Research article Special Issues

A high order approach for nonlinear Volterra-Hammerstein integral equations

  • Received: 02 September 2021 Accepted: 20 October 2021 Published: 26 October 2021
  • MSC : 45G10, 45J05

  • Here a scheme for solving the nonlinear integral equation of Volterra-Hammerstein type is given. We combine the related theories of homotopy perturbation method (HPM) with the simplified reproducing kernel method (SRKM). The nonlinear system can be transformed into linear equations by utilizing HPM. Based on the SRKM, we can solve these linear equations. Furthermore, we discuss convergence and error analysis of the HPM-SRKM. Finally, the feasibility of this method is verified by numerical examples.

    Citation: Jian Zhang, Jinjiao Hou, Jing Niu, Ruifeng Xie, Xuefei Dai. A high order approach for nonlinear Volterra-Hammerstein integral equations[J]. AIMS Mathematics, 2022, 7(1): 1460-1469. doi: 10.3934/math.2022086

    Related Papers:

  • Here a scheme for solving the nonlinear integral equation of Volterra-Hammerstein type is given. We combine the related theories of homotopy perturbation method (HPM) with the simplified reproducing kernel method (SRKM). The nonlinear system can be transformed into linear equations by utilizing HPM. Based on the SRKM, we can solve these linear equations. Furthermore, we discuss convergence and error analysis of the HPM-SRKM. Finally, the feasibility of this method is verified by numerical examples.



    加载中


    [1] A. M. Bica, M. Curila, S. Curila, About a numerical method of successive interpolations for functional Hammerstein integral equations, J. Comput. Appl. Math., 236 (2012), 2005–2024. doi: 10.1016/j.cam.2011.11.010. doi: 10.1016/j.cam.2011.11.010
    [2] C. E. Chidume, N. Djitté, An iterative method for solving nonlinear integral equations of Hammerstein type, Appl. Math. Comput., 219 (2013), 5613–5621. doi: 10.1016/j.amc.2012.11.051. doi: 10.1016/j.amc.2012.11.051
    [3] A. Karoui, A. Jawahdou, Existence and approximate $L^{p}$ and continuous solutions of nonlinear integral equations of the Hammerstein and Volterra types, Appl. Math. Comput., 216 (2010), 2077–2091. doi: 10.1016/j.amc.2010.03.042. doi: 10.1016/j.amc.2010.03.042
    [4] M. Mandal, G. Nelakanti, Legendre spectral Galerkin and multi-Galerkin methods for nonlinear Volterra integral equations of Hammerstein type, J. Anal., 28 (2019), 323–349. doi: 10.1007/s41478-019-00170-8. doi: 10.1007/s41478-019-00170-8
    [5] Y. Ordokhani, M. Razzaghi, Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized Haar functions, Appl. Math. Lett., 21 (2008), 4–9. doi: 10.1016/j.aml.2007.02.007. doi: 10.1016/j.aml.2007.02.007
    [6] E. Babolian, F. Fattahzadeh, E. G. Raboky, A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type, Appl. Math. Comput., 189 (2007), 641–646. doi: 10.1016/j.amc.2006.11.181. doi: 10.1016/j.amc.2006.11.181
    [7] S. Micula, A spline collocation method for Fredholm–Hammerstein integral equations of the second kind in two variables, Appl. Math. Comput., 265 (2015), 352–357. doi: 10.1016/j.amc.2015.05.017. doi: 10.1016/j.amc.2015.05.017
    [8] F. Mirzaee, S. Fathi, Numerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis, Caspian J. Math. Sci., 3 (2014), 25–37.
    [9] Y. Ordokhani, An application of walsh functions for Fredholm-Hammerstein integrodifferential equations, Int. J. Contemp. Math. Sci., 5 (2010), 1055–1063.
    [10] J. Niu, M. Xu, Y. Lin, Q. Xue, Numerical solution of nonlinear singular boundary value problems, J. Comput. Appl. Math., 331 (2018), 42–51. doi: 10.1016/j.cam.2017.09.040. doi: 10.1016/j.cam.2017.09.040
    [11] H. Zhu, J. Niu, R. Zhang, Y. Lin, A new approach for solving nonlinear singular boundary value problems, Math. Model. Anal., 23 (2018), 33–43. doi: 10.3846/mma.2018.003. doi: 10.3846/mma.2018.003
    [12] J. Niu, L. Sun, M. Xu, J. Hou, A reproducing kernel method for solving heat conduction equations with delay, Appl. Math. Lett., 100 (2020), 106036. doi: 10.1016/j.aml.2019.106036. doi: 10.1016/j.aml.2019.106036
    [13] M. Xu, L. Zhang, E. Tohidi, A fourth-order least-squares based reproducing kernel method for one-dimensional elliptic interface problems, Appl. Numer. Math., 162 (2021), 124–136. doi: 10.1016/j.apnum.2020.12.015. doi: 10.1016/j.apnum.2020.12.015
    [14] X. Y. Li, B. Y. Wu, A new kernel functions based approach for solving 1-D interface problems, Appl. Math. Comput., 380 (2020), 125276. doi: 10.1016/j.amc.2020.125276. doi: 10.1016/j.amc.2020.125276
    [15] J. Niu, M. Xu, G. Yao, An efficient reproducing kernel method for solving the Allen-Cahn equation, Appl. Math. Lett., 89 (2019), 78–84. doi: 10.1016/j.aml.2018.09.013. doi: 10.1016/j.aml.2018.09.013
    [16] M. G. Sakar, O. Saldır, A novel iterative solution for time-fractional Boussinesq equation by reproducing kernel method, J. Appl. Math. Comput., 64 (2020), 227–254. doi: 10.1007/s12190-020-01353-4. doi: 10.1007/s12190-020-01353-4
    [17] M. Al-Smadi, O. A. Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280–294. doi: 10.1016/j.amc.2018.09.020. doi: 10.1016/j.amc.2018.09.020
    [18] X. Y. Li, B. Y. Wu, A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions, Appl. Math. Lett., 86 (2018), 194–199. doi: 10.1016/j.aml.2018.06.035. doi: 10.1016/j.aml.2018.06.035
    [19] Z. Chen, W. Jiang, H. Du, A new reproducing kernel method for Duffing equations, Int. J. Comput. Math., (2021), 1–14. doi: 10.1080/00207160.2021.1897111. doi: 10.1080/00207160.2021.1897111
    [20] X. Y. Li, B. Y. Wu, Superconvergent kernel functions approaches for the second kind Fredholm integral equations, Appl. Numer. Math., 167 (2021), 202–210. doi: 10.1016/j.apnum.2021.05.004. doi: 10.1016/j.apnum.2021.05.004
    [21] M. Xu, E. Tohidi, A Legendre reproducing kernel method with higher convergence order for a class of singular two-point boundary value problems, J. Appl. Math. Comput., 67 (2021), 405–421. doi: 10.1007/s12190-020-01494-6. doi: 10.1007/s12190-020-01494-6
    [22] S. Chakraborty, G. Nelakanti, Approximation methods for system of nonlinear Fredholm-Hammerstein integral equations, Comput. Appl. Math., 40 (2021), 31. doi: 10.1007/s40314-021-01424-7. doi: 10.1007/s40314-021-01424-7
    [23] K. Kant, G. Nelakanti, Jacobi spectral methods for Volterra-Urysohn integral equations of second kind with weakly singular kernels, Numer. Func. Anal. Opt., 40 (2019), 1787–1821. doi: 10.1080/01630563.2019.1636278. doi: 10.1080/01630563.2019.1636278
    [24] S. Chakraborty, K. Kant, G. Nelakanti, Approximation methods for system of linear Fredholm integral equations of second kind, Appl. Math. Comput., 403 (2021), 126–173. doi: 10.1016/j.amc.2021.126173. doi: 10.1016/j.amc.2021.126173
    [25] L. Wang, Z. Qian, A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation, Comput. Methods Appl. Mech. Eng., 371 (2020), 113303. doi: 10.1016/j.cma.2020.113303. doi: 10.1016/j.cma.2020.113303
    [26] L. Wang, Y. Liu, Y. Zhou, F. Yang, A gradient reproducing kernel based stabilized collocation method for the static and dynamic problems of thin elastic beams and plates, Comput. Mech., 68 (2021), 709–739. doi: 10.1007/s00466-021-02031-3. doi: 10.1007/s00466-021-02031-3
    [27] Y. Liu, L. Wang, Y. Zhou, F. Yang, A stabilized collocation method based on the efficient gradient reproducing kernel approximations for the boundary value problems, Eng. Anal. Bound. Elem., 132 (2021), 446–459. doi: 10.1016/j.enganabound.2021.08.010. doi: 10.1016/j.enganabound.2021.08.010
    [28] H. Du, Z. Chen, A new reproducing kernel method with higher convergence order for solving a Volterra-Fredholm integral equation, Appl. Math. Lett., 102 (2019), 106117. doi: 10.1016/j.aml.2019.106117. doi: 10.1016/j.aml.2019.106117
    [29] H. Du, Z. Chen, T. Yang, A stable least residue method in reproducing kernel space for solving a nonlinear fractional integro-differential equation with a weakly singular kernel, Appl. Numer. Math., 2020,157. doi: 10.1016/j.apnum.2020.06.004. doi: 10.1016/j.apnum.2020.06.004
    [30] H. Du, Z. Chen, T. Yang, A meshless method in reproducing kernel space for solving variable-order time fractional advection-diffusion equations on arbitrary domain, Appl. Math. Lett., 116 (2021), 107014. doi: 10.1016/j.aml.2020.107014. doi: 10.1016/j.aml.2020.107014
    [31] M. Cui, H. Du, Representation of exact solution for the nonlinear Volterra-Fredholm integral equations, Appl. Math. Comput., 182 (2006), 1795–1802. doi: 10.1016/j.amc.2006.06.016. doi: 10.1016/j.amc.2006.06.016
    [32] B. Wu, Y. Lin, Applied reproducing kernel space, New York: Science Press, 2012.
    [33] J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257–262. doi: 10.1016/S0045-7825(99)00018-3. doi: 10.1016/S0045-7825(99)00018-3
    [34] J. H. He, Homotopy perturbation theory and its application, J. Comput. Appl. Math., 5 (1998), 335–341.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2581) PDF downloads(155) Cited by(4)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog