Research article

Generalized inequalities involving fractional operators of the Riemann-Liouville type

  • Received: 25 July 2021 Accepted: 17 October 2021 Published: 27 October 2021
  • MSC : 26A33, 26D07, 34A08, 34C11

  • In this paper, we present a general formulation of the well-known fractional drifts of Riemann-Liouville type. We state the main properties of these integral operators. Besides, we study Ostrowski, Székely-Clark-Entringer and Hermite-Hadamard-Fejér inequalities involving these general fractional operators.

    Citation: Paul Bosch, Héctor J. Carmenate, José M. Rodríguez, José M. Sigarreta. Generalized inequalities involving fractional operators of the Riemann-Liouville type[J]. AIMS Mathematics, 2022, 7(1): 1470-1485. doi: 10.3934/math.2022087

    Related Papers:

  • In this paper, we present a general formulation of the well-known fractional drifts of Riemann-Liouville type. We state the main properties of these integral operators. Besides, we study Ostrowski, Székely-Clark-Entringer and Hermite-Hadamard-Fejér inequalities involving these general fractional operators.



    加载中


    [1] K. Oldham, J. Spanier, The fractional calculus, theory and applications of differentiation and integration of arbitrary order, 1 Ed., New York: Academic Press, 1974.
    [2] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel, theory and application to heat transfer model, arXiv. Available from: https://arXiv.org/abs/1602.03408.
    [3] D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7 (2019), 830. doi: 10.3390/math7090830. doi: 10.3390/math7090830
    [4] A. Fernandez, M. A. Özarslan, D. Baleanu, On fractional calculus with general analytic kernels, Appl. Math. Comput., 354 (2019), 248–265. doi: 10.1016/j.amc.2019.02.045. doi: 10.1016/j.amc.2019.02.045
    [5] L. Huang, D. Baleanu, G. Wu, S. Zeng, A new application of the fractional logistic map, Rom. J. Phys., 61 (2016), 1172–1179.
    [6] D. Kumar, J. Singh, M. Al Qurashi, D. Baleanu, Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel, Adv. Mechan Eng., 9 (2017), 1–8. doi: 10.1177/1687814017690069. doi: 10.1177/1687814017690069
    [7] B. Shiri, D. Baleanu, System of fractional differential algebraic equations with applications, Chaos Solitons Fractals, 120 (2019), 203–212. doi: 10.1016/j.chaos.2019.01.028. doi: 10.1016/j.chaos.2019.01.028
    [8] M. Caputo, A linear model of dissipation whose Q is almost frequency independent II, Geophys. J. Int., 13 (1967), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x. doi: 10.1111/j.1365-246X.1967.tb02303.x
    [9] M. Caputo, Elasticitá e dissipazione, 1 Ed., Bologna: Zanichelli, 1969.
    [10] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. doi: 10.12785/pdfa/010201. doi: 10.12785/pdfa/010201
    [11] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Vienna: Springer, 1997.
    [12] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. doi: 10.1016/j.amc.2011.03.062. doi: 10.1016/j.amc.2011.03.062
    [13] U. N. Katugampola, A new approach to generalized fractional derivatives, arXiv. Available from: https://arXiv.org/abs/1106.0965.
    [14] A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integrals and derivatives, theory and applications, Pennsylvania: Gordon & Breach, 1993.
    [15] A. Ostrowski, Über die Absolutabweichung einer di erentienbaren funktionen von ihren integralimittelwert, Comment. Math. Hel., 10 (1938), 226–227.
    [16] S. S. Dragomir, T. M. Rassias, Ostrowski type inequalities and applications in numerical integration, Dordrecht: Kluwer Academic, 2002. doi: 10.1007/978-94-017-2519-4.
    [17] S. S. Dragomir, S. Wang, A new inequality of Ostrowski's type in $L_p$ norm, Indian J. Math., 40 (1998), 299–304.
    [18] L. A. Székely, L. H. Clark, R. C. Entringer, An inequality for degree sequences, Discrete Math., 103 (1992), 293–300. doi: 10.1016/0012-365X(92)90321-6. doi: 10.1016/0012-365X(92)90321-6
    [19] J. M. Rodríguez, J. L. Sánchez, J. M. Sigarreta, CMMSE-on the first general Zagreb index, J. Math. Chem., 56 (2018), 1849–1864. doi: 10.1007/s10910-017-0816-y. doi: 10.1007/s10910-017-0816-y
    [20] Selected Topics on Hermite-Hadamard Inequalities, RGMIA Monographs, Victoria University, 2000. Available from: https://rgmia.org/papers/monographs/Master.pdf.
    [21] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048. doi: 10.1016/j.mcm.2011.12.048
    [22] M. Vivas-Cortez, P. Kórus, J. E. Nápoles Valdés, Some generalized Hermite-Hadamard-Fejér inequality for convex functions, Adv. Differ. Equations, 199 (2021), 199. doi: 10.1186/s13662-021-03351-7. doi: 10.1186/s13662-021-03351-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4484) PDF downloads(378) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog