Cryptocurrency is a digital currency and also exists in the form of coins. It has turned out as a leading method for peer-to-peer online cash systems. Due to the importance and increasing influence of Bitcoin on business and other related sectors, it is very crucial to model or predict its behavior. Therefore, in recent, numerous researchers have attempted to understand and model the behaviors of cryptocurrency exchange rates. In the practice of actuarial and financial studies, heavy-tailed distributions play a fruitful role in modeling and describing the log returns of financial phenomena. In this paper, we propose a new family of distributions that possess heavy-tailed characteristics. Based on the proposed approach, a modified version of the logistic distribution, namely, a new modified exponential-logistic distribution is introduced. To illustrate the new modified exponential-logistic model, two financial data sets are analyzed. The first data set represents the log-returns of the Bitcoin exchange rates. Whereas, the second data set represents the log-returns of the Ethereum exchange rates. Furthermore, to forecast the high volatile behavior of the same datasets, we apply dual machine learning algorithms, namely Artificial neural network and support vector regression. The effectiveness of these models is evaluated against self exciting threshold autoregressive model.
Citation: Zubair Ahmad, Zahra Almaspoor, Faridoon Khan, Sharifah E. Alhazmi, M. El-Morshedy, O. Y. Ababneh, Amer Ibrahim Al-Omari. On fitting and forecasting the log-returns of cryptocurrency exchange rates using a new logistic model and machine learning algorithms[J]. AIMS Mathematics, 2022, 7(10): 18031-18049. doi: 10.3934/math.2022993
Cryptocurrency is a digital currency and also exists in the form of coins. It has turned out as a leading method for peer-to-peer online cash systems. Due to the importance and increasing influence of Bitcoin on business and other related sectors, it is very crucial to model or predict its behavior. Therefore, in recent, numerous researchers have attempted to understand and model the behaviors of cryptocurrency exchange rates. In the practice of actuarial and financial studies, heavy-tailed distributions play a fruitful role in modeling and describing the log returns of financial phenomena. In this paper, we propose a new family of distributions that possess heavy-tailed characteristics. Based on the proposed approach, a modified version of the logistic distribution, namely, a new modified exponential-logistic distribution is introduced. To illustrate the new modified exponential-logistic model, two financial data sets are analyzed. The first data set represents the log-returns of the Bitcoin exchange rates. Whereas, the second data set represents the log-returns of the Ethereum exchange rates. Furthermore, to forecast the high volatile behavior of the same datasets, we apply dual machine learning algorithms, namely Artificial neural network and support vector regression. The effectiveness of these models is evaluated against self exciting threshold autoregressive model.
[1] | A. Phillip, J. S. K. Chan, C. Peiris, A new look at cryptocurrencies, Econ. Lett., 163 (2018), 6–9. http://doi.org/10.1016/j.econlet.2017.11.020 doi: 10.1016/j.econlet.2017.11.020 |
[2] | A. Alzaatreh, H. Sulieman, On fitting cryptocurrency log-return exchange rates, Empir. Econ., 60 (2019), 1157–1174. http://doi.org/10.1007/s00181-019-01782-6 doi: 10.1007/s00181-019-01782-6 |
[3] | P. Ciaian, M. Rajcaniova, D. A. Kancs, The economics of BitCoin price formation, Appl. Econ., 48 (2016), 1799–1815. http://doi.org/10.1080/00036846.2015.1109038 doi: 10.1080/00036846.2015.1109038 |
[4] | J. A. Núñez, M. I. Contreras-Valdez, C. A. Franco-Ruiz, Statistical analysis of bitcoin during explosive behavior periods, PLoS ONE, 14 (2019), e0213919. http://doi.org/10.1371/journal.pone.0213919 doi: 10.1371/journal.pone.0213919 |
[5] | A. Punzo, L. Bagnato, Modeling the cryptocurrency return distribution via Laplace scale mixtures, Physica A, 563 (2021), 125354. http://doi.org/10.1016/j.physa.2020.125354 doi: 10.1016/j.physa.2020.125354 |
[6] | A. Ibrahim, R. Kashef, L. Corrigan, Predicting market movement direction for bitcoin: A comparison of time series modeling methods, Comput. Electr. Eng., 89 (2021), 106905. http://doi.org/10.1016/j.compeleceng.2020.106905 doi: 10.1016/j.compeleceng.2020.106905 |
[7] | A. Hachicha, F. Hachicha, Analysis of the bitcoin stock market indexes using comparative study of two models SV with MCMC algorithm, Rev. Quant. Finan. Acc., 56 (2021), 647–673. http://doi.org/10.1007/s11156-020-00905-w doi: 10.1007/s11156-020-00905-w |
[8] | I. E. Livieris, N. Kiriakidou, S. Stavroyiannis, P. Pintelas, An advanced CNN-LSTM model for cryptocurrency forecasting, Electronics, 10 (2021), 287. http://doi.org/10.3390/electronics10030287 doi: 10.3390/electronics10030287 |
[9] | W. Chkili, A. B. Rejeb, M. Arfaoui, Does bitcoin provide hedge to Islamic stock markets for pre-and during COVID-19 outbreak? A comparative analysis with gold, Resour. Policy, 74 (2021), 102407. http://doi.org/10.1016/j.resourpol.2021.102407 doi: 10.1016/j.resourpol.2021.102407 |
[10] | Á. Cebrián-Hernández, E. Jiménez-Rodríguez, Modeling of the Bitcoin volatility through key financial environment variables: An application of conditional correlation MGARCH models, Mathematics, 9 (2021), 267. http://doi.org/10.3390/math9030267 doi: 10.3390/math9030267 |
[11] | W. Bazán-Palomino, How are Bitcoin forks related to Bitcoin?, Financ. Res. Lett., 40 (2021), 101723. http://doi.org/10.1016/j.frl.2020.101723 doi: 10.1016/j.frl.2020.101723 |
[12] | M. Qin, C. W. Su, R. Tao, BitCoin: A new basket for eggs?, Econ. Model., 94 (2021), 896–907, http://doi.org/10.1016/j.econmod.2020.02.031 doi: 10.1016/j.econmod.2020.02.031 |
[13] | Y. Ghabri, K. Guesmi, A. Zantour, Bitcoin and liquidity risk diversification, Financ. Res. Lett., 40 (2021), 101679. http://doi.org/10.1016/j.frl.2020.101679 doi: 10.1016/j.frl.2020.101679 |
[14] | M. Liu, H. Chen, J. Yan, Detecting roles of money laundering in Bitcoin mixing transactions: A goal modeling and mining framework, Front. Phys., 9 (2021), 665399. http://doi.org/10.3389/fphy.2021.665399 doi: 10.3389/fphy.2021.665399 |
[15] | E. Mahdi, V. Leiva, S. Mara'Beh, C. Martin-Barreiro, A new approach to predicting cryptocurrency returns based on the gold prices with support vector machines during the COVID-19 pandemic using sensor-related data, Sensors, 21 (2021), 6319. http://doi.org/10.3390/s21186319 doi: 10.3390/s21186319 |
[16] | X. F. Liu, X. J. Jiang, S. H. Liu, C. K. Tse, Knowledge discovery in cryptocurrency transactions: a survey, IEEE Access, 9 (2021), 37229–37254. http://doi.org/10.1109/ACCESS.2021.3062652 doi: 10.1109/ACCESS.2021.3062652 |
[17] | V. Naimy, O. Haddad, G. Fernández-Avilés, R. El Khoury, The predictive capacity of GARCH-type models in measuring the volatility of crypto and world currencies, PLoS ONE, 16 (2021), e0245904. http://doi.org/10.1371/journal.pone.0245904 doi: 10.1371/journal.pone.0245904 |
[18] | M. Umar, C. W. Su, S. K. A. Rizvi, X. F. Shao, Bitcoin: A safe haven asset and a winner amid political and economic uncertainties in the US?, Technol. Forecast. Soc., 167 (2021), 120680. http://doi.org/10.1016/j.techfore.2021.120680 doi: 10.1016/j.techfore.2021.120680 |
[19] | A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, METRON, 71 (2013), 63–79. http://doi.org/10.1007/s40300-013-0007-y doi: 10.1007/s40300-013-0007-y |
[20] | E. Seneta, Karamata's characterization theorem, feller and regular variation in probability theory, Publications de l'Institut Mathématique, 71 (2002), 79–89. http://doi.org/10.2298/PIM0271079S doi: 10.2298/PIM0271079S |
[21] | G. P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50 (2003), 159–175, http://doi.org/10.1016/S0925-2312(01)00702-0 doi: 10.1016/S0925-2312(01)00702-0 |
[22] | Z. Peng, F. U. Khan, F. Khan, P. A. Shaikh, Y. Dai, I. Ullah, et al., An application of hybrid models for weekly stock market index prediction: Empirical evidence from SAARC countries, Complexity, 2021 (2021), 5663302. http://doi.org/10.1155/2021/5663302 doi: 10.1155/2021/5663302 |
[23] | M. Khashei, Z. Hajirahimi, A comparative study of series arima/mlp hybrid models for stock price forecasting, Commun. Stat.-Simulat. Comput., 48 (2019), 2625–2640. http://doi.org/10.1080/03610918.2018.1458138 doi: 10.1080/03610918.2018.1458138 |
[24] | C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn., 20 (1995), 273–297. http://doi.org/10.1007/BF00994018 |
[25] | S. M. Awan, Z. A. Khan, M. Aslam, W. Mahmood, A. Ahsan, Application of NARX based FFNN, SVR and ANN Fitting models for long term industrial load forecasting and their comparison, 2012 IEEE International Symposium on Industrial Electronics, IEEE, 2012,803–807. http://doi.org/10.1109/ISIE.2012.6237191 |
[26] | P. S. Yu, T. C. Yang, S. Y. Chen, C. M. Kuo, H. W. Tseng, Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting, J. Hydrol., 552 (2017), 92–104. http://doi.org/10.1016/j.jhydrol.2017.06.020 doi: 10.1016/j.jhydrol.2017.06.020 |
[27] | S. Ghosh, SVM‐PGSL coupled approach for statistical downscaling to predict rainfall from GCM output, J. Geophys. Res.: Atmos., 115 (2010), D22102. http://doi.org/10.1029/2009JD013548 doi: 10.1029/2009JD013548 |
[28] | D. Raje, P. P. Mujumdar, A comparison of three methods for downscaling daily precipitation in the Punjab region, Hydrol. Process., 25 (2011), 3575–3589. http://doi.org/10.1002/hyp.8083 doi: 10.1002/hyp.8083 |
[29] | N. Bibi, I. Shah, A. Alsubie, S. Ali, S. A. Lone, Electricity spot prices forecasting based on ensemble learning, IEEE Access, 9 (2021), 150984–150992. http://doi.org/10.1109/ACCESS.2021.3126545 doi: 10.1109/ACCESS.2021.3126545 |
[30] | M. H. D. M. Ribeiro, R. G. da Silva, V. C. Mariani, L. dos Santos Coelho, Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil, Chaos Soliton. Fract., 135 (2020), 109853. http://doi.org/10.1016/j.chaos.2020.109853 doi: 10.1016/j.chaos.2020.109853 |
[31] | H. Tong, K. S. Lim, Threshold autoregression, limit cycles and cyclical data, In: Exploration of a nonlinear world: An appreciation of Howell Tong's contributions to statistics, World Scientific Publishing, 2009, 9–56. https://doi.org/10.1142/9789812836281_0002 |
[32] | V. D'Amato, S. Levantesi, G. Piscopo, Deep learning in predicting cryptocurrency volatility, Physica A, 596 (2022), 127158. http://doi.org/10.1016/j.physa.2022.127158 doi: 10.1016/j.physa.2022.127158 |
[33] | Z. Ahmad, Z. Almaspoor, F. Khan, M. El-Morshedy, On predictive modeling using a new flexible Weibull distribution and machine learning approach: Analyzing the COVID-19 data, Mathematics, 10 (2022), 1792. http://doi.org/10.3390/math10111792 doi: 10.3390/math10111792 |