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Abstract: Let G = (V, E) be a simple connected graph. A vertex x ∈ V(G) resolves the elements
u, v ∈ E(G) ∪ V(G) if dG(x, u) , dG(x, v). A subset S ⊆ V(G) is a mixed metric resolving set for G
if every two elements of G are resolved by some vertex of S . A set of smallest cardinality of mixed
metric generator for G is called the mixed metric dimension. In this paper trees and unicyclic graphs
having mixed dimension three are classified. The main aim is to investigate the structure of a simple
connected graph having mixed dimension three with respect to the order of graph, maximum degree of
basis elements and distance partite sets of basis elements. In particular to find necessary and sufficient
conditions for a graph to have mixed metric dimension 3. Moreover three separate algorithms are
developed for trees, unicyclic graphs and in general for simple connected graph Jn � Pn with n ≥ 3
to determine “whether these graphs have mixed dimension three or not?”. If these graphs have mixed
dimension three, then these algorithms provide a mixed basis of an input graph.
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Mathematics Subject Classification: 05C12, 05C75

1. Introduction

One of the important features of graph metric generator is that its different version can be introduced
according to the required scenario or application. Up till now, a lot of research work has been
carried out on metric generators and its various versions starting from Slater [14], Haray [7] and then
contributed by a number of authors [2–12]. The notion of graph metric generator was primarily studied
due to its basic property of identification of intruder in the network as all the nodes in the network can be
uniquely localized by a certain set of vertices called metric generator. However, in the situation, when
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an intruder can approach the system not only through nodes but also by manipulating the connections
between the nodes (i.e., edges), then a basic metric generator may not be able to locate the intruder.
This leads to the motivation of constructing a metric generator having capabilities of distinguishing
both vertices and edges so that this type of situation can be handled. Kelenc et al. [9] proposed a metric
generator variant referred as mixed metric generator which can identified both vertices and edges of
graph simultaneously. They analyzed different properties of mixed metric generator. In particular, they
characterized the graphs of order n having mixed dimension 2 and n. They proved that graph has mixed
dimension two if and only if it is a path graph and has mixed dimension n if and only if it is a complete
graph. They also determined mixed dimension of some well- known families of graph like path graph,
cycle graph, cartesian product with path graphs, etc. The mixed metric dimension of petersen graph
was determined by Raza and Ji [13]. The mixed metric dimension for unicyclic graphs was investigated
in [15]. In [1], the necessary and sufficient conditions for graphs of order at least 3 having mixed fault-
tolerant generators are established. Moreover, a mixed fault-tolerant metric generator is determined for
graphs having shortest cycle length at least 4. Danas et al. [6] presented three general lower bounds for
mixed metric dimension of graphs. They also compare the new bounds with already existing bounds
in literature.

As the minimum mixed dimension for a simple connected graph J � Pn with n ≥ 3 is three and one
of such graph is cycle graph [9], so it is natural to seek all graphs having mixed dimension three. The
focus of this paper is to characterize such graphs and to develop an algorithm to determine “whether
a simple connected graph J with n ≥ 3 vertices such that J � Pn has mixed dimension three or
not?” We also classify all unicyclic graphs with mixed dimension three. To characterize the graphs
having mixed dimension three and to develop algorithm for this, we use the idea of neihbourhood of
vertices and vertex distance partitions which was used in [16] for characterization of graphs having
metric dimension two. To recall, for a graph Q, the distance between two vertices is the length of the
shortest path between them, whereas, the distance between a vertex x and an edge e = yz is given as
d(x, e) = min{d(x, y), d(x, z)}. The subset M = {m1,m2, · · · ,mk} ⊆ V(Q) is referred as mixed metric
generator or mixed generator, if distance vectors of any two members x, y ∈ V(Q) ∪ E(Q) are distinct,
i.e., r(x|M) , r(y|M), where distance vector r(x|M) = (d(x,m1), d(x,m2, · · · , d(x,mk)). The smallest
mixed generator is called mixed basis and the number of elements in mixed basis is called mixed
dimension. It is represented as dimm(Q). For x ∈ V(Q), the collection {X0, X1, ·, Xk} is referred as
distance partition of V(Q) relative to the vertex x if X0 = {x}and X j = {y ∈ V(Q) : d(x, y) = j, for
1 ≤ j ≤ k, where k is the eccentricity of x in Q. The sets X0, X1, ·, Xk are referred as distance partite sets.
The open neighbourhood N(v) of v ∈ V(G) is defined as N(v) = {x ∈ V(G) : x ∼ v}. The eccentricity
e(v) of any vertex v ∈ V(G) is the maximum distance of v in V(G), i.e., e(v) = maxx∈V(G) d(x, v).
the vertex of degree one is referred as pendant vertex and vertex adjacent to pendant vertex is called
support vertex. A unicyclic graph is a simple graph with exactly one cycle.

2. Mixed basis for trees and unicyclic graphs

Definition 2.1. Consider a graph G of order r ≥ 1 with V(G) = {v1, v2, · · · , vr} and r paths Psi of length
si with si ≥ 1. Then the graph obtained from G by identifying a pendant vertex of a path Psi with
vi ∈ V(G) such that i = 1, . . . , r. Then this new graph is denoted by ΓG(Ps1 , Ps2 , · · · , Psr ).

Example 2.1. Consider a wheel graph of order 8, where V(W8) = {v1, v2, v3, v4, v5, v6, v7, v8}.
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Then G is the new graph obtained by identifying the pendent vertices of paths of lengths
P2, P2, P3, P3 with vertices v2, v3, v5, v7 and path of length one with all remaining vertices
ΓW8(P1, P2, P2, P1, P3, P1, P3, P1) as shown in Figure 1.

Figure 1. ΓW8 obtained by W8.

Example 2.2. The unicycle graph Un = ΓC8(P3, P1, P2, P1, P1, P3, P1, P1) is obtained by C8 and
identifying the pendant vertices of paths P3, P2 and P3 with vertices u1, u3, and u6, respectively. This is
shown in Figure 2.

Figure 2. The unicycle graph Un = ΓC8(P3, P1, P2, P1, P1, P3, P1, P1).

Remark. If Pm : v1−v2−· · ·−vm is a path with end vertices v1 and vm. Then the graph Γpm(P1, · · · , P1, Pr)
is a path on m + r − 1 vertices for r ≥ 1, whereas for r ≥ 2 the graph Γpm(P1, Pr, P1 · · · , P1) is a tree
which is not a path. The tree Γpm(P1, P2, P1 · · · , P1) is shown in the Figure 3.
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Figure 3. The tree Γpm(P1, Pr, P1 · · · , P1).

Remark. It can be easily seen that ΓG(Ps1 , Ps2 , · · · , Psr ) = G ∪r
i=1 Psi such that G ∩ Psi = vi for all

i = 1, · · · , r and Psi ∩ Ps j = ϕ for all i , j. Moreover ΓG(Ps1 , Ps2 , · · · , Psr ) is subgraph of rooted
product of G ◦a Pt, where t = maxr

i=1 si and a is a pendant vertex of Pt.

Theorem 2.1. [9] If a graph G contains pendant vertices, then any mixed metric generator of G must
contain all pendant vertices of G.

Theorem 2.2. Let Tn � Pn be a tree with n ≥ 3 vertices. Then dimm(Tn) = 3 if and only if Tn �

ΓPt(P1, · · · , P1, Pr, P1, · · · , P1), where Pr is attached to a vertex which is not pendant vertex such that
r ≥ 2 and n = t + r − 1 and t ≥ 3.

Proof. Suppose dimm(Tn) = 3. Since Tn � Pn, Tn contains at least three pendant vertices. As from
Theorem 2.1, any mixed metric contains all the pendant vertices, Tn has mixed dimension three only
if it contains exactly three pendant vertices, say v1, v2 and v3. If v1, v2 and v3 are attached to exactly
one support vertex, say s, then we claim that Tn � K1,3 for otherwise there is a vertex s1 different
from v1, v2 and v3 but adjacent to s. If s1 is a pendant vertex, then we have four pendant vertex, a
contradiction. Thus there must be a vertex adjacent to s1, say s2. Now s2 , v1, v2, v3 or s for otherwise
we have a cycle which contradict the fact that Tn is a tree. Continuing in this way, we have distinct
vertices s1, s2, · · · . But as we have finite number of vertices, this process must end and there ia an index
k such that either sk = s j for some 1 ≤ j < k or sk = v1, v2, v3, or s. In either case, we have a cycle,
a contradiction. Hence if there is exactly one support vertex, then Tn � K1,3. Now we suppose that
s and s′ are two support vertices attached to vertices v1 and v2, respectively. Let d(s, s′) = h, then as
v1 and v2 are pendant vertices, so d(v1, v2) = h + 2. Let t = h + 2. Then we have a path Pt of length
t from v1 to v2. Since Tn is connected and v3 does not lie on the path Pt so the vertex v3 is linked to
every vertex of path Pt through some path. Now let vi be the vertex on Pt which is nearer to v3. Clearly
vi , v1, v2. Let d(vi, v3) = r i.e., we have a path Pr whose end vertex vi coincides with i − th vertex
of path Pt. Then the subgraph induced by V(Pt) and V(Pri) is isomorphic to ΓPt(P1, · · · , Pri , · · · P1).
Clearly vi is not a pendant vertex of Pt. Now we claim that all the vertices of Tn either lie on path Pt

or on Pr. For if (V(Pt) ∪ V(Pri)) ∩ V(Tn) , ϕ, then there exists a vertex w1 adjacent to some vertex of
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V(Pt) ∪ V(Pri). Without loss of generality, assume that w1 is adjacent to some vertex of Pt. If degree
of w1 is one, than Tn has four pendant vertices, a contradiction. Therefore deg(w1) ≥ 2. Since Tn does
not contain any cycle, w1 is not adjacent to any vertex of V(Pt) and V(Pri). Thus we have a vertex
w2 ∈ Tn \ (V(Pt)∪V(Pr)). By continuing this process, we get vertices w1,w2, · · · ∈ Tn \ (V(Pt)∪V(Pr)).
Since Tn is finite, there exists some index k such that w j = wk for 1 ≤ j < k. But then Tn contains
a cycle, a contradiction. Hence G � ΓPt(P1, · · · , P1, Pr, P1, · · · , P1) such that Pr is not attached to
pendant vertex of Pt and n = t + r − 1. □

Corollary 1. A tree Tn has mixed dimension 3 if and only if degree sequence of Tn is
(1, 1, 1 2, · · · , 2︸   ︷︷   ︸

(n−4)times

, 3).

Corollary 2. Given the degree sequence of tree Tn, it is decidable in time O(1) whether Tn has mixed
metric dimension three.

Proof. From Corollary 1, it can be seen that if we have degree sequence of a tree, we only need to
check the first four elements and last two elements of degree sequence. Since a tree has always at
least two pendant vertices, first two entries will always contain one’s for otherwise it is not a degree
sequence of a tree. Thus to determine whether a tree has mixed dimension three, we only have to check
the third, fourth and last two elements of degree sequence. This completes the proof. □

Lemma 2.3. Let U be a unicyclic graph with dimm(U) = 3. Then any cycle vertex has degree at most
3 and any non-cycle vertex has degree at most 2.

Proof. Consider a unicyclic graph U, with a unique cycle of length n. Suppose that there exists a cycle
vertex c1 such that deg(c1) > 3. Now label the cycle vertices as {c1, c2, · · · , cn}. Let v1 and v2 be two
non-cycle vertices attached to cycle vertex c1. Then there exists two distinct pendant vertices l1 and l2

such that c1−v1−· · ·− l1 and c1−v2−· · ·− l2 are the shortest paths having lengths r and s, respectively.
Then l1, l2 must belong to M. Since dimm(U) = 3, there exists l1, l2 , m ∈ M such that M = {l1, l2,m}
is a mixed metric basis. First assume that m is any vertex of the maximal subtree containing c1. Then
consider x = c1 and y = c1c2, where c2 ∈ N(c1) be a cycle vertex. Since the vertex c1 is more closer to
l1, l2 and m than c2, the coordinate vectors of x and y with reference to M are r(x|M) = (r, s, t) = r(y|M),
a contradiction. Hence we may assume that m does not belong to the maximal subtree containing c1.

Now suppose n is odd, then c = c n−1
2

and c′ = c n+1
2

(antipodal vertices) are equidistant from c1. Without
loss of generality, assume c = c n−1

2
is more closer to m than c′. Then for a pair of elements x = c and

y = c′c, d(m, c) = d(m, cc′). Since c, c′ are antipodal vertices, d(cc′, c1) = d(c, c1) = d(c′, c1). This
further implies that d(l1, x) = d(l1, c1) + d(c1, c) = d(l1, c1) + d(c1, cc′) = d(l1, y). Similarly d(l2, x) =
d(l2, c1) + d(c1, c) = d(l2, c1) + d(c1, cc′) = d(l2, y), i.e., r(c|M) = r(y|M), a contradiction. Now if n is
even then the vertices c n

2
and c n

2+2 are equidistant from c1. Clearly e1 = c n
2
c n

2+1, e2 = c n
2+1c n

2+2 ∈ E(U)
and d(e1, li) = d(e2, li) = d(li, c n

2
) = d(li, c n

2+2) for i = 1, 2. Now if d(m, c n
2+1) < d(m, c n

2
), d(c n

2+2,m),
then d(e1,m) = d(m, e2) which implies that r(e1|M) = r(e2|M), a contradiction. Thus without loss of
generality, assume that m is more closer to c n

2
than c n

2+1 and c n
2+2. But then r(e1|M) = r(c n

2
|M).

All cases lead to a contradiction. Thus degree of cycle vertex is at most 3.
Now let y be any non-cycle vertex with degree greater than 2. Then there exist at least two distinct

pendant vertices l1, l2 such that there is exactly one path from y to li for i = 1, 2 . By Theorem,
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l1, l2 ∈ M. Since dimm(U) = 3, M = {l1, l2,m} is a mixed metric basis. If c1 is a first cycle vertex closer
to y. Then using the same arguments as above, it can be shown that M is not mixed resolving set. □

Theorem 2.4. Let Un be a unicycle graph. Then dimm(Un) = 3 if and only if either Un � Cn or
Un � ΓCm(Pr, P1, · · · , P1︸      ︷︷      ︸

m−1 times

), where m + r − 1 = n (i.e., tadpole graph) or Un � ΓCm(Pr1 , P1 · · · , P1︸      ︷︷      ︸
i times

, Pr2 ,

P1, · · · P1︸    ︷︷    ︸
m−2−i times

), where i ≥ 0 and m + r1 + r2 − 2 = n or Un � ΓCm(Pr1 , P1 · · · , P1︸      ︷︷      ︸
i times

, Pr2 , P1, · · · P1︸    ︷︷    ︸
j times

, Pr3 ,

P1, · · · P1︸    ︷︷    ︸
m−i− j−3 times

) such that m + r1 + r2 + r3 − 3 = n and i + j + 3 ≥ s, where s = m/2 + 1 if m is even and

s = (m + 1)/2 otherwise.

Proof. Suppose dimm(Un) = 3. As from Theorem 2.1, any mixed metric contains all the pendant
vertices, Un has metric dimension three only if it contains at most three pendant vertices. Now by
Lemma 2.3, degree of each cycle vertex is at most 3. If all the cycle vertices have degree two than
Un � Cn. Thus we may assume that there exists at least one cycle vertex of degree three. We claim that
there are at most three cycle vertices whose degree is 3, for if there are more than three vertices, then
there must exists at least four pendant vertices, a contradiction. Hence, there are at most three cycle
vertices whose degree is 3.

Let x be the cycle vertex of deg(x) ≥ 3. Suppose Tx be the subtree attached at x containing unique
cycle vertex x. We claim that Tx is a path, for if Tx is not a path then there must exists at least one vertex
w ∈ Tx such that deg(w) ≥ 3. If w = x then deg(w) in Un is at least 5, which contradicts Lemma 2.3. If
w is a non- cycle vertex with deg(w) ≥ 3, then it again contradicts Lemma2.3. This further shows that
Un is a graph in which a path is attached to all cycle vertices having degree at least 3. If there is only one
cycle vertex with degree three, then it is easy to see that Un is a tadpole and Un � ΓCm(Pr, P1, · · · , P1︸      ︷︷      ︸

m−1 times

).

If Un contains two cycle vertex of degree three, then clearly, Un � ΓCm(Pr1 , P1 · · · , P1︸      ︷︷      ︸
i times

, Pr2 , P1, · · · P1︸    ︷︷    ︸
m−2−i times

)

such that m + r + t − 2 = n. Now suppose Un contains exactly three cycle vertex of degree three.
Then M = {u, v,w} consisting of pendant vertices and Un � ΓCm(Pr1 , P1 · · · , P1︸      ︷︷      ︸

i times

, Pr2 , P1, · · · P1︸    ︷︷    ︸
j times

, Pr3 ,

P1, · · · P1︸    ︷︷    ︸
m−i− j−3 times

), where m + r1 + r2 + r3 − 3 = n. Let the vertices of Cm are ordered as v = v1, · · · vm such

that u = vi,w = v j. Suppose m is even but both i, j ≤ m/2. Now consider the edge e = vm/2vm/2+1 and
the vertex vm/2. As d(v1, vm/2) = m/2 and d(v1, vm/2+1) = m/2 + 1, so d(v1, e) = d(v1, vm/2). Also as
i, j ≤ m/2, so vm/2 is closer to vi = u and v j = w as compared to vm/2+1. Hence r(vm/2|M) = r(e|M), a
contradiction. Now suppose m is odd but both i, j ≤ (n+ 1)/2. Using same arguments, it can be shown
that r(v(m+1)/2|M) = r(v(m+1)/2V(m+3)/2|M). It completes the proof □

3. Structure of graphs having mixed dimension three

Lemma 3.1. Let M = {v1, v2, v3} be a mixed metric basis of a graph G. Then |N(vi)∩N(v j)| ≤ 3 for all
distinct pair of vertices vi, v j ∈ M. Moreover any two distinct vertices in N(vi)∩N(v j) for i , j are not
adjacent.

Proof. Consider distinct pair of vertices vi, v j ∈ M. Suppose d(vi, vk) = r for vk , vi, v j. Now for any
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vertex w ∈ N(vi) ∩ N(v j), d(w, vi) = 1 = d(w, v j) so we have

d(w, vk) ≤ 1 + r. (3.1)

Now clearly, d(w, vk) ≥ r−1 for otherwise we have a path vi−w− · · ·− vk of length less than r between
vi and vk, a contradiction. Hence

r − 1 ≤ d(w, vk) ≤ r + 1. (3.2)

This further implies that only possibilities are d(w, vk) = r − 1, r, r + 1. Now if there are more than
three vertices in N(vi) ∩ N(v j), then as d(w, vi) = 1 = d(w, v j), the coordinate vectors of at least two
vertices in N(vi) ∩ N(v j) with respect to M are same. This leads to a contradiction.
Now for i , j, let x, y ∈ N(vi)∩N(v j) be two distinct vertices such that x ∼ y. As d(x, vi) = d(y, vi) = 1
and d(x, v j) = d(y, v j) = 1. Since M is mixed basis, we have d(x, vk) , d(y, vk). Suppose t = d(x, vk) <
d(y, vk). Then r(x|M) = (1, 1, t) and as x is more closer to vk than y so d(xy, vk) = d(x, vk) = t. But then
d(xy|M) = (1, 1, t) = d(x|M), i.e., x and the edge xy are not resolved by M, a contradiction. □

Lemma 3.2. Let M = {v1, v2, v3} be a mixed metric basis of a graph G and {Vi0,Vi1, · · · ,Vie(vi)} be the
distance partition of V(G) with respect to vi ∈ M, where e(vi) is the eccentricity of vi. Then
|V1i ∩ V2 j ∩ V3k| ≤ 1 for all 1 ≤ i ≤ e(v1), 1 ≤ j ≤ e(v2) and 1 ≤ k ≤ e(v3)

Proof. Suppose on contrary there exists some integers r ≤ e(v1), s ≤ e(v2) and t ≤ e(v3) such that
|V1r ∩ V1s ∩ V1t| > 1. Then there exists a, b ∈ V(G) such that a, b ∈ V1r ∩ V2s ∩ V3t. Then clearly

d(a, v1) = r = d(b, v1),
d(a, v2) = s = d(b, v1),
d(a, v3) = t = d(b, v3),

i.e., r(a|M) = r(b|M). This leads to a contradiction. □

Lemma 3.3. Let M = {v1, v2, v3} be a mixed metric basis of a graph G and {Xi0, Xi1, · · · , Xie(vi)} be
the distance partition of V(G) with respect to vi ∈ M. If for some i, j ∈ {1, 2, 3}, 0 ≤ r ≤ e(vi) and
0 ≤ s ≤ e(v j), the vertices a, b ∈ Vir ∩ V js, then a and b are not adjacent.

Proof. Suppose the vertices a and b are adjacent, i.e., e = ab ∈ E(G) and d(a, vk) = t for vk , vi, v j.
Then using the same arguments as used in the proof of Lemma 3.1, it can be seen that d(b, vk) =
t − 1, t, t + 1. Now d(b, vk) , t for otherwise a, b ∈ Vir ∩ V js ∩ Vkt which contradicts Lemma 3.2. If
d(b, vk) = t−1, then b is more closer to vk than a. In this case, d(b, vk) = d(e, vk). Now as a, b ∈ Vir∩V js,
therefore d(b, vi) = r = d(e, vi) and d(b, v j) = s = d(e, v j), i.e., the vertex b and the edge e = ab are
not resolved by M. Similarly if d(b, vk) = t + 1, then it can be shown that the vertex a and the e = ab
cannot be distinguished by M. This leads to a contradiction. □

Lemma 3.4. Let M = {v1, v2, v3} be a mixed metric basis of a graph G and {Vi0,Vi1, · · · ,Vie(vi)} be
the distance partition of V(G) with respect to vi ∈ M. If for some 0 ≤ r ≤ e(vi), 0 ≤ s ≤ e(v j) and
0 ≤ t ≤ e(v3), the vertex a ∈ V1r ∩V2s ∩V3t and b ∈ (V1r ∪V1(r+1))∩ (V2s ∪V2(s+1))∩ (V3t ∪V3(t+1)), then
a and b are not adjacent.
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Proof. As a ∈ V1r∩V2s∩V3t and b ∈ (V1r∪V1(r+1))∩ (V2s∪V2(s+1))∩ (V3t∪V3(t+1)), so d(a, vi) ≤ d(b, vi)
for i = 1, 2, 3. Thus if a is adjacent to b, i.e., e = ab ∈ E(G), then d(e, vi) = d(a, vi) for all i. This
further implies that r(a|M) = r(e = ab|M) which contradicts the fact that M is mixed basis. □

Lemma 3.5. Let M = {v1, v2, v3} be a mixed metric basis of a graph G and {Vi0,Vi1, · · · ,Vie(vi)} be the
distance partition of V(G) with respect to vi ∈ M. If for a ∈ V1r ∩V2s ∩V3t (0 ≤ r ≤ e(vi), 0 ≤ s ≤ e(v j)
and 0 ≤ t ≤ e(v3)), there exist b, c ∈ (V1r ∪ V1(r+1)) ∩ (V2s ∪ V2(s+1)) ∩ (V3t ∪ V3(t+1)) such that at least
one of b and c must belong to v1r, v2s and v3t then b and c are not adjacent.

Proof. If a is equal to one of b and c, say a = c then from Lemma 3.4, a = c is not adjacent to b. Thus
we may assume that a , b, c. Suppose on contrary b ∼ c, i.e., e = bc ∈ E(G). Now d(a, v1) = r,
d(a, v2) = s and d(a, v3) = t. Since at least one of b and c (end points of edge e) must belong to v1r, v2s

and v3t, d(e, v1) = r, d(e, v2) = s and d(e, v3) = t. This implies that r(a|M) = (r, s, t) = r(e = ab|M), a
contradiction to the assumption that M is a mixed basis of G. □

Lemma 3.6. Let M be a mixed metric basis of a graph G and {Vi0,Vi1, · · · ,Vie(vi)} be the distance
partition of V(G) with respect to vi ∈ M. If for a, c ∈ Vi, there exists b, d ∈ (Vir ∪ Vi(r+1)) ∩ (V js ∪

V j(s+1))∩ (Vkt ∪Vk(t+1)) (i , j , k) such that a, d ∈ V js and b, c ∈ Vkt, where 0 ≤ s ≤ e(v j), 0 ≤ t ≤ e(vk)
then either a / b or c / d.

Proof. Suppose on contrary, for a, c ∈ Vi, there exists b, d ∈ (Vir∪Vi(r+1))∩ (V js∪V j(s+1))∩ (Vkt∪Vk(t+1))
(i , j , k) such that a, d ∈ V js, b, c ∈ Vkt but a ∼ b and c ∼ d, i.e., e1 = ab, e2 = cd ∈ E(G). Since
a, c ∈ Vi, a and c are more closer to vi, than b and d, respectively. This shows that d(e1, vi) = d(a, vi) = r
and d(e2, vi) = d(c, vi) = r. Now as a, d ∈ V js, so a and d are more closer to v j, than b and c,
respectively. This implies that d(e1, v j) = d(a, v j) = s and d(e2, v j) = d(d, v j) = s. Similarly we can see
that d(e1, vk) = d(b, vk) = t and d(e2, vk) = d(c, v j) = t. Thus if M = {vi, v2, v3 is ordered mixed basis of
G, then r(e1|M) = (r, s, t) = r(e2|M), a contradiction. □

Lemma 3.7. Let M = {v1, v2, v3} be a mixed metric basis of a graph G and {Vi0,Vi1, · · · ,Vie(vi)} be the
distance partition of V(G) with respect to vi ∈ M. Then induced subgraph of any distance partition Vi j

of any vertex vi ∈ M is triangle free.

Lemma 3.8. Let M = {v1, v2, v3} be a mixed metric basis of a graph G and {Vi0,Vi1, · · · ,Vie(vi)} be the
distance partition of V(G) with respect to vi ∈ M. Then the maximum degree of any vertex in induced
subgraph of any distance partition Vi j is at most 2.

Lemma 3.9. Let M be a mixed metric basis of a graph G with |M| = 3. Then the maximum degree of
any vertex of M is at most 3.

Proof. Let vi ∈ M be any vertex and let M = {vi, v j, vk} be ordered basis of G. Suppose d(vi, v j) = r and
d(vi, vk) = t. Suppose a ∈ N(vi). Then clearly d(a, v j) = r, r − 1 or r + 1 and d(a, vk) = t, t − 1 or t + 1.
We claim that if d(a, v j) = r, then d(a, vk) must be t− 1 for otherwise r(vi|M) = (0, r, t) = r(avi|M), i.e.,
the vertex vi and edge avi are not resolved by M. Similarly if d(a, v j) = r + 1, then d(a, vk) = t − 1.
Also we claim that the distinct vertices a, c ∈ N(vi) with representation r(a|M) = (1, r, t − 1) and
r(c|M) = (1, r + 1, t − 1) do not occur simultaneously for otherwise a, c ∈ Vk(t−1) ∩ Vi1, b = vi = d ∈
Vkt ∩ Vi0 and a, d ∈ V jr. By Lemma 3.3, either a is not adjacent to b = vi or c is not adjacent to
d = vi, a contradiction as both a, c ∈ N(vi). Now we claim that there are at most two vertices in N(vi)
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with distance r − 1 from v j, for if there are at least three distinct vertices a, b, c ∈ N(v j), then their
distance representation must be (1, r − 1, t − 1), (1, r − 1, t) and (1, r − 1, t + 1), respectively. But then
b, c ∈ V j(r−1) ∩ Vi1, e = vi = f ∈ V jr ∩ Vi0 and b, e, f ∈ Vkt. By Lemma 3.3, either b is not adjacent to
e = vi or c is not adjacent to f = vi, a contradiction as both b, c ∈ N(vi). Thus N(vi) can contain at most
three vertices; maximum 2 with distance r − 1 and one with distance r or r + 1 (but not both). Thus
maximum number of vertices in N(vi) is 3. □

Theorem 3.10. Let G be a connected graph which is not a tree having mixed metric dimension 3 and
diameter D. Then G contains at most (D3 + 12D2)/2 vertices.

Proof. For each vertex except basis vertex, the associated coordinate vector with positive coordinates
(α, β, γ), where 1 ≤ α, β, γ ≤ D can be chosen in one of D3 ways. The coordinate vector corresponding
to basis elements are (0, β1, γ1), (α2, 0, γ2) and (α, β, 0) for some 1 ≤ α, β, γ ≤ D. On the other hand,
the coordinate vectors are also assigned to edges and these must be distinct from the coordinate vectors
of vertices. All the edges except those which are incident with basis elements have positive integers
in each coordinate of coordinate vectors. Therefore, these again must be chosen from possible D3

coordinate vectors. From Lemma 3.9, the maximum number of edges incident to three basis vertices
are 9. Hence maximum number of coordinate vectors which can be assigned to edges and vertices
must not exceed D3 + 3D2 + 9D2. Then this further implies that

|V(G)| + |E(G)| ≤ D3 + 12D2 (3.3)

As G is connected but not a tree, so it must contain at least |V(G)| edges. Thus (3.3) becomes

|V(G)| ≤ D3 + 12D2 − |E(G)|
≤ D3 + 12D2 − |V(G)|

Hence
|V(G)| ≤ (D3 + 12D2)/2

□

Theorem 3.11. Let G be a graph with n ≥ 3 vertices such that G is not a tree and {Vi0,Vi1, · · · ,Vie(vi)}

be the distance partition of V(G) with respect to vi ∈ V(G), where e(vi) is the eccentricity of vi. Then
mixed metric dimension of G is three if and only if there exists three vertices v1, v2 and v3 which satisfy
the following conditions:

1. |V1i ∩ V2 j ∩ V3k| ≤ 1 for all 1 ≤ i ≤ e(v1), 1 ≤ j ≤ e(v2) and 1 ≤ k ≤ e(v3).
2. If for a ∈ V1r ∩ V2s ∩ V3t (0 ≤ r ≤ e(vi), 0 ≤ s ≤ e(v j) and 0 ≤ t ≤ e(v3)), there exists

b, c ∈ (V1r ∪ V1(r+1))∩ (V2s ∪ V2(s+1))∩ (V3t ∪ V3(t+1)) such that at least one of b and c must belong
to v1r, v2s and v3t then b and c are not adjacent.

3. If for a, c ∈ Vi, there exists b, d ∈ (Vir ∪ Vi(r+1)) ∩ (V js ∪ V j(s+1)) ∩ (Vkt ∪ Vk(t+1)) (i , j , k) such
that a, d ∈ V js and b, c ∈ Vkt, where 0 ≤ s ≤ e(v j), 0 ≤ t ≤ e(vk) then either a / b or c / d.
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Proof. Let M = {v1, v2, v3} be a mixed metric basis of a graph G. suppose on contrary condition
(1) is not satisfied. Then there exists some integers r ≤ e(v1), s ≤ e(v2) and t ≤ e(v3) such that
|V1r ∩ V1s ∩ V1t| > 1. Then there exists a, b ∈ V(G) such that a, b ∈ V1r ∩ V2s ∩ V3t. Then clearly

d(a, v1) = r = d(b, v1),
d(a, v2) = s = d(b, v1),
d(a, v3) = t = d(b, v3),

i.e., r(a|M) = r(b|M). This leads to a contradiction. Hence condition (1) holds. Also conditions (2)
and 3 are satisfied from Lemma 3.5 and Lemma 3.6.

Conversely suppose that there exists three vertices v1, v2 and v3 that satisfy all the conditions. We
will show that the set M = {v1, v2, v3} is mixed metric generator for G. Suppose on contrary there exists
distinct elements x, y ∈ V(G) ∪ E(G) such that x and y are not resolved by any member of M. Then

d(x, v1) = d(y, v1) = r, d(x, v2) = d(y, v2) = s, d(x, v3) = d(y, v3) = t. (3.4)

If x, y ∈ V(G), then x, y ∈ V1r ∩ V2s ∩ V3t, i.e., |V1r ∩ V2s ∩ V3t| ≥ 2, which contradicts condition (1).
Hence for at least one vi ∈ M, d(x, vi) , d(y, vi). Now suppose x ∈ V(G) and y = y1y2 ∈ E(G). Then
from (3.4), we have x ∈ V1r ∩ V2s ∩ V3t and y1, y2 ∈ (V1r ∪ V1(r+1)) ∩ (V2s ∪ V2(s+1)) ∩ (V3t ∪ V3(t+1))
such that at least one of y1 and y2 must belong to V1r, V2s and V3t. But then from condition (2), y1 / y2,
which contradicts the assumption that y = y1y2 is an edge. Finally, assume that x = x1x2 and y = y1y2

are two distinct edges. There arise two cases:
Case 1: The edges x and y are not adjacent, i.e., x1 , x2 , y1 , y2. Then from (3.4),

x1, x2, y1, y2 ∈ (V1r ∪ V1(r+1) ∩ (V2s ∪ V2(s+1)) ∩ (V3t ∪ V3(t+1)). (3.5)

Consider the edge x = x1x2, by pigeon hole principle, one of x1 and x2 is more closer to two of
v1, v2 and v3. Without lose of generality, assume that x1 is more closer to v1 and v2 than x2, i.e.,
d(x, v1) = d(x1, v1) = r and d(x, v2) = d(x1, v2) = s. This implies that

x1 ∈ V1r ∩ V2s. (3.6)

Now we claim that x1 < V3t for otherwise x1 ∈ V1r ∩V2s ∩V3t and x2 ∈ (V1r ∪V1(r+1))∩ (V2s ∪V2(s+1))∩
(V3t ∪ V3(t+1)). Then by condition (2), for a = x1 = b and c = x2, x1 = b / c = x2, which contradicts
the assumption that x = x1x2 is an edge. Thus

x2 ∈ V3t, x1 ∈ V3(t+1). (3.7)

Now consider the edge y = y1y2 and again by similar arguments, one of the end points of edge y, say,
y1 is more closer to two of members of M than y2. There arise the following sub-cases:
Case 1a:
If y1 is more closer to v1 and v2 as compared to y2, then y1, x1 ∈ V1r∩V2s. Again by using condition (2),
it can be shown that y2 ∈ V3t and y1 ∈ V3(t+1). But these along with Eq (3.7) imply that x1, y1 ∈ V3(t+1)

so that x1, y1 ∈ V1r ∩ V2s ∩ V3(t+1). This contradicts condition (1).
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Case1b:
Now suppose y1 ∈ V3t and y1 belong to exactly one of V1r and V2r. Without loss of generality assume
that y1 ∈ V1r. Then

y1 ∈ V1r ∩ V3t. (3.8)

But by using condition (2), we have

y2 ∈ V2s, y1 ∈ V2(s+1). (3.9)

Now from Eqs (3.5), (3.6), (3.7), (3.8) and (3.9), we have for x1, y1 ∈ V1r, there exists x2, y2 ∈ (V2s ∪

V2(s+1))∩(V3t∪V3(t+1)) such that x1, y2 ∈ V2s and x2, y1 ∈ V3t. But then from condition (3), either x1 / x2

or y1 / y2, a contradiction.
Case 2:
Suppose the edges x = x1x2 and y1y2 are adjacent with their common vertex x1 = y1. Then from (3.4),

x1, x2, y2 ∈ (V1r ∪ V1(r+1) ∩ (V2s ∪ V2(s+1)) ∩ (V3t ∪ V3(t+1)). (3.10)

We claim that the common vertex x1 is nearer to at least two of the vertices of M as compared to other
vertices x2 and y2 for otherwise from (3.10), either x1 ∈ V1(r+1)∩V2(s+1)∩V3(t+1) or x1 belongs to exactly
one of V1r, V2s and V3t, say V1r. If x1 ∈ V1(r+1) ∩V2(s+1) ∩V3(t+1), then from 3.4, d(x2, v1) = d(y2, v1) = r,
d(x2, v2) = d(y2, v2) = s and d(x2, v3) = d(y2, v3) = t. This further implies that x2, y2 ∈ V1r ∩ V2s ∩ V3t,
a contradiction. Also if x1 ∈ V1r but x1 < V2s,V3t, then as from (3.4), x and y are at same distance from
v2 and v3, and from (3.10), the only possibility is

x2, y2 ∈ V2s ∩ V3t. (3.11)

Now we claim that none of x2 and y2, belongs to V1r for if one of x2 and y2, say x2 belong to V1r, then
from (3.11), x2 ∈ V1r ∩ V2s ∩ V3t and x1, x2 ∈ (V1r ∪ V1(r+1)) ∩ (V2s ∪ V2(s+1)) ∩ (V3(t+1) ∪ VV3t . Using
condition (2), x1 / x2, a contradiction as x = x1x2 is an edge. Hence none of x2 and y2, belongs to V1r.
Then from (3.10), x2, y2 ∈ V1(r+1). But then x2, y2 ∈ V1(r+1) ∩ V2s) ∩ V3t which contradicts condition (1).
Hence x1 is closer to two of the vertices of M, say v1 and v2 as compared to vertices x2 and y2. Now
using condition (2) and (3.10), we can write

x1 ∈ V3(t+1), x2, y2 ∈ V3t (3.12)

Also from (3.10), x2, y2 ∈ (V1r ∪ V1(r+1)) ∩ (V2s ∪ V2(s+1)). If x2, y2 ∈ V1(r+1)∩V2(s+1) , then this along with
(3.12) imply that x2, y2 ∈ V1(r+1)∩V2(s+1) ∩ V3t. This contradicts condition (1). Therefore one of x2 and
y2 must belong to one of V1r and V2s. Suppose without loss of generality that x2 ∈ V1r. Consider
y1 = x1, x2 ∈ V1r, then there exists x1, y2 ∈ (V1r ∪ V1(r+1)) ∩ (V2s ∪ V2(s+1)) ∩ (V3t ∪ V3(t+1)) such that
y1, x1 ∈ V2s and x2, y2 ∈ V3t. By condition (3), either y1 = x1 / toy2 or x2 / x1. This leads to a
contradiction as x = x1x2 and y1y2 = x1y2 are edges.

All the possible cases lead to a contradiction. Hence M is a mixed metric generator. Therefore
dimm(G) ≤ 3. As G � Pn, dimm ≥ 3. Hence dimm(G) = 3. □
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4. Development of algorithms

In this section, three algorithms are developed for determine whether or not “a tree, unicyclic graph
and in general a simple connected graphs has mixed dimension three?”. The algorithm for tree to have
mixed metric dimension three using Theorem 2.2 and Corollary 1 is given in Algorithm 1.

Theorem 4.1. The complexity of the algorithm to determine a mixed basis of dimension three for a
graph J of order n and diameter D is D3(n(n−1)4(n−2)

6 ).

Proof. It is noted that the number of sets in any distance partition of V(J) is maximum δ. In
the proposed algorithm, three distance partitions of V(J) with respect to three distinct vertices are
considered at each step. Each set in one partition is compared with two distinct sets from two other
partitions(one from each partition). Thus total number of set comparisons is D3( n(n−1)(n−2)

6 ). Moreover,
in each comparison of three sets, the element wise comparison is at most (n− 1)3. Thus the complexity
of the algorithm is D3(n(n−1)4(n−2)

6 ). □

Lemma 2.3 and Theorem 2.4 are used to develop an algorithm to find unicyclic graphs having mixed
dimension 3. It is given in Algorithm 2.

The Lemma 3.9, Lemma3.1, Theorem 3.10, and Theorem 3.11 provide the criteria to determine
whether a simple connected graph has mixed metric dimension 3 or not. If a graph has mixed metric
dimension three, then Theorem 3.11 also provide the mixed metric basis for the graph. With the help of
these results, an algorithm is developed which determines whether a graph has mixed metric dimension
three or not and if it exists then it also finds its mixed basis. The algorithm requires the distance matrix
of a simple connected graph which is not a path graph. It results in a mixed basis of dimension three
of graph, if exists. Otherwise indicates that graph has mixed metric greater than three.

Algorithm 1 Determination of Tree having mixed dimension 3.
Require: Degree sequence S of Tn

Ensure:“Mixed Basis with three elements” or “the graph has mixed dimension 2 or greater than 3”
2. if(S (3) > 1) ∨ (n = 2) then
3. Tree is path graph having mixed dimension 2
4. else if(S (3) = 1) ∧ (S (4)) > 1 ∧ (S (n) = 3) ∧ (S (n − 1) < 3) then
5. Mixed metric basis consists of three pendant vertices 6. else
7. Tree has mixed dimension greater than 3
8. end if
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Algorithm 2 Determination of Unicycle graph having mixed dimension 3.
Require: cycle length r, Adjacency matrix of Un such that first r rows are cycle vertices
Ensure:“Mixed Basis with 3 elements” or “ dimm(Un) ≥ 3 ”
2. n← number of rows of adjacency matrix
3. for i = 1 : n do 4. s← number of one’s in i − th row
5. ifs = 3 then 6. S ← the set of cycle vertices i with degree 3
7. else ifs = 1 then
8. P← the set of pendant vertices i
9. else ifs > 3 then
10. L← the set of vertices i with degree greater than 3
11. end if
12. end for
13. if |P| = 0 = |S | = |L| then
14. print “M = {1, ⌈r/2⌉, ⌊(r + 4)/2⌋} is mixed metric basis”
15. else if(1 ≤ |P| ≤ 3) ∧ (1 ≤ |S | ≤ 3) ∧ (|L| = 0) then
16. C(1)← S (1) ∗Relabeling of cycle starting from S (1) (first cycle vertex of degree three) in array C
17. fork = 1 : r do
18. ifC(k) ≤ r − 1 then
19. C(k + 1)← C(k) + 1
20. else
21. C(k + 1)← C(k) + 1 − r
22. end if
23. end for
24. if(|P| = 1 = |S |) ∧ (|L| = 0) then
25. Print “M ← {C(1),C(⌈r/2⌉),C(⌊(r + 4)/2)⌋} is mixed metric basis”
26. else if(|P| = 2) ∧ (|S ∩C| = 2) ∧ (|L| = 0) then
27. for j = 1 : r do
28. ifC( j) = S (2) ∧ ( j ≤ ⌈r/2⌉) then
29. Print “M = P(1), P(2),C(⌊(r + 4)/2⌋) is mixed basis”
30. else
31. Print “M = P(1), P(2),C(⌈r/2⌉) is mixed basis”
32. end if
33. end for
34. else if(|P| = 3) ∧ (|S ∩C| = 3) ∧ (|L| = 0) then
35. for j = 1 : r do
36. if (S (2), S (3) ∈ C for j ≥ ⌈(r + 4)/2⌉)) ∨ (S (2), S (3) ∈ C for j ≤ ⌈r/2⌉) then
37. Print “Graph has mixed dimension greater than three”
38. else
39. Print “M = {P(1), P(2), P(3)} is mixed basis”
40. end if
41. end for
42. end if
43. else
44. Print “Graph has mixed dimension greater than 3” 45. end if
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Algorithm 3 Graph with mixed dimension 3.
Require: (n × n) distance matrix D of graph G � Pn

Ensure:“Mixed Basis with three elements” or “the graph has mixed dimension greater than 3”
2. n← number of rows of distance matrix
3. d ←maximum entry in distance matrix
4. r ← No. of rows with at most three 1′s. (To determine elements with degrees at most 3)
5. if(n ≤ (d3 + 12d)/2) ∧ (r ≥ 3)then
6. Construct the set W ← { j : Ones(D( j, :)) ≤ 3}
7. for j, k ∈ W do
8. N j ← {i : D( j, i) = 1},
9. Nk ← {i : D(k, i) = 1}
10. if |N j ∩ Nk| > 3 or for x ∈ N( j), y ∈ N(k, ) D(x, y) = 1 then
11. W ← W \ {i, j}
12. end if
13. end for
14. for i, j, k ∈ W, a = 1 : max(D(i, :)), b = 1 : max(D( j, :)), c = 1 : max(D(k, :)) do
15. Via = {s : D(s, j) = a}, V jb = {s : D(s, j) = b}, Vkc = {s : D(s, j) = c}
16. Vi(a+1) = {s : D(s, j) = a + 1}, V j(b+1) = {s : D(s, j) = b + 1}, Vk(c+1) = {s : D(s, j) = c + 1}
17. U ← (Via ∪ Vi(a+1)) ∩ (V jb ∪ V j(b+1)) ∩ (Vkc ∪ Vk(c+1)) 18. if Via ∩ V jb ∩ Vkc ≥ 2 then 19. W ← W \ {i, j, k}
20. else
21. for(s ∈ Via ∩ V jb ∩ Vkc) ∧ (t, u ∈ U) do
22. d = D(u, t)
23. if ((u ∨ t) ∈ (Via ∧ V jb ∧ Vkc)) ∧ (d = 1) then
24. W ← W \ {i, j, k}
25. end if
26. end for
27. for (u, v ∈ Via) ∧ (w, x ∈ U) do
28. d1 = D(u,w), d2 = D(v, x)
29. if (u, x ∈ V jb) ∧ (v,w ∈ Vkc) ∧ (d1 = 1) ∧ (d2 = 1) then
30. W ← W \ {i, j, k}
31. end if
32. end for
33. end if
34. end if
35. if|W | ≥ 3 then
36. List all 3-subsets of W. Each 3-subset is possible mixed basis for G
37. else
38. Print “Graph has mixed metric basis greater than 3”
39. end if
40. else
41. Print “Graph has mixed metric dimension greater than 3”
42. end if
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5. Conclusions

In this paper, it is shown that the mixed metric dimension of tree Tn � Pn (n ≥ 3) is 3 if and
only if Tn � ΓPt(P1, · · · , P1, Pr, P1, · · · , P1), where Pr is attached to a vertex which is not pendant
vertex such that r ≥ 2 and n = t + r − 1 and t ≥ 3. For unicycle graph Un, it is proved that
dimm(Un) = 3 if and only if either Un � Cn or Un � ΓCm(Pr, P1, · · · , P1︸      ︷︷      ︸

m−1 times

), where m + r − 1 = n (i.e.,

tadpole graph) or Un � ΓCm(Pr1 , P1 · · · , P1︸      ︷︷      ︸
i times

, Pr2 , P1, · · · P1︸    ︷︷    ︸
m−2−i times

), where i ≥ 0 and m + r1 + r2 − 2 = n

or Un � ΓCm(Pr1 , P1 · · · , P1︸      ︷︷      ︸
i times

, Pr2 , P1, · · · P1︸    ︷︷    ︸
j times

, Pr3 , P1, · · · P1︸    ︷︷    ︸
m−i− j−3 times

) such that m + r1 + r2 + r3 − 3 = n and

i + j + 3 ≥ s, where s = m/2 + 1 if m is even and s = (m + 1)/2 otherwise. Moreover, several
lemmas related to order of graph, maximum degree of basis elements and distance partite sets of basis
elements are presented. These lemmas are then used to find the necessary and sufficient conditions for
a graph to have mixed metric dimension 3. Finally, three separate algorithms are developed for tree,
unicyclic graphs and in general for simple connected graph Jn � Pn with n ≥ 3 to determine “whether
these graphs have mixed dimension three or not?”. If these graphs have mixed dimension three, then
these algorithms provide the mixed basis of input graphs.
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