)|q+5|σ′(y)|q6))1q+(|σ′(ν1)|q+|σ′(ν2)|q−(5|σ′(x)|q+|σ′(y)|q6))1q]. |
● ϑ=1, x=ν1 and y=ν2 becomes:
|1ν2−ν1∫ν2ν1σ(w)dw−σ(ν1+ν22)|≤(y−x)8[(5|σ′(ν1)|q+|σ′(ν2)|q6)1q+(|σ′(ν1)|q+5|σ′(ν2)|q6)1q]. |
● x=ν1 and y=ν2 becomes:
|2ϑ−1Γ(ϑ+1)(ν2−ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2−σ(ν1+ν22)]−σ(ν1+ν22)|≤(ν2−ν1)4(ϑ+1)[((2ϑ+3)|σ′(ν1)|q+|σ′(ν2)|q2(ϑ+2))1q+(|σ′(ν1)|q+(2ϑ+3)|σ′(ν2)|q2(ϑ+2))1q]. |
Here, we consider the following special means:
● The arithmetic mean:
A(ν1,ν2)=ν1+ν22,ν1,ν2≥0. |
● The harmonic mean:
H(ν1,ν2)=2ν1ν2ν1+ν2,ν1,ν2>0. |
● The logarithmic mean:
L(ν1,ν2)={ν2−ν1lnν2−lnν1,ifν1≠ν2,ν1,ifν1=ν2,ν1,ν2>0. |
● The generalized logarithmic mean:
Ln(ν1,ν2)={[νn+12−νn+11(n+1)(ν2−ν1)]1n,ifν1≠ν2ν1,ifν1=ν2,ν1,ν2>0;n∈Z∖{−1,0}. |
Proposition 3.1. Let 0<ν1<ν2 and n∈N, n≥2. Then, for all x,y∈[ν1,ν2], we have:
|Lnn(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))n|≤n(y−x)4[2A(νn−11,νn−12)−A(xn−1,yn−1)]. | (3.1) |
Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=xn,x>0, one can obtain the result directly.
Proposition 3.2. Let 0<ν1<ν2. Then, for all x,y∈[ν1,ν2], we have:
|L−1(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))−1|≤(y−x)4[2H−1(ν21,ν22)−H−1(x2,y2)]. | (3.2) |
Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.
Proposition 3.3. Let 0<ν1<ν2 and n∈N, n≥2. Then, we have:
|Lnn(ν1,ν2)−An(ν1,ν2)|≤n(ν2−ν1)4[A(νn−11,νn−12)], | (3.3) |
and
|L−1(ν1,ν2)−A−1(ν1,ν2)|≤(ν2−ν1)4H−1(ν21,ν22). | (3.4) |
Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.1 and Proposition 3.2, one can obtain the Proposition 3.3.
Proposition 3.4. Let 0<ν1<ν2 and n∈N, n≥2. Then, for q>1,1p+1q=1 and for all x,y∈[ν1,ν2], we have:
|Lnn(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))n|≤n(y−x)4p√p+1{[2A(νq(n−1)1,νq(n−1)2)−12A(xq(n−1),3yq(n−1))]1q+[2A(νq(n−1)1,νq(n−1)2)−12A(3xq(n−1),yq(n−1))]1q}. | (3.5) |
Proof. By applying Corollary 2.4 (first item) for convex function σ(x)=xn,x>0, one can obtain the result directly.
Proposition 3.5. Let 0<ν1<ν2. Then, for q>1,1p+1q=1 and for all x,y∈[ν1,ν2], we have:
|L−1(ν1+ν2−y,ν1+ν2−x)−(2A(ν1,ν2)−A(x,y))−1|≤q√2(y−x)4p√p+1{[H−1(ν2q1,ν2q2)−34H−1(x2q,3y2q)]1q+[H−1(ν2q1,ν2q2)−34H−1(3x2q,y2q)]1q}. | (3.6) |
Proof. By applying Corollary 2.4 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.
Proposition 3.6. Let 0<ν1<ν2 and n∈N, n≥2. Then, for q>1 and 1p+1q=1, we have:
|Lnn(ν1,ν2)−An(ν1,ν2)|≤n(ν2−ν1)4p√p+1{[2A(νq(n−1)1,νq(n−1)2)−12A(νq(n−1)1,3νq(n−1)2)]1q+[2A(νq(n−1)1,νq(n−1)2)−12A(3νq(n−1)1,νq(n−1)2)]1q}, | (3.7) |
and
|L−1(ν1,ν2)−A−1(ν1,ν2)|≤q√2(ν2−ν1)4p√p+1{[H−1(ν2q1,ν2q2)−34H−1(ν2q1,3ν2q2)]1q+[H−1(ν2q1,ν2q2)−34H−1(3ν2q1,ν2q2)]1q}. | (3.8) |
Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.4 and Proposition 3.5, one can obtain the Proposition 3.6.
As we emphasized in the introduction, integral inequality is the most important field of mathematical analysis and fractional calculus. By using the well-known Jensen-Mercer and power mean inequalities, we have proved new inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. In the last section, we have considered some propositions in the context of special functions; these confirm the efficiency of our results.
We would like to express our special thanks to the editor and referees. Also, the first author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.
The authors declare no conflict of interest.
[1] |
U. Ahmad, S. Ahmed, Muhammad Javaid, M. N. Alam, Computing Fault-tolerant Metric Dimension of Connected Graphs, J. Math., 2022 (2022), Article ID 9773089. https://doi.org/10.1155/2022/97730892022 doi: 10.1155/2022/97730892022
![]() |
[2] |
R. C. Brigham, G. Chartrand, R. D. Dutton, P. Zhang, Resolving domination in graphs, Math. Bohem., 128 (2003), 325–364. https://doi.org/10.21136/MB.2003.134179 doi: 10.21136/MB.2003.134179
![]() |
[3] | G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. |
[4] |
G. Chartrand, V. Saenpholphat, P. Zhang, The independent resolving number of a graph, Math. Bohem., 128 (2003), 379–393. https://doi.org/10.21136/MB.2003.134003 doi: 10.21136/MB.2003.134003
![]() |
[5] | A. Estrada-Moreno, J. A. Rodriguez-Velazquez, I. G. Yero, The k-metric dimension of a graph, Appl. Math. Inf. Sci., 9 (2015), 2829–2840. |
[6] |
M. M. Danasa, J. Kraticab, A. Savic, Z. Maksimovic, Some new general lower bounds for mixed metric dimension of graphs, Filomat, 35 (2021). https://doi.org/10.2298/FIL2113275M doi: 10.2298/FIL2113275M
![]() |
[7] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria, 2 (1976), 191–195. |
[8] |
A. Kelenc, N. Tratnik, I. G. Yero, Uniquely identifying the edges of a graph: the edge metric dimension, Discrete Appl. Math., 251 (2018), 204–220. https://doi.org/10.1016/j.dam.2018.05.052 doi: 10.1016/j.dam.2018.05.052
![]() |
[9] |
A. Kelenc, D. Kuzia, A. Taranenko, I. G. Yero, Mixed metric dimension of graphs, Appl. Math. Comput., 314 (2017), 429–438. https://doi.org/10.1016/j.amc.2017.07.027 doi: 10.1016/j.amc.2017.07.027
![]() |
[10] | S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229. |
[11] |
O. R. Oellermann, J. Peters-Fransen, The strong metric dimension of graphs and digraphs, Discret Appl. Math., 155 (2007), 356–364. https://doi.org/10.1016/j.dam.2006.06.009 doi: 10.1016/j.dam.2006.06.009
![]() |
[12] |
F. Okamoto, B. Phinezyn, P. Zhang, The local metric dimension of a graph, Math. Bohem., 135 (2010), 239–255. https://doi.org/10.21136/MB.2010.140702 doi: 10.21136/MB.2010.140702
![]() |
[13] | H. Razza, Y. Ji, Computing the Mixed Metric Dimension of a Generalized Petersen Graph P(n,2), Front. Phys., 28 July 2020. https://doi.org/10.3389/fphy.2020.00211 |
[14] | P. J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 14 (1975), 549–559. |
[15] |
J. Sedlar, R. Škrekovsk, Mixed metric dimension of graphs with edge disjoint cycles, Discrete Appl. Math., 300 (2021), 1–8. https://doi.org/10.1016/j.dam.2021.05.004 doi: 10.1016/j.dam.2021.05.004
![]() |
[16] | G. Sudhakara, A. R. Hemanth Kumar, Graphs with metric dimension two a characterization, Adv. Appl. Discrete Math., 4 (2009), 169–186. |
1. | Tariq A. Aljaaidi, Deepak B. Pachpatte, Ram N. Mohapatra, The Hermite–Hadamard–Mercer Type Inequalities via Generalized Proportional Fractional Integral Concerning Another Function, 2022, 2022, 1687-0425, 1, 10.1155/2022/6716830 | |
2. | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad, (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates, 2021, 6, 2473-6988, 4677, 10.3934/math.2021275 | |
3. | Ifra Bashir Sial, Nichaphat Patanarapeelert, Muhammad Aamir Ali, Hüseyin Budak, Thanin Sitthiwirattham, On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions, 2022, 11, 2075-1680, 132, 10.3390/axioms11030132 | |
4. | Deniz Uçar, Inequalities for different type of functions via Caputo fractional derivative, 2022, 7, 2473-6988, 12815, 10.3934/math.2022709 | |
5. | Soubhagya Kumar Sahoo, Y.S. Hamed, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators, 2023, 65, 11100168, 689, 10.1016/j.aej.2022.10.019 | |
6. | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf, The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator, 2022, 7, 2473-6988, 7040, 10.3934/math.2022392 | |
7. | Churong Chen, Discrete Caputo Delta Fractional Economic Cobweb Models, 2023, 22, 1575-5460, 10.1007/s12346-022-00708-5 | |
8. | Soubhagya Kumar Sahoo, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications, 2022, 14, 2073-8994, 836, 10.3390/sym14040836 | |
9. | Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators, 2023, 11, 2227-7390, 1953, 10.3390/math11081953 | |
10. | Loredana Ciurdariu, Eugenia Grecu, Hermite–Hadamard–Mercer-Type Inequalities for Three-Times Differentiable Functions, 2024, 13, 2075-1680, 413, 10.3390/axioms13060413 | |
11. | Muhammad Aamir Ali, Thanin Sitthiwirattham, Elisabeth Köbis, Asma Hanif, Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications, 2024, 13, 2075-1680, 114, 10.3390/axioms13020114 | |
12. | Muhammad Aamir Ali, Christopher S. Goodrich, On some new inequalities of Hermite–Hadamard–Mercer midpoint and trapezoidal type in q-calculus, 2024, 44, 0174-4747, 35, 10.1515/anly-2023-0019 | |
13. | Thanin Sitthiwirattham, Ifra Sial, Muhammad Ali, Hüseyin Budak, Jiraporn Reunsumrit, A new variant of Jensen inclusion and Hermite-Hadamard type inclusions for interval-valued functions, 2023, 37, 0354-5180, 5553, 10.2298/FIL2317553S | |
14. | Muhammad Aamir Ali, Zhiyue Zhang, Michal Fečkan, GENERALIZATION OF HERMITE–HADAMARD–MERCER AND TRAPEZOID FORMULA TYPE INEQUALITIES INVOLVING THE BETA FUNCTION, 2024, 54, 0035-7596, 10.1216/rmj.2024.54.331 | |
15. | Bahtiyar Bayraktar, Péter Kórus, Juan Eduardo Nápoles Valdés, Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators, 2023, 12, 2075-1680, 517, 10.3390/axioms12060517 | |
16. | THANIN SITTHIWIRATTHAM, MIGUEL VIVAS-CORTEZ, MUHAMMAD AAMIR ALI, HÜSEYIN BUDAK, İBRAHIM AVCI, A STUDY OF FRACTIONAL HERMITE–HADAMARD–MERCER INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS, 2024, 32, 0218-348X, 10.1142/S0218348X24400164 | |
17. | Muhammad Ali, Hüseyin Budak, Elisabeth Köbis, Some new and general versions of q-Hermite-Hadamard-Mercer inequalities, 2023, 37, 0354-5180, 4531, 10.2298/FIL2314531A |