Let $ \mathfrak M $ be an o-minimal expansion of a densely linearly ordered set and $ (S, +, \cdot, 0_S, 1_S) $ be a ring definable in $ \mathfrak M $. In this article, we develop two techniques for the study of characterizations of $ S $-modules definable in $ \mathfrak M $. The first technique is an algebraic technique. More precisely, we show that every $ S $-module definable in $ \mathfrak M $ is finitely generated. For the other technique, we prove that every $ S $-module definable in $ \mathfrak M $ admits a unique definable $ S $-module manifold topology. As consequences, we obtain the following: (1) if $ S $ is finite, then a module $ A $ is isomorphic to an $ S $-module definable in $ \mathfrak M $ if and only if $ A $ is finite; (2) if $ S $ is an infinite ring without zero divisors, then a module $ A $ is isomorphic to an $ S $-module definable in $ \mathfrak M $ if and only if $ A $ is a finite dimensional free module over $ S $; and (3) if $ \mathfrak M $ is an expansion of an ordered divisible abelian group and $ S $ is an infinite ring without zero divisors, then every $ S $-module definable in $ \mathfrak M $ is definably connected with respect to the unique definable $ S $-module manifold topology.
Citation: Jaruwat Rodbanjong, Athipat Thamrongthanyalak. Characterizations of modules definable in o-minimal structures[J]. AIMS Mathematics, 2023, 8(6): 13088-13095. doi: 10.3934/math.2023660
Let $ \mathfrak M $ be an o-minimal expansion of a densely linearly ordered set and $ (S, +, \cdot, 0_S, 1_S) $ be a ring definable in $ \mathfrak M $. In this article, we develop two techniques for the study of characterizations of $ S $-modules definable in $ \mathfrak M $. The first technique is an algebraic technique. More precisely, we show that every $ S $-module definable in $ \mathfrak M $ is finitely generated. For the other technique, we prove that every $ S $-module definable in $ \mathfrak M $ admits a unique definable $ S $-module manifold topology. As consequences, we obtain the following: (1) if $ S $ is finite, then a module $ A $ is isomorphic to an $ S $-module definable in $ \mathfrak M $ if and only if $ A $ is finite; (2) if $ S $ is an infinite ring without zero divisors, then a module $ A $ is isomorphic to an $ S $-module definable in $ \mathfrak M $ if and only if $ A $ is a finite dimensional free module over $ S $; and (3) if $ \mathfrak M $ is an expansion of an ordered divisible abelian group and $ S $ is an infinite ring without zero divisors, then every $ S $-module definable in $ \mathfrak M $ is definably connected with respect to the unique definable $ S $-module manifold topology.
[1] | C. C. Chang, H. J. Keisler, Model theory, Amsterdam-London: North-Holland Publishing Co., 1973. |
[2] | L. van den Dries, Tame topology and o-minimal structures, Cambridge: Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511525919 |
[3] | M. J. Edmundo, Solvable groups definable in o-minimal structures, J. Pure Appl. Algebra, 185 (2003), 103–145. https://doi.org/10.1016/S0022-4049(03)00085-9 doi: 10.1016/S0022-4049(03)00085-9 |
[4] | M. J. Edmundo, Covers of groups definable in o-minimal structures, Illinois J. Math., 49 (2005), 99–120. https://doi.org/10.1215/ijm/1258138308 doi: 10.1215/ijm/1258138308 |
[5] | E. Hrushovski, Contributions to stable model theory, Ph.D. Dissertation, University of California, Berkeley, 1986. |
[6] | J. F. Knight, A. Pillay, C. Steinhorn, Definable sets in ordered structures. II, Trans. Amer. Math. Soc., 295 (1986), 593–605. https://doi.org/10.2307/2000053 doi: 10.2307/2000053 |
[7] | D. Marker, Model theory: an introduction, New York: Springer, 2002. https://doi.org/10.1007/b98860 |
[8] | A. Nesin, A. Pillay, V. Razenj, Groups of dimension two and three over o-minimal structures, Ann. Pure Appl. Logic, 53 (1991), 279–296. https://doi.org/10.1016/0168-0072(91)90025-H doi: 10.1016/0168-0072(91)90025-H |
[9] | M. Otero, Y. Peterzil, A. Pillay, On groups and rings definable in o-minimal expansions of real closed fields, Bull. Lond. Math. Soc., 28 (1996), 7–14. https://doi.org/10.1112/blms/28.1.7 doi: 10.1112/blms/28.1.7 |
[10] | Y. Peterzil, C. Steinhorn, Definable compactness and definable subgroups of o-minimal groups, J. Lond. Math. Soc., 59 (1999), 769–786. https://doi.org/10.1112/S0024610799007528 doi: 10.1112/S0024610799007528 |
[11] | Y. Peterzil, S. Starchenko, Definable homomorphisms of abelian groups in o-minimal structures, Ann. Pure Appl. Logic, 101 (1999), 1–27. https://doi.org/10.1016/S0168-0072(99)00016-0 doi: 10.1016/S0168-0072(99)00016-0 |
[12] | A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra, 53 (1988), 239–255. https://doi.org/10.1016/0022-4049(88)90125-9 doi: 10.1016/0022-4049(88)90125-9 |
[13] | A. Pillay, C. Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc., 295 (1986), 565–592. https://doi.org/10.2307/2000052 doi: 10.2307/2000052 |
[14] | A. Pillay, C. Steinhorn, Definable sets in ordered structures. III, Trans. Amer. Math. Soc., 309 (1988), 469–476. https://doi.org/10.2307/2000920 doi: 10.2307/2000920 |
[15] | V. Razenj, One-dimensional groups over an o-minimal structure, Ann. Pure Appl. Logic, 53 (1991), 269–277. https://doi.org/10.1016/0168-0072(91)90024-G doi: 10.1016/0168-0072(91)90024-G |
[16] | A. W. Strzebonski, Euler characteristic in semialgebraic and other o-minimal groups, J. Pure Appl. Algebra, 96 (1994), 173–201. https://doi.org/10.1016/0022-4049(94)90127-9 doi: 10.1016/0022-4049(94)90127-9 |