By constructing an appropriate example, we show that the class of heavy-tailed distributions is not closed under minimum. We provide two independent heavy-tailed random variables, such that their minimum is not heavy tailed. In addition, we establish a few properties of the distributions considered in the example.
Citation: Remigijus Leipus, Jonas Šiaulys, Dimitrios Konstantinides. Minimum of heavy-tailed random variables is not heavy tailed[J]. AIMS Mathematics, 2023, 8(6): 13066-13072. doi: 10.3934/math.2023658
By constructing an appropriate example, we show that the class of heavy-tailed distributions is not closed under minimum. We provide two independent heavy-tailed random variables, such that their minimum is not heavy tailed. In addition, we establish a few properties of the distributions considered in the example.
[1] | J. M. P. Albin, M. Sundén, On the asymptotic behavior of Lévy processes, Part I: subexponential and exponential processes, Stoch. Proc. Appl., 119 (2009), 281–304. https://doi.org/10.1016/j.spa.2008.02.004 doi: 10.1016/j.spa.2008.02.004 |
[2] | S. Beck, J. Blath, M. Sheutzow, A new class of large claim sizes distributions: definition, properties and ruin theory, Bernoulli, 21 (2015), 2457–2483. https://doi.org/10.3150/14-BEJ651 doi: 10.3150/14-BEJ651 |
[3] | L. Breiman, On some limit theorems similar to the arc-sin law, Theor. Probab. Appl., 10 (1965), 323–331. https://doi.org/10.1137/1110037 doi: 10.1137/1110037 |
[4] | D. Cheng, Y. Wang, Asymptotic behavior of the ratio of tail probabilities of sum and maximum of independent random variables, Lith. Math. J., 52 (2012), 29–39. https://doi.org/10.1007/s10986-012-9153-9 doi: 10.1007/s10986-012-9153-9 |
[5] | Z. Cui, Y. Wang, On the long tail property of product convolution, Lith. Math. J., 60 (2020), 315–329. https://doi.org/10.1007/s10986-020-09482-w doi: 10.1007/s10986-020-09482-w |
[6] | S. Danilenko, J. Šiaulys, G. Stepanauskas, Closure properties of O-exponential distributions, Stat. Probabil. Lett., 140 (2018), 63–70. https://doi.org/10.1016/j.spl.2018.04.012 doi: 10.1016/j.spl.2018.04.012 |
[7] | L. Dindienė, R. Leipus, Weak max-sum equivalence for dependent heavy-tailed random variables, Lith. Math. J., 56 (2016), 49–59. https://doi.org/10.1007/s10986-016-9303-6 doi: 10.1007/s10986-016-9303-6 |
[8] | P. Embrechts, A property of the generalized inverse Gaussian distribution with some applications, J. Appl. Probab., 20 (1983), 537–544. https://doi.org/10.2307/3213890 doi: 10.2307/3213890 |
[9] | P. Embrechts, C. M. Goldie, On closure and factorization properties of subexponential and related distributions, J. Aust. Math. Soc., 29 (1980), 243–256. https://doi.org/10.1017/S1446788700021224 doi: 10.1017/S1446788700021224 |
[10] | S. Foss, D. Korshunov, S. Zachary, An introduction to heavy-tailed and subexponential distributions, 2 Eds., New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-7101-1 |
[11] | J. L. Geluk, Some closure properties for subexponential distributions, Stat. Probabil. Lett., 79 (2009), 1108–1111. https://doi.org/10.1016/j.spl.2008.12.020 doi: 10.1016/j.spl.2008.12.020 |
[12] | J. L. Geluk, J. B. G. Frenk, Renewal theory for random variables with a heavy tailed distribution and finite variance, Stat. Probabil. Lett., 81 (2011), 77–82. https://doi.org/10.1016/j.spl.2010.09.021 doi: 10.1016/j.spl.2010.09.021 |
[13] | T. Shimura, T. Watanabe, Infinite divisibility and generalized subexponentiality, Bernoulli, 11 (2005), 445–469. https://doi.org/10.3150/bj/1120591184 doi: 10.3150/bj/1120591184 |
[14] | C. Su, Y. Chen, Behaviors of the product of independent random variables, Int. J. Math. Anal., 1 (2007), 21–35. |
[15] | Z. Su, C. Su, Z. Hu, J. Liu, On domination problem of non-negative distributions, Front. Math. China, 4 (2009), 681–696. https://doi.org/10.1007/s11464-009-0040-6 doi: 10.1007/s11464-009-0040-6 |
[16] | Y. B. Wang, F. Y. Cheng, Y. Yang, Dominant relations on some subclasses of heavy-tailed distributions and their applications, (Chinese), Chinese J. Appl. Probab., 21 (2005), 21–30. |
[17] | Y. Wang, C. Yin, Minimum of dependent random variables with convolution-equivalent distributions, Commun. Stat.-Theor. Meth., 40 (2011), 3245–3251. https://doi.org/10.1080/03610926.2010.498649 doi: 10.1080/03610926.2010.498649 |
[18] | E. Willekens, The structure of the class of subexponential distributions, Probab. Theory Relat. Fields, 77 (1988), 567–581. https://doi.org/10.1007/BF00959618 doi: 10.1007/BF00959618 |
[19] | H. Xu, M. Scheutzow, Y. Wang, On a transformation between distributions obeying the principle of a single big jump, J. Math. Anal. Appl., 430 (2015), 672–684. https://doi.org/10.1016/j.jmaa.2015.05.011 doi: 10.1016/j.jmaa.2015.05.011 |
[20] | H. Xu, M. Scheutzow, Y. Wang, Z. Cui, On the structure of a class of distributions obeying the principle of a single big jump, Probab. Math. Stat., 36 (2016), 121–135. |