This paper presents a novel family of bivariate continuous Lomax generators known as the BFGMLG family, which is constructed using univariate Lomax generator (LG) families and the Farlie Gumbel Morgenstern (FGM) copula. We have derived several structural statistical properties of our proposed bivariate family, such as marginals, conditional distribution, conditional expectation, product moments, moment generating function, correlation, reliability function, and hazard rate function. The paper also introduces four special submodels of the new family based on the Weibull, exponential, Pareto, and log-logistic baseline distributions. The study establishes metrics for local dependency and examines the significant characteristics of the proposed bivariate model. To provide greater flexibility, a multivariate version of the continuous FGMLG family are suggested. Bayesian and maximum likelihood methods are employed to estimate the model parameters, and a Monte Carlo simulation evaluates the performance of the proposed bivariate family. Finally, the practical application of the proposed bivariate family is demonstrated through the analysis of four data sets.
Citation: Aisha Fayomi, Ehab M. Almetwally, Maha E. Qura. A novel bivariate Lomax-G family of distributions: Properties, inference, and applications to environmental, medical, and computer science data[J]. AIMS Mathematics, 2023, 8(8): 17539-17584. doi: 10.3934/math.2023896
This paper presents a novel family of bivariate continuous Lomax generators known as the BFGMLG family, which is constructed using univariate Lomax generator (LG) families and the Farlie Gumbel Morgenstern (FGM) copula. We have derived several structural statistical properties of our proposed bivariate family, such as marginals, conditional distribution, conditional expectation, product moments, moment generating function, correlation, reliability function, and hazard rate function. The paper also introduces four special submodels of the new family based on the Weibull, exponential, Pareto, and log-logistic baseline distributions. The study establishes metrics for local dependency and examines the significant characteristics of the proposed bivariate model. To provide greater flexibility, a multivariate version of the continuous FGMLG family are suggested. Bayesian and maximum likelihood methods are employed to estimate the model parameters, and a Monte Carlo simulation evaluates the performance of the proposed bivariate family. Finally, the practical application of the proposed bivariate family is demonstrated through the analysis of four data sets.
[1] | G. M. Cordeiro, E. M. Ortega, B. V. Popović, R. R. Pescim, The Lomax generator of distributions: Properties, minification process and regression model, Appl. Math. Comput., 247 (2014), 465–486. https://doi.org/10.1016/j.amc.2014.09.004 doi: 10.1016/j.amc.2014.09.004 |
[2] | V. S. Vaidyanathan, A. S. Varghese, Morgenstern type bivariate lindley distribution, Stat. Optim. Inf. Comput., 4 (2016), 132–146. https://doi.org/10.19139/soic.v4i2.183 doi: 10.19139/soic.v4i2.183 |
[3] | L. Baharith, H. Alzahrani, New bivariate Pareto type Ⅱ models, Entropy, 21 (2019), 473. https://doi.org/10.3390/e21050473 doi: 10.3390/e21050473 |
[4] | M. V. Peres, R. P. Oliveira, J. A. Achcar, E. Z. Martinez, The Bivariate defective Gompertz distribution based on Clayton Copula with applications to medical data, Aust. J. Stat., 51 (2022), 144–168. https://doi.org/10.17713/ajs.v51i2.1285 doi: 10.17713/ajs.v51i2.1285 |
[5] | E. M. Almetwally, H. Z. Muhammed, On a bivariate Frechet distribution, J. Stat. Appl. Proba., 9 (2020), 1–21. |
[6] | M. V. Perres, J. A. Achcar, E. Z. Martinez, Bivariate lifetime models in presence of cure fraction: A comparative study with many different copula functions, Heliyon, 6 (2020), e03961. https://doi.org/10.1016/j.heliyon.2020.e03961 doi: 10.1016/j.heliyon.2020.e03961 |
[7] | J. Zhao, H. Faqiri, Z. Ahmad, W. Emam, M. Yusuf, A. M. Sharawy, The Lomax-Claim model: Bivariate extension and applications to financial data, Complexity, 2021, 1–17. https://doi.org/10.1155/2021/9993611 doi: 10.1155/2021/9993611 |
[8] | H. H. Ahmad, E. M. Almetwally, D. A. Ramadan, Investigating the relationship between processor and memory reliability in data science: A bivariate model approach, Mathematics, 11 (2023), 2142. https://doi.org/10.3390/math11092142 doi: 10.3390/math11092142 |
[9] | M. E. Qura, A. Fayomi, M. Kilai, E. M. Almetwally, Bivariate power Lomax distribution with medical applications, Plos One, 18 (2023), e0282581. https://doi.org/10.1371/journal.pone.0282581 doi: 10.1371/journal.pone.0282581 |
[10] | E. S. A. El-Sherpieny, E. M. Almetwally, U. Z. Muhammed, Bivariate Weibull-G family based on copula function: Properties, Bayesian and non-Bayesian estimation and applications, Stat. Optim. Inf. Comput., 10 (2022), 678–709. https://doi.org/10.19139/soic-2310-5070-1129 doi: 10.19139/soic-2310-5070-1129 |
[11] | H. Z. Muhammed, Bivariate inverse Weibull distribution, J. Stat. Comput. Simul., 86 (2016), 2335–2345. https://doi.org/10.1080/00949655.2015.1110585 doi: 10.1080/00949655.2015.1110585 |
[12] | M. S. Eliwa, M. El-Morshedy, Bivariate Gumbel-G family of distributions: Statistical properties, Bayesian and non-Bayesian estimation with application, Ann. Data Sci., 6 (2019), 39–60. https://doi.org/10.1007/s40745-018-00190-4 doi: 10.1007/s40745-018-00190-4 |
[13] | R. M. Alotaibi, H. R. Rezk, I. Ghosh, S. Dey, Bivariate exponentiated half logistic distribution: Properties and application, Commun. Stat.-Theor. M., 50 (2021), 6099–6121. https://doi.org/10.1080/03610926.2020.1739310 doi: 10.1080/03610926.2020.1739310 |
[14] | E. S. A. El-Sherpieny, H. Z. Muhammed, E. M. Almetwally, Accelerated life testing for bivariate distributions based on progressive censored samples with random removal, J. Stat. Appl. Probab., 11 (2022), 203–223. |
[15] | A. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publications de l'Institut de statistique de l'Université de Paris, 8 (1959), 229–231. |
[16] | R. B. Nelsen, An introduction to copulas, 2 Eds., Springer Science Business Media, 2006. |
[17] | H. Joe, Multivariate models and dependence concepts, 2 Eds., New York: Chapman and Hall, 1997. https://doi.org/10.1201/9780367803896 |
[18] | E. J. Gumbel, Bivariate exponential distributions, J. Am. Stat. Assoc., 55 (1960), 698–707. https://doi.org/10.1080/01621459.1960.10483368 doi: 10.1080/01621459.1960.10483368 |
[19] | N. Sreelakshmi, An introduction to copula-based bivariate reliability concepts, Commun. Stat.- Theor. M., 47 (2018), 996–1012. https://doi.org/10.1080/03610926.2017.1316396 doi: 10.1080/03610926.2017.1316396 |
[20] | I. W. Burr, Cumulative frequency functions, Ann. Math. Stat., 13 (1942), 215–232. https://doi.org/10.1214/aoms/1177731607 doi: 10.1214/aoms/1177731607 |
[21] | L. J. Bain, Analysis for the linear failure rate life-testing distribution, Technometrics, 16 (1974), 551–559. https://doi.org/10.1080/00401706.1974.10489237 doi: 10.1080/00401706.1974.10489237 |
[22] | K. S. Lomax, Business failures: Another example of the analysis of failure, J. Am. Stat. Assoc., 49 (1954), 847–852. https://doi.org/10.1080/01621459.1954.10501239 doi: 10.1080/01621459.1954.10501239 |
[23] | I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 7 Eds., San Diego: Academic Press, 2007. |
[24] | A. Basu, Bivariate failure rate, J. Am. Stat. Assoc., 66 (1971), 103–104. https://doi.org/10.1080/01621459.1971.10482228 doi: 10.1080/01621459.1971.10482228 |
[25] | N. L. Johnson, S. Kotz, A vector multivariate hazard rate, J. Multivariate Anal., 5 (1975), 53–66. https://doi.org/10.1016/0047-259X(75)90055-X doi: 10.1016/0047-259X(75)90055-X |
[26] | E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist., 37 (1966), 1137–1153. https://doi.org/10.1214/aoms/1177699260 doi: 10.1214/aoms/1177699260 |
[27] | W. Holland, Y. J. Wang, Dependence function for continuous bivariate densities, Commun. Stat.- Theor. M., 16 (1987), 863–876. https://doi.org/10.1080/03610928708829408 doi: 10.1080/03610928708829408 |
[28] | N. Balakrishnan, C. D. Lai, Continuous bivariate distributions, 2 Eds., New York: Springer Science Business Media, 2009. |
[29] | D. G. Clayton, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65 (1978), 141–151. https://doi.org/10.1093/biomet/65.1.141 doi: 10.1093/biomet/65.1.141 |
[30] | D. Oakes, Bivariate survival models induced by frailties, J. Am. Stat. Assoc., 84 (1989), 487–493. https://doi.org/10.1080/01621459.1989.10478795 doi: 10.1080/01621459.1989.10478795 |
[31] | J. E. Anderson, T. A. Louis, N. V. Holm, B. Harvald, Time-dependent association measures for bivariate survival distributions, J. Am. Stat. Assoc., 87 (1992), 641–650. https://doi.org/10.1080/01621459.1992.10475263 doi: 10.1080/01621459.1992.10475263 |
[32] | R. B. Nelsen, Concordance and Gini's measure of association, J. Nonparametr. Stat., 9 (1998), 227–238. https://doi.org/10.1080/10485259808832744 doi: 10.1080/10485259808832744 |
[33] | B. V. Popović, M. M. Ristić, A. İ. Genç, Dependence properties of multivariate distributions with proportional hazard rate marginals, Appl. Math. Model., 77 (2020), 182–198. https://doi.org/10.1016/j.apm.2019.07.030 doi: 10.1016/j.apm.2019.07.030 |
[34] | H. Dette, K. F. Siburg, P. A. Stoimenov, A copula-based non-parametric measure of regression dependence, Scand. J. Stat., 40 (2013), 21–41. https://doi.org/10.1111/j.1467-9469.2011.00767.x doi: 10.1111/j.1467-9469.2011.00767.x |
[35] | N. L. Johnson, S. Kotz, On some generalized Farlie-Gumbel-Morgenstern distributions, Commun. Stat., 4 (1975), 415–427. https://doi.org/10.1080/03610917508548400 doi: 10.1080/03610917508548400 |
[36] | A. K. Suzuki, F. Louzada-Neto, V. G. Cancho, G. D. Barriga, The FGM bivariate lifetime copula model: A bayesian approach, Adv. Appl. Stat., 21 (2011), 55–76. |
[37] | F. Louzada, A. K. Suzuki, V. G. Cancho, The FGM long-term bivariate survival copula model: Modeling, Bayesian estimation, and case influence diagnostics, Commun. Stat.-Theor. M., 42 (2013), 673–691. https://doi.org/10.1080/03610926.2012.725147 doi: 10.1080/03610926.2012.725147 |
[38] | M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Stat., 8 (1999), 69–92. https://doi.org/10.1080/10618600.1999.10474802 doi: 10.1080/10618600.1999.10474802 |
[39] | M. K. Hassan, C. Chesneau, Bivariate generalized half-logistic distribution: Properties and its application in household financial affordability in KSA, Math. Comput. Appl., 27 (2022), 72. https://doi.org/10.3390/mca27040072 doi: 10.3390/mca27040072 |
[40] | G. Grover, A. Sabharwal, J. Mittal, Application of multivariate and bivariate normal distributions to estimate duration of diabetes, Int. J. Stat. Appl., 4 (2014), 46–57. |
[41] | R. P. Oliveira, J. A. Achcar, J. Mazucheli, W. Bertoli, A new class of bivariate Lindley distributions based on stress and shock models and some of their reliability properties, Reliab. Eng. Syst., 211 (2021), 107528. https://doi.org/10.1016/j.ress.2021.107528 doi: 10.1016/j.ress.2021.107528 |
[42] | C. A. McGilchrist, C. W. Aisbett, Regression with frailty in survival analysis, Biometrics, 47 (1991), 461–466. https://doi.org/10.2307/2532138 doi: 10.2307/2532138 |