In this paper, we study an abstract system of fractional delay differential equations of order $ 1 < q < 2 $ with a hemivariational inequality in Banach spaces. To establish the existence of a solution to the abstract inequality, we employ the Rothe technique in conjunction with the surjectivity of multivalued pseudomonotone operators and features of the Clarke generalized gradient. Further, to show the existence of the fractional differential equation, we use the fractional cosine family and fixed point theorem. Finally, we include an example to elaborate the effectiveness of the findings.
Citation: Ebrahem A. Algehyne, Abdur Raheem, Mohd Adnan, Asma Afreen, Ahmed Alamer. A study of nonlocal fractional delay differential equations with hemivariational inequality[J]. AIMS Mathematics, 2023, 8(6): 13073-13087. doi: 10.3934/math.2023659
In this paper, we study an abstract system of fractional delay differential equations of order $ 1 < q < 2 $ with a hemivariational inequality in Banach spaces. To establish the existence of a solution to the abstract inequality, we employ the Rothe technique in conjunction with the surjectivity of multivalued pseudomonotone operators and features of the Clarke generalized gradient. Further, to show the existence of the fractional differential equation, we use the fractional cosine family and fixed point theorem. Finally, we include an example to elaborate the effectiveness of the findings.
[1] | R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Measures of noncompactness and condensing operators, Basel: Birkhäuser, 1992. http://dx.doi.org/10.1007/978-3-0348-5727-7 |
[2] | J. P. Aubin, A. Cellina, Differential inclusions: Set-valued maps and viability theory, Berlin: Springer, 1984. http://dx.doi.org/10.1007/978-3-642-69512-4 |
[3] | A. Chaoui, H. Ahmed, On the solution of a fractional diffusion integrodifferential equation with Rothe time discretization, Numer. Funct. Anal. Optim., 39 (2018), 643–654. http://dx.doi.org/10.1080/01630563.2018.1424200 doi: 10.1080/01630563.2018.1424200 |
[4] | F. H. Clarke, Optimization and nonsmooth analysis, 1983. |
[5] | H. Covitz, S. B. Nadler, Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. http://dx.doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543 |
[6] | T. Chen, N. J. Haung, X. S. Li, Y. Z. Zou, A new class of differential nonlinear system involving parabolic variational and history-dependent hemi-variational inequalities arising in contact mechanics, Commun. Nonlinear Sci., 101 (2021), 105886. http://dx.doi.org/10.1016/j.cnsns.2021.105886 doi: 10.1016/j.cnsns.2021.105886 |
[7] | M. Dehghan, R. Salehi, Solution of a nonlinear time-delay model in biology via semi-analytical approaches, Comput. Phys. Commun., 181 (2010), 1255–1265. http://dx.doi.org/10.1016/j.cpc.2010.03.014 doi: 10.1016/j.cpc.2010.03.014 |
[8] | Z. Denkowski, S. Migórski, N. S. Papageorgiou, An introduction to nonlinear analysis and its applications, 2003. |
[9] | W. M. Han, S. Migórski, M. Sofonea, Advances in variational and hemivariational inequalities with applications, Springer, 2015. http://dx.doi.org/10.1007/978-3-319-14490-0 |
[10] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[11] | M. I. Kamenskii, V. V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, New York: De Gruyter, 2001. http://dx.doi.org/10.1515/9783110870893 |
[12] | T. D. Ke, N. V. Loi, V. V. Obukhovskii, Decay solutions for a class of fractional differential variational inequalities, Fract. Calc. Appl. Anal., 18 (2015), 531–553. http://dx.doi.org/10.1515/fca-2015-0033 doi: 10.1515/fca-2015-0033 |
[13] | M. Maqbul, A. Raheem, Time-discretization schema for a semilinear pseudo-parabolic equation with integral conditions, Appl. Numer. Math., 148 (2020), 18–27. http://dx.doi.org/10.1016/j.apnum.2019.09.002 doi: 10.1016/j.apnum.2019.09.002 |
[14] | S. Migórski, On existence of solutions for parabolic hemivariational inequalities, J. Comput. Appl. Math., 129 (2001), 77–87. http://dx.doi.org/10.1016/S0377-0427(00)00543-4 doi: 10.1016/S0377-0427(00)00543-4 |
[15] | S. Migórski, A. Ochal, M. Sofonea, Nonlinear inclusions and hemivariational inequalities: Models and analysis of contact problems, Springer Science & Business Media, 2012. |
[16] | I. Podlubny, Fractional differential equations, 1999. |
[17] | J. S. Pang, D. E. Stewart, Differential variational inequalities, Math. Program., 113 (2008), 345–424. http://dx.doi.org/10.1007/s10107-006-0052-x doi: 10.1007/s10107-006-0052-x |
[18] | A. Raheem, M. G. Alshehri, A. Afreen, A. Khatoon, M. S. Aldhabani, Study on a semilinear fractional stochastic system with multiple delays in control, AIMS Math., 7 (2022), 12374–12389. http://dx.doi.org/10.3934/math.2022687 doi: 10.3934/math.2022687 |
[19] | M. Sofonea, S. Migórski, Variational-hemivariational inequalities with applications, New York: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/9781315153261 |
[20] | T. I. Seidman, Invariance of the reachable set under nonlinear perturbations, SIAM J. Control Optim., 25 (1987), 1173–1191. http://dx.doi.org/10.1137/0325064 doi: 10.1137/0325064 |
[21] | J. Tumwiine, S. Luckhaus, J. Y. T. Mugisha, L. S. Luboobi, An age-structured mathematical medol for the within host dynamics of malaria and the immune system, J. Math. Medol. Algor., 7 (2008), 79–97. http://dx.doi.org/10.1007/s10852-007-9075-4 doi: 10.1007/s10852-007-9075-4 |
[22] | Y. Weng, T. Chen, X. Li, N. Huang, Rothe method and numerical analysis for a new class of fractional differential hemivariational inequality with an application, Comput. Math. Appl., 98 (2021), 118–138. http://dx.doi.org/10.1016/j.camwa.2021.07.003 doi: 10.1016/j.camwa.2021.07.003 |
[23] | Y. Weng, X. Li, N. Haung, A fractional nonlinear evolutionary delay system driven by a hemi-variational inequality in Banach spaces, Acta Math. Sci., 41 (2021), 187–206. http://dx.doi.org/10.1007/s10473-021-0111-7 doi: 10.1007/s10473-021-0111-7 |
[24] | Y. Yan, C. Kou, Stability analysis of a fractional differential model of HIV infection of $CD4^+ T$-cells with time delay, Math. Comput. Simul., 82 (2012), 1572–1585. http://dx.doi.org/10.1016/j.matcom.2012.01.004 doi: 10.1016/j.matcom.2012.01.004 |
[25] | E. Zeidler, Inner approximation schemes, A-Proper operators, and the Galerkin method, In: Nonlinear functional analysis and its applications, New York: Springer, 1990. http://dx.doi.org/10.1007/978-1-4612-0981-2-10 |
[26] | S. Zeng, S. Migórski, A class of time-fractional hemivariational inequalities with application to frictional contact problem, Commun. Nonlinear Sci., 56 (2018), 34–48. http://dx.doi.org/10.1016/j.cnsns.2017.07.016 doi: 10.1016/j.cnsns.2017.07.016 |