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Abstract: This paper presents a novel family of bivariate continuous Lomax generators known as the
BFGMLG family, which is constructed using univariate Lomax generator (LG) families and the Farlie
Gumbel Morgenstern (FGM) copula. We have derived several structural statistical properties of our
proposed bivariate family, such as marginals, conditional distribution, conditional expectation, product
moments, moment generating function, correlation, reliability function, and hazard rate function. The
paper also introduces four special submodels of the new family based on the Weibull, exponential,
Pareto, and log-logistic baseline distributions. The study establishes metrics for local dependency and
examines the significant characteristics of the proposed bivariate model. To provide greater flexibility,
a multivariate version of the continuous FGMLG family are suggested. Bayesian and maximum
likelihood methods are employed to estimate the model parameters, and a Monte Carlo simulation
evaluates the performance of the proposed bivariate family. Finally, the practical application of the
proposed bivariate family is demonstrated through the analysis of four data sets.
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1. Introduction

The Lomax distribution is a heavy-tailed probability model defined by scale and shape parameters,
and has various real-world applications in fields like business, medicine, engineering, biology and
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finance. In recent years, adding extra shape parameters to the basic distribution has resulted in the
development of new univariate continuous distributions. Cordeiro et al. [1] introduced the Lomax-G
(LG) family of distributions, a continuous univariate family based on the Lomax distribution, with two
additional positive parameters, @ and 5. The cumulative density function (cdf) of this family is derived
by

B )”
B-log[l -G(x;0])
where G(x; {) is the baseline cdf and { is a vector of parameters, (1 X k),k = 1,2,3,.... The survival
function (SF) and the probability density function (pdf) of the LG family are given by

Fre(xa,p,0) =1 —( (1.1)

: _ B ’
SLG(X, Q’,ﬂ, ‘:) - (ﬁ_ 10g[1 _ G(X, é,)]) » (12)

and

8(x; Q)

[1- G [B~log (1 - G NI™*"
where g(x;{) is the baseline pdf. Bivariate distributions were proposed and studied by many
authors, and they have found extensive use in the fields such as insurance, finance, economics, risk
management, hydrology, environment, management science, operations research, reliability, survival
analysis, engineering, medical sciences, and others. Recently, new bivariate distributions have been
constructed using classical univariate distributions based on different copula functions and Marshall-
Olkin methodology.

Using the copula function, Vaidyananthan et al. [2] proposed a bivariate Lindley distribution using
Morgenstern approach. Baharith et al. [3] introduced two bivariate Pareto Type Il distributions; one is
derived from copula and the other through a mixture and copula. Peres et al. [4] proposed a bivariate
model based on a defective Gompertz distribution and a Clayton copula function to capture dependence
between the lifetimes. Almetwally and Muhammed [5] introduced a new bivariate Fréchet distribution
using Farlie-Gumbel-Morgenstern (FGM) and Ali-Mikhail-Haqg (AMH) AMH copula functions, and
discussed their properties. Peres et al. [6] used bivariate standard Weibull lifetime distributions
with different copula functions for real data applications. Zhao et al. [7] presented Farlie-Gumble-
Morgenstern bivariate Lomax-Claim distribution. Haj Ahmad et al. [8] introduced bivariate modified
extended exponential based on FGM. Qura et al. [9] obtained Bivariate power Lomax distribution
based on FGM copula. El-Sherpieny et al. [10] introduced Bivariate Weibull-G Family Based on FGM
Copula Function and discussed their statistical properties.

Using the Marshall-Olkin technique, Muhammed et al. [11] proposed a bivariate inverse Weibull
(BIW) distribution, characterized by inverse Weibull marginals. Eliwa and El-Morshedy [12] proposed
the bivariate Gumbel-G family, a new class of bivariate distributions based on univariate Gumbel-
G families. Alotaibi et al. [13] developed a new bivariate exponentiated half logistic distribution
with explicit forms for its joint probability density function and cumulative distribution function. EI-
Sherpieny et al. [14] discussed accelerated life testing for bivariate distributions based on progressive
censored samples with random removal.

To understand and motivate the construction of our BFGMLG family, it is important to first examine
the fundamentals of copulas. The Sklar theorem, which was established by Sklar in 1959 [15] and is

fre(x;a,B,0) = ap® a,B >0, (1.3)
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central to the theory of copulas, states that multivariate distributions can be created by using copula
functions that can be derived from the joint distribution function of two or more marginal univariate
distributions (Nelsen [16]). In the range [0, 1], consider a random vector F(X) = (F(X}), ..., Fa(Xy)) =
(Uy, ..., Uy) that follows a d-variate copula with d uniform marginal distributions. Let 6 represent the
d-variate copula’s parameter vector and (F;(x}), ..., F4(x,)) € [0, 1]¢, the respective copula is a function
C:[0;1]¢ — [0; 1] that satisfies

Ca(F(x1), ... Fa(x4); 0) = Co(F1(x1), ..., Fa(xq)) = Co(uy, ..., ug)

(1.4)
= P[F (X)) < Fi(x1), oo, Fa(Xy) < Fa(xg)].

An element of 6 is referred to as a dependence parameter. The joint density function of F(X) is denoted
by ¢, and its formula is:

d

0
ca(F(x1),....F(xq);0) = TEGD). aF(Xd)Cd(F(xl),...,F(xd);H). (1.5)

Then, the joint cdf of X, denoted by F; is obtained by

Fd(xl, ..... ,Xd) = Cd(F](Xl),...,Fd(Xd);O) = Cg(F](X]),...,Fd(Xd)); X € Rd, (16)

and the joint pdf, denoted by f;, is obtained by

d
Fax1s e X0) = CaF1(00)s o Faxas O | | fi0p; xR, (1.7)

j=!

where fi(x;),j = 1,...,d are the marginal density functions, and c,(F(x), ..., F(x4);6) being the
derivative of order d of (1.6) with respect to x, ..., x;,. When the random variables are independent,

ca(F(xy), ..., F(x2);0) = 1. For the bivariate case, (d = 2), a function C[0, 1]> — [0, 1] is considered
a bivariate copula if it satisfies the conditions C(0,u) = C(u,0) = 0, C(1,u) = C(u,1) = u, and
C(va,up)—C(va,u1)—C(vi,up)+C(vi,uy) = 0forallu,ve[0;1,0<vi<wv, <landO0<u; <up, < 1.

For a bivariate distribution, the joint cdf is given as
F(x1,x2) = Co(F1(x1), Fa(x2)). (1.8)

The density of the associated joint is

Fx1,x2) = filx) f2(x2)co(Fi(x1), Fa(x2)). (1.9)

For building a broad class of multivariate distributions based on marginals from various families,
the copula approach offers a potent tool. Through a copula in which the dependence structure and
marginals are separately specified, any joint distribution function may be represented. A good source
on copulas can be found at Nelsen [16] and Joe [17].

One of the most well-known parametric families of copulas, the Farlie Gumbel Morgenstern (FGM)
copula was discussed by Gumbel [18]. The FGM copula and its density are presented as
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Clup,up)=uyuy (1+0(1 —u))(1 —up)),-1<6<1, (1.10)

and
clup,ur) =1+ 60(1 = 2uy)(1 — 2u,) (1.11)

respectively. As a result, the FGM copula is simple and adaptable when handling the construction of
bivariate distributions with complex marginal distributions with regards to functions. We use it in our
study to creat Bivariate Lomax generator family, which we have dubbed the BEFEGMLG family.

The cdf and pdf of FGM copula are represented as follows:

C(F(x1;81), F(x2; ) = F(X1§§1)F(x2§§2)(1 + 9[(1 - F(x;;4) (1= F(X2;§2))D > (1.12)

and
c(F(x130), F(x2;0) = 1+ 0[(1 = 2F(x134)) (1 = 2F (x2; ()]s 6 € [-1,11. (1.13)

Our motivation for proposing this article is to:

(1) Construct a new bivariate continuous family of distributions, namely the BFGMLG family, that
can effectively model bivariate continuous data with heavy-tailed and skewed distributions, which
is useful in a variety of applications.

(2) Address the lack of existing distributions in modeling certain random bivariate phenomena, and
provide a more comprehensive modeling approach.

(3) Generate various special bivariate models and realize all sorts of hazard rate functions (hrfs), which
can provide more accurate and detailed information about the phenomena being studied.

(4) Build a multivariate FGMLG family, namely the MFGMLG family, that can fit multivariate data
and provide a more comprehensive modeling approach for more complex phenomena.

(5) Meet the growing demands of applied fields by providing a more flexible and powerful tool for
modeling heavy-tailed dependence structures in environmental, medical and computer science
applications.

Our proposed BFGMLG family provides a new approach to modeling non-Gaussian and heavy-
tailed dependence structures in environmental, medical and computer science applications. The
univariate Lomax generator has been shown to be a good fit for modeling survival data with heavy
tails, and the Farlie Gumbel Morgenstern (FGM) copula has been used successfully to model non-
Gaussian dependence structures. By combining the univariate Lomax generator and the Farlie Gumbel
Morgenstern (FGM) copula, we have created a more powerful and flexible tool for modeling bivariate
continuous data bivariate continuous data with heavy-tailed and skewed distributions, which is useful
in a variety of applications.

This paper is organized as follows: In Section 2, we introduce a new family of bivariate lomax
generator using the univariate lomax generator family and the FGM copula function. In Section 3, we
present some new submodels from the general class. We derive some properties of BEFEGMLG family
including, marginal distributions, conditional distributions, regression function, moment generating
function and product moments in Section 4. In Section 5, We present the reliability and some concepts
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of dependence for our proposed bivariate family. In Section 6, we introduce a multivariate FGMLG
family. Section 7 discusses the methods for estimating model parameters that are unknown, including
Bayesian estimation and maximum likelihood. In Section 8, the performance of the estimators is
thoroughly evaluated through a Monte Carlo simulation study. The use of real data sets and their
interpretations are discussed in Section 9, followed by the presentation of conclusions.

2. BFGMLG family

Using any copula function, the joint cdf and pdf of the bivariate LG family are defined as follows

B “ B2 "
Foe oo cf1 e 2.1
(x1, X2) ( (,31 “log[1 - G(X1;§1)]) (,82 —log[1 - G(x2;§2)]) ) @b

and
o g(x1541)
oo e G e 01181 —Tog (1 = Gl )™
N 2002 &)
a 2.2
w2 [1 - G(x2; &) [B2 — log (1 — G(xz; &)™ 22

(-Gt emm) e o) )
Bi—log[l -G(x;;4)]) Bo —log[1 — G(x2;{5)] ’

we derive the joint cdf and pdf of the BFGMLG family using the FGM copula function, as defined in
Eqgs (1.12) and (1.13) and the bivariate LG family based on any copula function, as outlined in Eqs (2.1)
and (2.2) as follows:

B B ﬁl (03] ~ ﬁz [0%)
Fpremic(x1, X2) = [1 (,31 —log[l - G(xl;g‘l)]) ] [1 (ﬁz —log[1 - G(Xz;fz)]) ]

) a (2.3)
gt o) (e o) |
B —log[l = G(x;;8)]) \Ba—log[l —=G(x2: )]) |
_ o pa 8(x1541)
JeromL-c(x1, x2) = @18 (= Grr i)l B —log (1 — Gl )™
8(x2;42) 2.4)

2 [1=G(x2;0)][B2 — log (1 — G(xy; 52)”02“

ﬂ] a1 ) ,82 s B
e 9(2 [ﬂl gl - G(xl;a)]] 1)(2 [ﬁz “log[l —G(xz;@)]] 1)]

Sreelakshm [19] introduced the relationship between copulas and reliability copulas which is
described as follows:

S(x1,x2) = 1= F(x) = F(x) + C(F(x1), F(x2)). (2.5
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Based in Eq (2.5), The FGM survival function can be found as follows:
S(x,x) =1=F(x1) = F(x2) + F(x1)F(x2) [1 +6(1 = F(x1)) (1 = F(x2))].
The following is the survival function for BFEGMLG family:

swe) amwatt om)
B —log[l = G(xi;;8)]) \Ba—log[1 = G(x2;{r)]

_ Bi ¢! B B “
1+ 9(1 (ﬁl —log[1 - G(x12§1)]) )(1 (,32 —log[1 - G(x2;§z)]) )]

3. Special BFGMLG distributions

S promrc (X1, X2) = (
(2.6)

We presented four special models of the BEFGMLG family of distributions in this section. When
the cdf G(x) and pdf g(x) have simple analytic expressions, the pdf (2.4) will be most feasible. Taking
the baseline distributions, we focus on providing four sub-models of this family: Weibull (W), Log-
Logistic (LL) and Pareto (Pa). Table 1 shows the cdf and pdf of the baseline models. The BFEGMLG
family is very adaptable in its sub-models and can approach various bivariate distributions by altering
its parameters.

Table 1. baseline models in cdf and pdf.

Model Cdf: G(x;0) Pdf:  g(x;0)
Weibull 1 —exp[-bx)?] ;x>0 ab'x*exp|- (bx)"]
Exponential | 1 — e ®¥ x>0 be 0
Pareto 1-(1+x)7? x>0 b(1+x)" D

b1 -
Log-Logistic | 1-[1+(2)'| x>0 0 [1+(2)]"

3.1. BFGMLG-Weibull (BFGMLGW) distribution

The cdf and pdf of the BFEGMLGW distribution are obtained by using the LG family and the Weibull
distribution to obtain the LG-Weibull (LGW) distribution as follows:

I PO O - T o | PR Y
Farcurcw(x1,7) = [1 (,31 + (blxl)al) ] [1 (ﬁz + (bzxz)az) ]

I ) G.1)
1+ 9( b ) ( P ) ]
Bi+ (bix)™ ) \Bo+ (b2x2)?) |
ar-1 xaz—l
| ay 1 2 o2 2
Jeremrow(x1, x2) = [al'gl @b [B; + (blxl)‘“]“‘“] [aZﬁz a2b B2 + (bzxz)az]aﬁl} (3.2)

ﬁl ag ,32 a?
P ) _ Y I
{1 o (/31 + (blxl)a') 1] [2 (52 + (bzxz)az) 1]}

e When a; = a, = 1, we obtain a new bivariate FGM Lomax exponential (BFGMLE), which is an
univariate distribution of Lomax exponential.
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e When 8; = 5, = 1 in addition to b; = b, = 1, we obtain a new bivariate of two-parameter Burr
distribution (BFGMB), which is an univariate Burr distribution has been introduced by Burr [20].

e When oy = o, = 1 = B, = by = b, = 1, we obtain a new bivariate log-logistic distribution
(BFGMLL), which is an univariate one-parameter log-logistic distribution has been presented by
Bain [21] (In economics, this is known as the one-parameter Fisk distribution).

e When o) = @, = a; = a, = by = b, = 1, we obtain a new bivariate Pareto type Il (BFGMP),
which is an univariate Pareto type II distribution has been introduced and studied by Lomax [22]

3.2. BFGMLG-exponential (BFGMLGE) distribution

The cdf and pdf of the BFGMLGE distribution are produced by obtaining LG-exponential (LGE)
distribution using the LG family and exponential distribution a follows:

FBFGMLE(xlaXZ)_[I (ﬁ1+b1xl) Hl (:32+b2x2) ]

@ o 3.3)
ol ) i) |
B] +b1x1 ﬁz +b2X2 ’
(Z]b azb
JBrGmLE(X1, X2) =[ ol 1a1+1] e 2a2+1l
[B1 + b1xi] [B2 + brxs] (3.4)

_ B\ _ B\
{1 o 2([31 +b1X1) 1] [2(,32 + bzx2) 1]}

Figures 1-3 discussed three shapes of joint density and joint hazard BEFEGMLE distribution. These
3-dimensional figures indicates that BEFEGMLE distribution have different shapes.

25

- 20

- 15

0y=2B;=0.3b;=1.80,=1.3,=0.5b,=1.90=-0.5 0=2B;=03b;=1.80,=1.3B,=05b,=1.96=-05

Figure 1. 3-dimension of joint density of BFGMLE.
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Figure 2. 3-dimension of joint density of BFGMLE.
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Figure 3. 3-dimension of joint density of BEFEGMLE.

3.3. BEFGMLG-Pareto (BFGMLGP) distribution

The cdf and pdf of the BEFEGMLGP distribution are produced by obtaining LG-Exponential (LGP)
distribution using the LG family and Exponential distribution a follows:

B B ﬁl aq ~ Bz )
Fpremicr(x1, x2) = [1 (’31 + b log(1 + xl)) Hl (,32 + by log(1 + xz)) ]

) ay 3.5)
1+6 Bi 2
ﬁ] + b] lOg(l + X]) ,82 + l’)z log(l + X2) ’
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b

(1 + x1) [B1 + by log(1 + x)]™*"
@) b2

a’2 2 (1/2+1
(1 +x2) [B2 + by log(1 + x2)]

ﬁl ag ﬁ2 az
{”“(ﬂwbllog(lm)) _1][2(ﬁ2+b210g(1+xz)) _1]}'

3.4. BFGMLG-log-logistic (BFGMLGLL) distribution

The cdf and pdf of the BFGMLLL distribution are obtained by using the LG family and the Normal
distribution to obtain the LG-Weibull (LGLL) distribution as follows:

feromicr(x1, x2) =a 5y

(3.6)

| az

B L B
B +log (1 + (%)bl) B+ log(l + (j—z)bz)

ay az

Bi B>
b1+ log(l + (;‘—i)b]) B2+ log(l + (j—z)bz)

bi-1
alﬁ‘f‘bl )Cll
JeromreLL(x1, X2) =——

W[ (@) [ oe(r (2)")
b, !

a, [1 + (Z‘i)bz] [,32 + log(l + (z_;)bz)](lz+1

(431

Fpromierr(xi, x2) = |1 —
(3.7

1+6

(ll+1

@

-1
b
B+ log(l + (z—z) 2)
4. Properties of BFGMLG family
In this section, we introduce some properties of BEFEGMLG family such as the marginal distributions
and its linear representation, conditional distributions, moment generating function and product

moments.

4.1. The Marginal distributions
The marginal cdfs of the joint BFGMLG family mentioned in Eq (2.3) can be represented as follows

AIMS Mathematics Volume 8, Issue 8, 17539-17584.
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Bi “
(ﬁi —log[1-G(x;;{)])
The marginal density functions of the joint BEGMLG family stated in Eq (2.4), are LG family
marginals and are given as:

Fre(xi;ai, Bi, ) = 1

anfBi>0, i=1,2. (4.1)

g(xi3 i)
[1 - G 6] [B; ~ log (1 = Glais &)™
We present a useful linear representation for the marginal cdfs of the BEFEGMLG family. Using power

series, expanding the logarithmic function and an equation by Gradshteyn et al. [23] for a power series
raised to a positive integer n, we get

f(xH al’ﬁl’ {z) - lﬁ aiaﬁi > 0. (42)

Fro(enBnl) = Y vl W (00, i= 1,2, (4.3)
k,q>0
where W,E’jq(x,-,{,-) = GNM4(x;, ;) represents the cdf of the exponentiated-G (exp-G) family of
distributions, with a power parameter (k + ¢) and v(’) = (—l)kdk,qaf.k) / (ﬁf?k!) with d;p = 1 and (for
g2 1) dy, =g z Deebal g, oo

Also, the marglnal pdfs for the BFGMLG family can be expressed in a linear representation as follows

[

o @B i) = D VW (&) i=1,2, (4.4)
k,g=0
k+q>1

where wk) (xi, &) = (k + @)g(xi, &)G* 97 (x;, &) represents the pdf of the exp-G family of distributions
with a power parameter of (k + g).

4.2. The conditional distributions

The conditional probability distribution, cumulative distribution function, and survival function of
X; given X; = x; are presented for i, j = 1,2 where i # j as follows.
The conditional probability distribution of X; given X; = x; is

_o 8Lid)
Bl -Gugy) (ianhnd) (4.5)

{1 + 6 [2wi(xi; i, Bi, &) — 1] [2wj(xj; @;.B)>¢)) = 1]}’

Jf(xilx)) =

Bj

a/] . ., .
m) and j = 1,2, z is vector of x; and x;. The conditional cdf

where wj(zj; @, B, ;) = (
of X; given Y; = y; is

F(xi|x) = PXi<xi|Y;=y) (4.6)
= (I - wixs @B )1+ 0 wixi @i B, 0) [ 20,(xjs 0, 8,4 = 1}
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The conditional survival of X; given X; = x; is

P(X, > X; | X/' = Xj) (47)
wi(x;; a;, Bi, &) {1 -0 [1 — wi(x;; @i, 65, &) [2wj(xj; a;,B,¢;) — 1]}

By (4.6), we can generate a bivariate sample of the LG family using the conditional approach

S(x;i | xj)

(1) Generate U and V independently from a uniform(0, 1) distribution.
(2) Set x1 = Qu(w) = G {1 = Pl Vel
(3) Use numerical analysis such as Newton-Raphson to find x, by setting F(x, | x;) = V in (4.6).

(4) Repeat 1-3 (n) times to get (xy;, x2;), i = 1,2,...,n

4.3. Regression function, moment generating function and product moments

In this subsection, we introduce the regression function, moment generating function, and product
moments.

4.3.1. Regression function

Before introducing the regression function of X; given X; = x;, let’s first examine the rth moment
and the probability weighted moments (PWMs) of X; when X; ~ LG(x;; @, 8i, (i), where i = 1,2. The
rth moment of X;, denoted by ", can be written as y’ = f X7 f(x;; &)dx;. By using Eq (4.4), we
obtain

(o)

ﬂl{(r) — Z 0] E( lkw). i=1,2. (4.8)
k,g=0
k+q>1

Here, X, ., is a random variable with the cdf of W(’) X 1) and pdf of w(’) He O The expectation of
N kitgi=1

Xite g is given by E(er . q) = /1’,: EO (1,-(+11))'"i+1 (k’”i’ ) Setting r = 1 in Eq (4.8), we obtain the mean of

X;, denoted by y, for i = 1,2. We can also obtain PWMSs, which are mainly used to estimate parameters
for a distribution whose inverse cannot be expressed explicitly. The (n, s)th PWM of X; is denoted by

UEZ 9 and can be expressed as 773:);) =FE [X;’FS(X)] = fm x!F*(x;, &) f(xi, £)dx;. By using Eq (4.4) and

Fid) = 3 0<p§f)k+qu+‘1(xi, £)s where @ = ((ki+gv) ™ S hilsi+ D)= (kitq)] U3, @5, trqr-ho-
+g2

we obtain

M= D, D, kit a) vl @l Bk +2g- 1) i=12, (*49)
ki+qi>0 kk_ir;i_zz()]

where Z,(m) = fol Qc(u)"u"du. Setting n = 1 and s = 1 in Eq (4.9), we obtain ¥ = E [X;F(X;, ;)]
of X;, i = 1,2. In BFGMLG family, the regression function of X; given X; = x; or the conditional
expectation of X; given X; = x; is calculated using the conditional density of X; given X; = x; in (4.5),
as follows:

EX; | X;=x)) = |1+ 60 =20 F(xj ;.85 ) + Qi (40 F(xj2 .85, £)) — 26). (4.10)
where i, j = 1,2 and i # j, and Q; = ¥ /u} = E[X;F(X;)] /E[X;].
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4.3.2. Moment generating function

Let (X, X,) represent a random variable with pdf defined in Eq (1.3). The moment generating
function of (X}, X,) is then obtained by,

o ()™ (l2)"2

n!  np!

MXI»XZ(tl’ t2) = E(ethl elzXZ) Z
n1=0ny=0

—26007 - 260" + 4600 0|, (4.11)

[1+6

nl n2

where Q" = 5 /u’" = E [x;”F(X,-)] JEIX"] fori=1,2.

4.3.3. Product moments

If the distribution of the random variable (X, X,) follows the BEFEGMLG family, then the rth and sth
joint moments around zero, denoted by w"*, can be expressed as follows:

W = EQXIXS) = il il [1+ 60— 20005 — 200, + 460,Q3] (4.12)

The covariance and correlation coeflicient (p) between X; and X, can be calculated from Eq (4.12)
as follows:

COV(Xl,Xz) = ,Llll /.1,2 0 [1 - 292 - ZQI + 4Q192] , (413)

and
20, - 2Q; +4Q Qz]

61
/(2)
W -1 w2>2 -

where ,u;(z) = f_ o; x7 g(xi; &)dx;. It can be observed that when 6 = 0, p becomes 0, indicating that X,
and X, are independent.

p(X1,X,) =

(4.14)

5. Reliability and dependence

A bivariate random vector (X;, X,) with joint density f(x;, x,) and survival function S (x, x;) =
P(X; > x1, X5 > x,) has a bivariate hazard rate function, as stated by Basu [24], given by:

f(xl’ x2)
h(xy, x3) = ¥——. 5.1
(1, 02) = (L %) GRY
The hazard rate function of BEFEGMPLG family is
heromrc(x1, X2) = @ gn: 1)
’ [1 =G D] B = log (1 = G(x1541)]
@ 8(x2;{2) (5.2)

[1=G(x2; )] [B2 —log (1 = G(x2542))]
1+6 [2a)1(x1;cxl,ﬁ1,{1) - 1] [sz(xz§ Qz,ﬁz, {2) - 1]
1+0[1 —w(xi;a1, B, D[] = w2(x0; @2, 85, 5)]
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5.1. Hazard gradient functions

Consider a bivariate random vector (X, X;) with joint density f(xj,x;) and survival function
S (x1, x2), then, as stated by Johnson et al. [25], the bivariate hazard rate function in vector form is
given by

-0 lnS(xl, X2) -0 h’lS(.X], )CQ)

h(x1,x2) = ( ax, %) ), (5.3)
For FGM copula, Vaidyanathan et al. [2] introduced %ﬂx“m as follows:
—-0In S (x1, x2) _ B -1
a—xl“ = h(xl)[l = (11 = Faeo1 ! [0F ()™ + 1] - 1) ] (5.4)
From (2.6), we get
—-0In S (x1, x2) _ ay g(x1541)
0x; [1 = G(xi;4)] B —log (1 = G(x1541))] 5.5)
{1 B 0 wa(x2; @2, B2, &) [1 — wi(x1; @1, B1, §1)] } '
1+ 0[1 = w (x; 1,81, 0D)][1 = wi(x2; 22,82, 5)] )
—-0In S (x1, x2) _ @y g(x2542)
0x; [1 = G(x2; 0)] B2 — log (1 = G(x2; £2))]

(5.6)

{ B 0 wi(xi; a1, B1,81) [1 = wa(x; @2, B, )] }
1+6[1 = wi(x;an,B1, )] [1 = wa(x; @2, 82, 0)] )
By substituting the above expressions in (5.3), the vector hazard rate function of BFEGMPLG family

is obtained. The Egs (5.5) and (5.6) have two terms: The first term is the hazard rate of the univariate

Lomax family distributions, and the second term is a positive increasing function for positive € and is

a negative decreasing function for negative 6.

Also, the conditional hazard rate function A(x; | X, = x,) of X; given X, = x; and h(x, | X; = x;) of
X, given X; = x; for the BFGMLG family are

(x1541) a
h(x1 | X2 = x2) :IZ—:%% (x1;@1,B1, 1)

{1 +6 [Zwl(xl;al,ﬂl,{l) - 1] [20)2()62; @z, B2, () — 1]} 5.7)
1-6 [1-wi(x;anB1, )] 2w (0 @, 82, 5) — 1] )7
and (22 ) 1
_ %2 86 R
h(x | X) = x)) A G(xz;éz)]wz (x2; @2, 82, (2) 58

{1 + 0 [2w1(x1; @1, B1,41) — 1] [2w2(x05 @2, 82, &2) = 1]}
1=6 [1 = wy(xp; @2, 2, )] Qi (xi;00, 81, 40) = 1] )

In reliability theory and lifetime data analysis, the concept of random variable dependence is
extremely useful. Covariance and product moment correlation are traditional methods for determining
the degree of dependence between two variables. In addition to these traditional measures, several
other concepts of new dependence have been suggested in the literature. In this subsections, we will
study various measures of dependence for the BFGMLG family and discuss their important properties.
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5.2. Positive quadrant dependence

Definition 5.1. Let (X,; X;,) be a bivariate random vector with distribution and marginals F(xi, x;),
F(xy) and F(x,), respectively. (Xy; X;) is considered to be positive quadrant dependent (PQD) if

F()Cl, )Cz) > F(Xl)F(XQ) for X1 and X2,

or, equivalently, if

S(x1,x) = S(x)S (x) for x; and x,

where S (x1, x3), S (x;) and S (x,) symbolise the joint and marginals survival functions. If the reverse
inequality holds, the random vector (X;; X,) is negative quadrant dependent (NQD) ( Lehmann [26]
and Nelsen [16]).

Proposition 5.1. Let (X, X,) ~ BFGMLG(«y, B, 1, @2, B2,(2,60). Then the BFGMLG family is PQD
(NQD) for a positive (negative) value of 6.

Proof. From Eq (2.6), the marginal survival functions S (x;) and S (x;) are easy to obtain. One can
quickly determine that S (xy, xp) > (<)S (x1)S (x2), which relates to the PQD (NQD) of the BFEGMLG
family using joint and marginal survival function.

Remark 5.1. X, and X, are positively (negatively) correlated if Cov(X;; X;) > 0 (< 0), respectively.
Therefore, for the BFEGMLG family, Cov(X;, X;) > 0 (< 0) is a direct consequence of the POD (NQD)
property, respectively.

5.3. Regression dependence

Compared to PQD, regression dependence is a stronger concept of dependence.

Definition 5.2. F(x, x,) is positively regression dependent if (Nelsen [16]):
P(X; > x, | X; = xp) is increasing in x; for all values of x;.

Proposition 5.2. Let (X,,X,) ~ BFGMLG(a1,B1,{1, 2,8, (5, 0) with cdf function F(xy,x;). Then,
F(x1,xy) in (2.3) is positively regression dependent.

Proof. The conditional survival function P(X, > x; | X; = x;) of X; on X; = x; is given in Eq (4.7).
On differentiation with respect to x;, we obtain:

0
—PXy > x| X =x)=

(1-L
20a1618(x1; w1 (xr; @, B1,41)
8x1

[1-G(x154)]
Wy (x2; @2, B2, £2) [1 - wz(xz;az,ﬁ%{z)]} >0
181 —log (1 = G(x1;{))] -
We start with a local dependence function to establish the TP2 property of the BFEGMLG family.

(5.9)

AIMS Mathematics Volume 8, Issue 8, 17539-17584.



17553

5.4. A local dependence function y(xi, x;)

Holland and Wang [27] introduced a local dependence function (x;, x;), to study the dependence
between random variables X; and X», and defined it as follows:

2
0x10x,

This dependence function, is an effective tool for investigating the totally positive of order 2 (TP2)
property of a bivariate distribution. Holland and Wang [27], and Balakrishnan and Lai [28] investigated
the detailed properties of y(x;, x).

y(x1, x2) = In f(x1, x2). (5.10)

Proposition 5.3. Let (X;,X,) ~ BFGMLG(ay, 1,1, 2,82, (>, 0). Then, its local dependence function
is

Y(x1,x2) =a 8% g(x1;41) 1
[1 -G )] B —log (1 = Glxi; G
B g(x25 )
[1 - G(x2: )] [B2 = log (1 = G(x; &))" (5.11)
46

B o B2 “ 2
[1+9(2[ﬁ1—log[1—c<xl;m]] _1)(2[,32—10};[1—G(X2;{2)]] _1)]

It is worth nothing, that when 6 = 0, then y(x;, x,) = 0, implying that X; and X, are independent.
Holland and Wang [27] and Nelsen [16] demonstrated that a bivariate density f(x;, x,) has the TP2
(totally positive of order 2) property if and only if y(x;, x;) > 0 and has the TN2 (totally negative of
order 2) property if and only if y(x;, x,) < 0. The final result for the TP2 property of the BFGMLG
family is as follows:

Proposition 5.4. Let (X, X;) ~ BEGMLG(ay, B4, {1, @2, B2, (2, 0) with density f(xi, x,) defined in (2.4).
Then, f(x1,x,) has the TP2 property if 6 > 0 and the TN2 property if 6 < Q.

It is worth noting that TP2 is a stronger concept of dependence than other well-known forms of
dependence such as stochastically increasing (SI), right-tail increasing (RTI), association, and positive
quadrant dependence (PQD). It has been established that TP2 implies these other forms of dependence,
as shown by Nelsen [16] and Balakrishnan and Lai [28]. As a result, the BFEGMLG family has all of
these dependence properties for 0 < 6 < 1.

5.5. Clayton-Oakes association measure

Based on the survival function and its dervatives , Clayton [29] and Oakes [30] defined a local
dependence function as:
S(x1, x2) S (x1, x2)
S1(x1,x2) S2(x1,x2)

l(xl,xz) = (512)

where §'1(x, x3) = %S (x1,x2) and S7(x1, x2) = 3'9725()61, X2).

Proposition 5.5. Let (X1, X,) ~ BFGMLG(ay, By, (1,2, B2, (2, 0), then,
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l(-xl,XZ) :{1 + O[ZCUI(Xl;al’ﬁl’ 51) - 1] 2(1)2(X2;a’2,ﬁ2’§2) — 1}}

[

{(1+6 [1-wix;2,8,0)] [1 - 2wi(x1; 01,81, 41)]}
{1 + 9[1 - wl(xl;a’l,ﬁb{l)] [1 — wa(x2; az,ﬁz,fz)]}
{146 [1—wi(x;e,B1.0)] [1-2w(x0; 22,82, )]}
It is simple to demonstrate that for I(x;, x,) = 1, the random variables X; and X, are independent.

From Eq (5.13), the random variables X; and X, are independent for 8 = 0. For 0 < 6 < 1, we have
l(x1, xp) > 1, implying that (X;, X;) is right corner set increasing (RCSI) ( Nelsen [16]).

(5.13)

5.6. Conditional probability measure Y(xy, x;)

By using conditional probability, Anderson et al. [31] defined a measure of association for random
vector (X1, X2) ¥(xy, x») as:

PXi>x [ Xo>x)  SCa,x)
P(X; > x1) S (x1,0) S(0,x3)
From Eq (5.14), it is evident that ¥(x;, x,) = 1 if and only if X; and X, are independent. Moreover,

if Y(xy,x) > 1 for all (x1, x,), then (X, X5) is positively quadrant dependent (PQD). It is also worth
noting that I(x;, x) > 1 implies ¢¥/(x;, x,) > 1. The BFGMLG family exhibits the following property.

Y(x1,x2) = (5.14)

Proposition 5.6. Let (Xl, Xz) ~ BFGMLG(Q’],ﬂ], §1, a’z,ﬁz, 52, 9), then,

Y(xp, x0) =1+ 0[1 —wi(x;a1,B1,0)][1 — wa(x2; @2, B2, 5)] - (5.15)

We can see from Eq (5.15) that when 8 = 0, we get ¥(x;,x;) = 1. As a result, X; and X, are
independent. Similarly, X; and X, are PQD when 6 > 0.

5.7. BFGMLG family and dependence measures

The product moments correlation is a measure of linear dependence that can produce misleading
results, even when the dependence is strong for non-elliptical random variables. Copula-based
measures of concordance can capture non-linear dependence and are widely regarded as the superior
alternative to linear correlation. In this section, we introduce some measures of dependence based on
copulas for the BEFEGMLG family, such as Spearman’s rho (p.), Gini’s gamma (y.), and the measure of
regression dependence (X, X;), which are defined in Nelsen [32] and Popovic et al. [33].

5.8. Spearman’s rho (p.)

The proportional to the probability of concordance minus the probability of discordance for two
vectors is denoted as Spearman’s rho (p.). For copula terms, Spearman’s (p.) is defined as:

1 1
P = 12f f C{F(x1), F(x2)} dF(x)) dF(x;) —=3.
0 0

In case of the FGM copula, Spearman’s rho (p,,) is g and means that p., € [‘71, %].
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5.9. Gini’s gamma (7y.)

Nelsen [32] defined Gini’s measure of association for X; and X,, denoted by 7., as follows:

1
Ve = 4f {C[F(x1), F(x))] + C[F(x)),1 = F(x)]} dF(x;) —2.
0

In case of FGM copula, Gini’s gamma y, is y,, = 756 and this means that y,, € [72, %].

5.10. A measure of regression dependence

Dette et al. [34] proposed a measure of regression dependence between two random variables X,
and X,, defined in terms of the copula C. This measure quantifies the strength of the relationship
between the variables and is given by

1 1 8 2
r(X;,X,) =6 f f ( C(F(x1), F(xp))| dF(x1)dF(xp) — 2. (5.16)
o Jo \OF(xy)

For the FGM copula, a measure of regression dependence between two random variables X; and X, is

given by (% - g) and this means that r € [0.216,0.283].

6. Multivariate FGMLG family

In this section, we discuss the multivariate of the FGMLG family. The multivariate aspect
of the FGMLG family is important for modeling the dependence structure of multiple variables
simultaneously. The joint distribution function of the d-variate FGM copula, denoted by Cy, is defined
by Johnson and Kotz [35] as follows:

d d
ColF1(x0)s s FaCxa) = [ | Fi0p |1+ D0 > 05,5, (1= F ) e (1= Fiu(x3)) |, (6.1)
j=1

m=2 1<ji<..<jm<d

~~~~~~

d-variate FGM copula are 2?22 (jl) = 24 —d — 1. The formula for the joint density function of F(X) ,
denoted by ¢, , is as follows:

d
ColFx0), o Faa)) =1+ > >0 05 (1-2F, () o (1-2F5,(x;)) . (62)

m=2 1<j1<...<jn<d

By using Eq (4.1) and (1.6), the joint cdf of the multivariate FGM lomax generator family, denoted by
(MFGMLG) family, is

d @
Bj ]
Falxi, ..o xq,a,B:,05,0) = 1-
R {11:1[ [ﬂj—log[l—Gj(xj;{j)] }

) ] )
O A S
o SO S B, —log|1-Gj,(x;;:4;)] Bj, —log[1-G,,(x;,:¢;,)]
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The joint density function of the MFGMLG family of distributions by using Eqs (4.2) and (1.7) is

d

@ gi(x;5¢))
fa(x1, ooy Xg) = aB.’ o
s = o [1-Gy:2)] [ - tog (1 - Gyx: )|

d ajy
1811
1 6, . |2 “ 1
{ +mzzzlsj1;jmsd " ( (,le—log[l—Gjl(Xh;{j])]] ]

}.

In this section, we introduce two estimation methods for the parameters ® = (ay, 81, {1, @2, B2, {2, 0)
of the bivariate continuous FGMLG family: Maximum likelihood estimation (MLE) and Bayesian
estimation.

S e A
Bi, —log|1 - G, (x;,:4;,)]

7. Methods for estimating parameters

7.1. Maximum likelihood estimation

In this subsection, we study the problem of determining the maximum likelihood estimators (MLEs)
of the unknown parameters of the BFGMLG family distributions using a random sample. We assume
that {(Xi1, X21) , ..., (X1, X2,)} 1s @ random bivariate sample from BFGMLG ~ (a4, 8, {1, @2,52, (3, 6).
For a sample of size n, the log-likelihood function is given by:

InL =nlnay +nayny + > g &) = (ar + 1) Y Iy —log (1 = Glxii; 41)]
i=1 i=1

- Z In[1-G(x1;;4)] +nlnas + nay InBy + Z In g(x2;, &)
=1

i=1

, \ (7.1)
= > [l =G &) = (@ + 1) Y In[gy —log (1 - G(xzi; )]
i=1 i=1

+ Z In[1+602w1(x1;5 @1, B1, 1) — 1] [2wa; (x5 @2, B2, &) — 1]

i=1

By differentiating (7.1) with respect to ay, 81, {1, @2, B2, {», and 8, and equating the resulting expressions
to zero, we obtain the normal equations as follows:

ey :aij +nlnp; - Z In|; ~log (1 - G £)

(9&,-
1 (7.2)
" 260 Qi (v an B 8) — Dwji (v @B, &) nwy) (xii ;. ,.4))

’ 1+ 02w(x155 1,81, 81) — 1] [2wa; (X213 @2, B2, &) — 1] —

i=1
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OL(® _
©) :@—( a;+ I)Z lOg G(in;{j))] ]
aﬁj J

-z
i 200; Qi (xi5 @, B &) = Dwy; 7 (x5 85.4))
| 1+ 0 2w1(x a1, Br §) = 1 [2w2; (x5 @2, B2, £2) — 1]

log (1 - G(x;:£) } L
I8~ 1og (1 - G(x:.0)] ’

OL©®) < ¢(xji- L)) B O(xj;; ¢j)
e _Z‘ sty T DZ 1—G(xj,,§,))[ ;= log (1 = G(xji: &))|

1-2H)
an 2600, Qi iz, B ) = Dy 7 (.05, 81,8)
1+ 0 2wi(x1;5 21,81, 1) — 1] [2wai (x5 @2, B2, &) — 1]

B0 ) } _
(1-G)) [B; ~log (1 - GGy )|
8L(®) Z [2w1i(x1is @1, 81, §1) = 1] [2wa; (X253 @2, B2, ) — 1]
1+

0 [2w1i(x155 1,81, &) — 1] [2wo; (X215 @2, 82, &) — 1] —

9G(xji))
a;

b

(7.3)

where ®(x;;; j) = “5E2 0 L D(x;ii L)) =
[=2).

The non-linear normal equations involved in finding the MLEs of the unknown parameters
are complex and manually solving them can be time-consuming and inconvenient. Therefore,
computational methods are used to determine the MLEs of the parameters. In addition, based on
large sample theory and ML estimates of the asymptotic distribution, we can obtain approximate
confidence intervals (CI) for the parameters ay,f1, {1, @2,52,{>, and 6. Specifically, the parameter
vector @ = (ay,B1,1,@2,062,(,0) follows a multivariate normal distribution with mean ® and
covariance matrix /~'(®), where 17! is the inverse of the observed information matrix obtained as:

and j = (1,2),1=(1,2); j # [, (for example, j = 1 then

1-1

[ 15,0,
Iﬁltfl Iﬁlﬁl
LA Ifnfl Iflﬁfl Iflfl
I (@):—E Idszl ItfzﬂAl Idgf] Idzarz . (74)

Iﬁz dy Iﬁzﬁ 1 Iﬁ} 4 Iﬁz 033 Iﬁzﬁz
Lo, lop Tpg 1ae, lop 1o
RO (VR (TR (¥ U [V S (Y (7]

1(®) is the second derivatives of the natural logarithm of the likelihood function evaluated at © =
(&1,,31, 21, &2,,32, Zz, 0). As a result, for the parameters a1, 581, {1, @2, 82,{> and @ for j = 1,2, 100(1 —y)

% approximate CI are given as: &; + Zy» \/1a4;, Bi+Z,, /Iﬁj[;,» Ci+Zyp /IZJ,&, and 6 + Z,, /I

where Z, ), is the percentile of the standard normal distribution with right tail probability 5.
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7.2. Bayesian estimation

Before discussing how a Bayesian technique could estimate a population parameter, it is crucial
to understand one key difference between frequentest and Bayesian statisticians. The difference is
whether a statistician considers a parameter to be an unknowable constant or a random variable. An
estimator or decision rule used in estimating theory and decision theory that minimises the posterior
expected value of a loss function is referred to as a Bayes estimator, also known as a Bayes action
(i.e., the posterior expected loss). In other words, it maximises the posterior expectation of the utility
function. The following steps are often followed when using the Bayesian technique with a bivariate

model based on the FGM copula for inference:
(1) The joint independent prior distribution is [1(®) = Hf;ll 7j(®;) by selecting the independent prior
distributions 7;(®;); j=1,..., p — 1 for all parameters, where p = length(®).

(2) For the copula parameter 7 ;(6), select the independent prior distribution where —1 < 6 < 1.

(3) By obtaining the likelihood function for the joint statistical model L(x,y|®) that reflects our
perceptions of X and Y under the assumption of ©®.

(4) Do the joint posterior distribution calculation. Applying the Bayes law of conditional probabilities,
we obtain [1(®|x, y) as

11(©) L(x, y|®)

(O)x, y) = .
OV Jy, T1(®) L(x,11©)d0...d40),

(5) For ®;; j=1,..., p, obtain the proportionate posterior distribution.

(6) Use Gibbs sampling or the Metropolis-Hastings (MH) algorithm to numerically analyse Bayesian
estimate using Markov chain Monte Carlo (MCMC).

(7) Pick out loss functions that are symmetric and asymmetric.

To learn more about Bayesian algorithms, consult the citations provided by Suzuki et al. [36]
and Louzada et al. [37]. We employed informative prior as independent gamma distributions in the
parameter vector ®. We used prior distributions that are not informative, such as uniform(ws;, g7);
-1 < 6 < 1, for the copula parameter. The independent joint prior density function of ® for the
BFGMLG family can be stated as follows:

[(0) a,‘lm—l v1V2—1 IV3_1(1’;V4_1 ;Vs—l ;Vs—l _1 e~ @101702B1+4381+4402+G532+G652) (7.5)
q1 — Wy
The estimate and variance-covariance matrix of the MLE approach can be used to find the
appropriate hyper-parameters of the independent joint prior. The estimated hyper-parameters can be
expressed as by equating the mean and variance of the gamma priors.

B |
W) = — A.z;]:l,...,p—l,
3k (6 - L3k, 6]
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130 .
(Ij: 1 3 T 1 3 A_Z’le""’p_l'
& 2k 0 -1 2k, O
where L denotes the quantity of iterations. The calculated hyper-parameter for the copula parameter is
denoted by

The likelihood function of the BFGMLG family yields the joint posterior density function of G,
which is as follows.

H(®|X1,X2) :a”+W1—1 W2+na1—l§n+W3—] .
1 1 : [1[ [1 - GGz ¢ B = log (1 — Glxyi ()] ™

an+a4—1ﬁmt2+u5—l§n+w6—l l—l g(XZi; §2)€_(02+qsﬂ2+q"'{2)
2 2 2 a
it [1 = G )] [B2 = log (1 = G(xai; )]

ﬂ] [e3] _ 1)(2|: ﬁz ]al _ 1)
Bo —log[1 — G(x2;;0»)]

B —log[1 = G(x1;541)]
By using the most common of symmetric loss function, which is a squared error loss function. The
Bayes estimators of ® based on squared error loss function is given by

g(xis gl)e—((h(ll"'qzﬁl*'lh{l)

(7.6)

n

[

i=1

1+9(2

S@ =E(6-0)

o el (7.7)
:f f f(@—@) [1(B|x, y)dO,...dOs.
0 0 -1

It is noteworthy that the integrals provided by Eq (7.7) cannot be computed directly. Because of
this, we apply the MCMC to determine an approximated integral value. An essential subclass of
MCMC approaches are Gibbs sampling and more general Metropolis within Gibbs samplers. The
two most popular MCMC method examples are the MH algorithm and Gibbs sampling. Similar to
acceptance-rejection sampling, the MH method assumes that a candidate value can be produced from
a proposal distribution that is a normal distribution for each iteration of the process. Gibbs sampling
measurements include.

7.3. Highest posterior density

The approach of Chen and Shao [38] was extensively used to construct the HPD intervals of
unknown benefit distribution parameters in highest posterior density (HPD) intervals for Bayesian
estimate. For instance, a 95% HPD interval can be constructed using the lower and upper percentiles
of the MCMC sample results as the two ends, respectively. The following is how Bayes, reliable
intervals of the ® parameters are obtained:
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R [1] [2] [L] pll] [2] [L] 1] [2] [L]
(1) Arrange ©;; j = 1,....5asa; <" <..<q; ", B <B~ <..<B{ <{7<..<¢7, and

ol < 62 < . < 6% where [ = 1,2, and L is the length of MCMC generated.

(2) The 95% symmetric credible intervals of a1, 81, @2, 3, and 6 become (a/lLZSO/ 10000 alLWSO/ '0000),

( ZL250/10000’ 119750/10000), ( L250/10000’ é[LQBO/lOOOO) and (QLZSO/IOOOO, 9L9750/10000).
8. Simulation

For comparing the likelihood and Bayesian estimation methods, MCMC simulation studies were
performed. The results are presented in Table 2 @y = 1.6,8; = 2,b; = 1.8,a, = 19,6, = 2.5,b, =
1.7, Table 3 a; = 05,8, = 1.2,b; = 1.2,a; = 08,8, = 05,b, = 1.3, Table 4 a; = 3.2,5, =
3,b1 = 0.6,0,’2 = 3.3,,32 = 2.5,b2 = 05, and Table 5 a; = 2,,81 = 0.3,b1 = 1.8,&’2 = 1.3,,82 =
0.5,b, = 1.9. Based on the bias, mean squared errors (MSE), and length of confidence intervals
(LCI), numerical assessments were carried out. First, 5000 samples of the BFGM LGE model were
created. For computational time of Bayesian estimation, we simulated 12000 MCMC samples and
ignored the first 2000 iterations as burn-in. It should be noted that all estimating methods work better
when n = +oo, as shown by Tables 2-5. The best guess is a value with a lower range of numerical
assessments. It should be emphasised that the MLE and Bayesian approaches are generally suggested
for statistical modelling and applications; this assessment, as shown in Tables 2-5, is mostly based
on a thorough simulation study, and the simulation, as is well known, comes before the application
on real data. Furthermore, despite the efficiency of likelihood method, and the Bayesian approach
remains the most effective and reliable of likelihood method, but all likelihood methods are effective.
Although using simulation to compare various estimation methods is not prohibited, in this section
we use simulation studies to evaluate them rather than compare them. However, since real data are
frequently used to compare various estimation methods, we decided to present four applications for
this particular use.

The following conclusions can be drawn from Table 2-5:

e The proposed estimates of the parameters for the BEFEGM LGE distribution performed well, which
is the key general observation.

e The results of Tables show that the BEFEGM LGE distribution is stable since the range of bias, and
MSE for seven parameters of the BEFEGM LGE distribution is fairly modest.

e As the sample size increases, we occasionally observe a decrease in the bias, MSE, and LCI for
all estimations.

e This indicates that for high sample sizes, several estimating methodologies yield correct bias and
MSE findings.

e Due to the gamma information, the Bayes estimates of the BEFEGM LGE distribution’s parameters
behaved more predictably than the other estimates. Regarding HPD credible intervals, the same
statement might be made.

e The Bayesian estimation approach is the most accurate way to estimate the BFGM LGE
distribution parameter.

e When increasing the value of the copula parameter 6, the estimated MSE will become as low
as possible, knowing that the maximum correlation for the data based on FGM copula is from
—0.3333 to 0.3333.
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Table 2. MLE and Bayesian for a; = 1.6,8; =2,b; = 1.8, = 19,8, =2.5,b, = 1.7.

0.5 -0.5
MLE Bayesian MLE Bayesian

n Bias MSE | LACI Bias MSE | LCCI Bias MSE | LACI Bias MSE | LCCI
a; | 0.6642 | 2.5631 | 5.7131 | 0.0618 | 0.1894 | 1.6150 | 0.6374 | 2.5308 | 5.7165 | 0.0658 | 0.2322 | 1.5180

B | 0.0914 | 0.2767 | 2.0318 | -0.0668 | 0.2347 | 2.0232 | 0.0798 | 0.2744 | 2.0303 | -0.0543 | 0.2364 | 2.0032

by | -0.1782 | 0.4246 | 2.4581 | -0.0139 | 0.3391 | 2.1761 | -0.1569 | 0.4143 | 2.4481 | -0.0162 | 0.3239 | 2.1852

40 | @, | 0.8666 | 3.7683 | 6.8125 | 0.0237 | 0.2075 | 1.6963 | 0.7872 | 3.2469 | 6.3570 | 0.0861 | 0.2667 | 1.7660
B2 | 0.0405 | 0.2302 | 1.8750 | -0.0405 | 0.2141 | 1.7384 | 0.0391 | 0.2258 | 1.8573 | -0.0276 | 0.2046 | 2.0520

by | -0.1679 | 0.5383 | 5.7131 | 0.0200 | 0.2877 | 1.6150 | -0.1547 | 0.5114 | 5.7165 | -0.0284 | 0.2557 | 1.5180

6 | 0.0313 | 0.5964 | 2.0318 | -0.0799 | 0.1861 | 2.2316 | -0.0100 | 0.4295 | 2.0303 | 0.0665 | 0.1740 | 2.3239

a; | 0.1752 | 0.3612 | 2.2548 | 0.0064 | 0.0491 | 0.8035 | 0.2046 | 0.4470 | 2.4965 | 0.0175 | 0.0422 | 0.7744

Bi | 0.0343 | 0.1065 | 1.2729 | -0.0330 | 0.1010 | 1.2207 | 0.0429 | 0.1129 | 1.3070 | -0.0228 | 0.1027 | 1.2420

by | -0.0625 | 0.1490 | 1.4936 | -0.0117 | 0.0895 | 1.1471 | -0.0727 | 0.1585 | 1.5350 | -0.0141 | 0.0928 | 1.2017

100 | o, | 0.3277 | 0.9488 | 3.5976 | 0.0017 | 0.0577 | 0.9101 | 0.3041 | 0.8366 | 3.3831 | -0.0019 | 0.0540 | 0.8953
B> | 0.0303 | 0.0953 | 1.2046 | -0.0120 | 0.0911 | 1.1253 | 0.0182 | 0.1039 | 1.2623 | -0.0421 | 0.0911 | 1.2087

by | -0.0893 | 0.2283 | 2.2548 | -0.0030 | 0.0807 | 0.8035 | -0.0749 | 0.2409 | 2.4965 | 0.0035 | 0.0903 | 0.7744

6 | 0.0136 | 0.0893 | 1.2729 | -0.0142 | 0.0592 | 1.2207 | 0.0209 | 0.0877 | 1.3070 | 0.0201 | 0.0613 | 1.2420

a; | 0.1062 | 0.2098 | 1.7477 | 0.0047 | 0.0162 | 0.4926 | 0.1267 | 0.2186 | 1.7653 | -0.0016 | 0.0155 | 0.4721

B | 0.0150 | 0.0816 | 1.1188 | -0.0031 | 0.0287 | 0.6601 | 0.0316 | 0.0794 | 1.0979 | -0.0163 | 0.0296 | 0.6836

by | -0.0331 | 0.1073 | 1.2783 | -0.0069 | 0.0285 | 0.6710 | -0.0511 | 0.1078 | 1.2720 | 0.0023 | 0.0281 | 0.6623

150 | @, | 0.1991 | 0.4197 | 2.4178 | -0.0074 | 0.0186 | 0.5191 | 0.2074 | 0.5468 | 2.7837 | 0.0070 | 0.0182 | 0.5398
B2 | 0.0173 | 0.0703 | 1.0373 | -0.0057 | 0.0298 | 0.6699 | 0.0123 | 0.0731 | 1.0596 | 0.0010 | 0.0304 | 0.6850

by | -0.0581 | 0.1631 | 1.7477 | 0.0102 | 0.0256 | 0.4926 | -0.0500 | 0.1709 | 1.7653 | -0.0036 | 0.0248 | 0.4721

6 | -0.0045 | 0.0574 | 1.1188 | -0.0051 | 0.0252 | 0.6601 | 0.0259 | 0.0571 | 1.0979 | 0.0112 | 0.0244 | 0.6836
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Table 3. MLE and Bayesian for oy = 0.5,8; = 1.2,b; = 1.2,a, = 0.8,8, = 0.5,b, = 1.3.

0.5 -0.5

MLE Bayesian MLE Bayesian
n Bias MSE | LACI Bias MSE | LCCI Bias MSE | LACI Bias MSE | LCCI
a; | 0.0493 | 0.0263 | 0.6064 | 0.0329 | 0.0110 | 0.3321 | 0.0529 | 0.0291 | 0.6363 | 0.0419 | 0.0202 | 0.3301
B | 0.0482 | 0.0897 | 1.1592 | 0.0222 | 0.0824 | 1.0749 | 0.0350 | 0.0879 | 1.1543 | -0.0010 | 0.0724 | 1.0832
by | -0.0743 | 0.0965 | 1.1827 | -0.0207 | 0.0823 | 1.0073 | -0.0613 | 0.0926 | 1.1688 | -0.0414 | 0.0825 | 1.0784
40 | @, | 0.1523 | 0.1993 | 1.6459 | 0.0934 | 0.0568 | 0.7018 | 0.1653 | 0.2367 | 1.7946 | 0.0989 | 0.0505 | 0.6934
B2 | 0.1584 | 0.1107 | 1.1472 | 0.1222 | 0.1026 | 1.0164 | 0.0840 | 0.0865 | 1.1051 | 0.0763 | 0.0794 | 1.0563
by | -0.0709 | 0.0284 | 0.6064 | -0.0862 | 0.0281 | 0.3321 | -0.0372 | 0.0233 | 0.6363 | -0.0130 | 0.0231 | 0.3301
6 | -0.1969 | 0.3862 | 1.1592 | -0.1401 | 0.1784 | 1.7491 | 0.1981 | 0.3824 | 1.1543 | 0.1576 | 0.1911 | 1.0083
a; | 0.0189 | 0.0072 | 0.3240 | 0.0113 | 0.0028 | 0.1950 | 0.0188 | 0.0075 | 0.3312 | 0.0105 | 0.0026 | 0.1875
Bi1 | 0.0245 | 0.0358 | 0.7362 | -0.0085 | 0.0282 | 0.6092 | 0.0224 | 0.0408 | 0.7876 | -0.0204 | 0.0371 | 0.6949
by | -0.0361 | 0.0372 | 0.7428 | -0.0271 | 0.0280 | 0.6116 | -0.0356 | 0.0418 | 0.7898 | -0.0340 | 0.0377 | 0.7030
100 | o, | 0.0433 | 0.0308 | 0.6674 | 0.0229 | 0.0117 | 0.3956 | 0.0747 | 0.0395 | 0.7224 | 0.0485 | 0.0161 | 0.4309
B> | 0.0837 | 0.0339 | 0.6429 | 0.0640 | 0.0318 | 0.6687 | 0.0249 | 0.0281 | 0.6504 | 0.0037 | 0.0232 | 0.6388
by | -0.0312 | 0.0062 | 0.3240 | -0.0385 | 0.0051 | 0.1950 | -0.0062 | 0.0050 | 0.3312 | -0.0329 | 0.0042 | 0.1875
6 | -0.2354 | 0.1483 | 0.7362 | -0.1084 | 0.0726 | 1.0917 | 0.2461 | 0.1543 | 0.7876 | 0.0986 | 0.0694 | 1.0949
a; | 0.0105 | 0.0040 | 0.2455 | 0.0050 | 0.0014 | 0.1379 | 0.0101 | 0.0041 | 0.2480 | 0.0060 | 0.0015 | 0.1425
Bi | 0.0120 | 0.0255 | 0.6241 | -0.0005 | 0.0247 | 0.6095 | 0.0134 | 0.0256 | 0.6257 | 0.0004 | 0.0246 | 0.6300
by | -0.0198 | 0.0265 | 0.6342 | -0.0049 | 0.0247 | 0.6333 | -0.0206 | 0.0263 | 0.6306 | -0.0136 | 0.0257 | 0.6443
150 | @, | 0.0301 | 0.0184 | 0.5181 | -0.0068 | 0.0059 | 0.2884 | 0.0463 | 0.0206 | 0.5322 | 0.0192 | 0.0071 | 0.3130
B2 | 0.0799 | 0.0243 | 0.5249 | 0.0343 | 0.0134 | 0.4284 | 0.0024 | 0.0166 | 0.5048 | -0.0146 | 0.0122 | 0.4182
by | -0.0298 | 0.0042 | 0.2455 | -0.0157 | 0.0040 | 0.1379 | 0.0032 | 0.0027 | 0.2480 | 0.0008 | 0.0026 | 0.1425
6 | -0.2273 | 0.1132 | 0.6241 | -0.0402 | 0.0258 | 0.6095 | 0.2368 | 0.1207 | 0.6257 | 0.0465 | 0.0283 | 0.6300
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Table 4. MLE and Batesian for @y = 3.2,8, = 3,b; = 0.6,a, = 3.3,8, =2.5,b, = 0.5.

MLE Bayesian MLE Bayesian

0 n Bias MSE | LACI | Bias MSE | LCCI | 6 Bias MSE | LACI | Bias MSE | LCCI
a; | 0.6833 | 3.4841 | 6.8204 | -0.1041 | 0.4623 | 2.2573 0.7402 | 3.2912 | 6.4959 | -0.0106 | 0.5286 | 2.4698

Bi | -0.0263 | 0.0143 | 0.4574 | -0.0125 | 0.0139 | 0.3885 -0.0180 | 0.0136 | 0.4523 | 0.0105 | 0.0134 | 0.4078

by | 0.0679 | 0.1654 | 1.5745 | 0.0973 | 0.0816 | 0.9472 0.0296 | 0.1481 | 1.5047 | 0.0858 | 0.0765 | 0.9481

40 | @, | 0.6594 | 2.9687 | 6.2505 | -0.0324 | 0.5044 | 2.6858 0.6772 | 3.0802 | 6.3501 | -0.0728 | 0.4937 | 2.6797
B> | -0.0145 | 0.0095 | 0.3790 | 0.0162 | 0.0041 | 0.2764 -0.0173 | 0.0102 | 0.3896 | 0.0173 | 0.0094 | 0.4057

b, | 0.0320 | 0.1077 | 6.8204 | 0.0861 | 0.0779 | 2.2573 0.0379 | 0.1087 | 6.4959 | 0.0844 | 0.0642 | 2.4698

0 |-0.0396 | 0.3552 | 0.4574 | 0.0185 | 0.1822 | 2.3885 0.0746 | 0.3478 | 0.4523 | -0.0481 | 0.1809 | 2.4780

a; | 0.3429 | 1.4142 | 44712 | -0.0047 | 0.1052 | 1.2379 0.3705 | 1.5705 | 4.6953 | -0.0391 | 0.1573 | 1.2966

Bi | -0.0091 | 0.0035 | 0.2300 | -0.0082 | 0.0021 | 0.2143 -0.0104 | 0.0049 | 0.2702 | -0.0068 | 0.0031 | 0.2385

by | 0.0229 | 0.0635 | 0.9853 | 0.0272 | 0.0187 | 0.5007 0.0239 | 0.0738 | 1.0616 | 0.0329 | 0.0195 | 0.5208
-0.15| 100 | a, | 0.4194 | 1.6384 | 4.7485 | 0.0186 | 0.1558 | 1.2810 | 0.5 | 0.4265 | 1.5347 | 4.5616 | -0.0038 | 0.1567 | 1.3404
B> | -0.0066 | 0.0034 | 0.2288 | -0.0042 | 0.0029 | 0.2130 -0.0052 | 0.0032 | 0.2196 | 0.0057 | 0.0028 | 0.2040

b, | 0.0090 | 0.0516 | 4.4712 | 0.0212 | 0.0142 | 1.2379 0.0072 | 0.0488 | 4.6953 | 0.0279 | 0.0148 | 1.2966

6 | 0.0010 | 0.0887 | 0.2300 | 0.0357 | 0.0676 | 1.4257 0.0148 | 0.0913 | 0.2702 | -0.0191 | 0.0610 | 1.3085

a; | 0.3785 | 1.1527 | 3.9450 | 0.0040 | 0.0355 | 0.6047 0.3417 | 1.1933 | 4.0693 | -0.0020 | 0.0408 | 0.6865

Bi | -0.0025 | 0.0026 | 0.2004 | -0.0028 | 0.0020 | 0.1661 -0.0045 | 0.0028 | 0.2079 | -0.0038 | 0.0026 | 0.1969

by | -0.0065 | 0.0489 | 0.8676 | 0.0089 | 0.0067 | 0.3038 0.0024 | 0.0516 | 0.8907 | 0.0088 | 0.0071 | 0.3201

150 | @, | 0.2558 | 1.0589 | 3.9138 | -0.0028 | 0.0335 | 0.7266 0.2570 | 1.0715 | 3.9326 | -0.0134 | 0.0343 | 0.6677
B> | -0.0040 | 0.0016 | 0.1576 | 0.0049 | 0.0013 | 0.1466 -0.0062 | 0.0020 | 0.1748 | 0.0060 | 0.0017 | 0.1668

b, | 0.0116 | 0.0323 | 3.9450 | 0.0104 | 0.0053 | 0.6047 0.0183 | 0.0361 | 4.0693 | 0.0153 | 0.0054 | 0.6865

6 | 0.0290 | 0.0614 | 0.2004 | 0.0185 | 0.0245 | 0.6605 0.0081 | 0.0577 | 0.2079 | -0.0067 | 0.0250 | 0.6856

a; | 0.7308 | 3.2146 | 6.4213 | -0.0362 | 0.5308 | 2.4565 0.6092 | 2.9147 | 6.2624 | -0.0316 | 0.4271 | 2.7672

B | -0.0242 | 0.0184 | 0.5230 | -0.0352 | 0.0144 | 0.5066 -0.0320 | 0.0237 | 0.5915 | -0.0143 | 0.0214 | 0.4288

by | 0.0461 | 0.1705 | 1.6093 | 0.0855 | 0.0697 | 0.9645 0.0669 | 0.1828 | 1.6581 | 0.0629 | 0.0564 | 0.8594

40 | @, | 0.5884 | 2.8634 | 6.2225 | -0.0365 | 0.5645 | 2.6689 0.5819 | 2.9359 | 6.3281 | -0.1317 | 0.5600 | 2.8388
B> | -0.0206 | 0.0140 | 0.4568 | -0.0028 | 0.0139 | 0.3686 -0.0286 | 0.0169 | 0.4979 | -0.0672 | 0.0144 | 0.4647

by | 0.0455 | 0.1214 | 6.4213 | 0.0722 | 0.0632 | 2.4565 0.0633 | 0.1395 | 6.2624 | 0.0695 | 0.0581 | 2.7672

0 | -0.0661 | 0.5414 | 0.5230 | 0.0673 | 0.1729 | 2.5661 0.2054 | 0.5363 | 0.5915 | -0.0635 | 0.2254 | 2.4288

a; | 0.4469 | 1.6378 | 4.7032 | -0.0081 | 0.1372 | 1.3354 0.3991 | 1.5133 | 4.5691 | -0.0081 | 0.1738 | 1.3429

B1 | -0.0068 | 0.0042 | 0.2533 | -0.0265 | 0.0041 | 0.2496 -0.0094 | 0.0047 | 0.2657 | -0.0209 | 0.0031 | 0.2478

by | 0.0071 | 0.0700 | 1.0375 | 0.0204 | 0.0165 | 0.4827 0.0185 | 0.0730 | 1.0587 | 0.0280 | 0.0199 | 0.5014
-0.5 | 100 | @, | 0.4426 | 1.6895 | 4.7932 | -0.0258 | 0.1696 | 1.3443 | 0.9 | 0.3827 | 1.2969 | 4.2117 | -0.0027 | 0.1207 | 1.2901
B> | -0.0054 | 0.0029 | 0.2091 | -0.0166 | 0.0021 | 0.2305 -0.0043 | 0.0025 | 0.1973 | 0.0181 | 0.0021 | 0.1824

by | 0.0086 | 0.0481 | 4.7032 | 0.0288 | 0.0148 | 1.3354 0.0085 | 0.0420 | 4.5691 | 0.0324 | 0.0180 | 1.3429

6 | 0.0117 | 0.0828 | 0.2533 | 0.0235 | 0.0622 | 1.2958 0.0418 | 0.0981 | 0.2657 | -0.0397 | 0.0573 | 1.2780

a; | 0.3594 | 1.1807 | 4.0216 | 0.0002 | 0.0332 | 0.6673 0.2830 | 1.0412 | 3.8494 | -0.0195 | 0.0524 | 0.7180

B | -0.0034 | 0.0026 | 0.1989 | 0.0019 | 0.0031 | 0.1681 -0.0055 | 0.0026 | 0.1996 | -0.0015 | 0.0025 | 0.1582

by | -0.0012 | 0.0487 | 0.8654 | 0.0109 | 0.0063 | 0.2974 0.0100 | 0.0473 | 0.8532 | 0.0104 | 0.0058 | 0.2990

150 | @, | 0.2935 | 1.0624 | 3.8752 | 0.0031 | 0.0372 | 0.6906 0.2357 | 0.9354 | 3.6830 | 0.0034 | 0.0343 | 0.7426
B> | -0.0038 | 0.0021 | 0.1782 | -0.0153 | 0.0021 | 0.6791 -0.0053 | 0.0021 | 0.1774 | -0.0013 | 0.0020 | 0.1671

b, | 0.0066 | 0.0339 | 4.0216 | 0.0069 | 0.0052 | 0.6673 0.0136 | 0.0341 | 3.8494 | 0.0059 | 0.0048 | 0.7180

6 | -0.0031 | 0.0576 | 0.1989 | 0.0052 | 0.0225 | 0.6813 -0.0068 | 0.0589 | 0.1996 | -0.0228 | 0.0215 | 0.5821
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Table 5. MLE and Bayesian for a; = 2,8, =0.3,b; = 1.8,a, = 1.3,8, =0.5,b, = 1.9.

MLE Bayesian MLE Bayesian
0 n Bias MSE | LACI | Bias MSE | LCCI | 6 Bias MSE | LACI | Bias MSE | LCCI
a; | 1.0143 | 49522 | 7.7775 | 0.0841 | 0.2636 | 1.8706 0.9613 | 4.5273 | 7.4447 | 0.0663 | 0.2608 | 1.8408
Bi | 0.1733 | 0.1369 | 1.2833 | 0.0549 | 0.0338 | 0.5966 0.1669 | 0.1333 | 1.2733 | 0.0597 | 0.0382 | 0.6486
by | -0.0526 | 0.0170 | 0.4681 | 0.0313 | 0.0137 | 0.3180 -0.0495 | 0.0160 | 0.4565 | 0.0333 | 0.0131 | 0.4332
40 | @, | 0.4559 | 1.1468 | 3.8048 | 0.1357 | 0.5264 | 1.7408 0.4318 | 1.2689 | 4.0805 | 0.1242 | 0.3579 | 1.4666
B> | 0.1879 | 0.1805 | 1.4959 | 0.0913 | 0.1122 | 1.2078 0.1858 | 0.1922 | 1.5575 | 0.0962 | 0.1017 | 1.1277
b, | -0.0731 | 0.0367 | 7.7775 | 0.0067 | 0.0316 | 1.8706 -0.0764 | 0.0421 | 7.4447 | -0.0400 | 0.0360 | 1.8408
6 | -0.0316 | 0.2794 | 1.2833 | -0.0422 | 0.1900 | 0.5966 0.0405 | 0.5765 | 1.2733 | -0.0667 | 0.1829 | 0.6486
a; | 0.3365 | 0.8459 | 3.3610 | -0.0128 | 0.0851 | 1.0826 0.3609 | 0.9159 | 3.4763 | 0.0153 | 0.0836 | 1.1241
B | 0.0657 | 0.0327 | 0.6615 | 0.0163 | 0.0096 | 0.3313 0.0689 | 0.0333 | 0.6622 | 0.0180 | 0.0095 | 0.3557
by | -0.0150 | 0.0021 | 0.1701 | 0.0150 | 0.0011 | 0.1305 -0.0158 | 0.0022 | 0.1732 | -0.0057 | 0.0020 | 0.1329
-0.15 | 100 | @, | 0.1245 | 0.1899 | 1.6397 | 0.0264 | 0.0488 | 0.8204 | 0.5 | 0.1391 | 0.1948 | 1.6426 | 0.0262 | 0.0475 | 0.8099
B> | 0.0586 | 0.0481 | 0.8298 | 0.0302 | 0.0265 | 0.6300 0.0684 | 0.0501 | 0.8354 | 0.0232 | 0.0234 | 0.5434
b, | -0.0177 | 0.0060 | 3.3610 | 0.0158 | 0.0051 | 1.0826 -0.0206 | 0.0057 | 3.4763 | -0.0248 | 0.0041 | 1.1241
6 | 0.0119 | 0.0961 | 0.6615 | 0.0169 | 0.0605 | 0.3313 -0.0042 | 0.0857 | 0.6622 | -0.0291 | 0.0600 | 0.3557
a; | 0.2656 | 0.5411 | 2.6936 | 0.0052 | 0.0262 | 0.6156 0.1982 | 0.5555 | 2.8178 | -0.0020 | 0.0270 | 0.6374
Bi | 0.0529 | 0.0208 | 0.5273 | 0.0094 | 0.0031 | 0.2180 0.0375 | 0.0201 | 0.5360 | 0.0073 | 0.0032 | 0.2168
by | -0.0107 | 0.0011 | 0.1241 | 0.0028 | 0.0010 | 0.1169 -0.0083 | 0.0012 | 0.1335 | -0.0025 | 0.0012 | 0.1162
150 | @, | 0.0888 | 0.1088 | 1.2472 | -0.0061 | 0.0123 | 0.4072 0.0693 | 0.0765 | 1.0503 | 0.0021 | 0.0170 | 0.4846
B> | 0.0457 | 0.0311 | 0.6693 | 0.0039 | 0.0086 | 0.3643 0.0390 | 0.0237 | 0.5838 | 0.0065 | 0.0095 | 0.3752
b, | -0.0132 | 0.0031 | 2.6936 | 0.0065 | 0.0030 | 0.6156 -0.0106 | 0.0021 | 2.8178 | -0.0142 | 0.0020 | 0.6374
6 | 0.0170 | 0.0590 | 0.5273 | 0.0015 | 0.0265 | 0.2180 0.0004 | 0.0614 | 0.5360 | -0.0040 | 0.0243 | 0.2168
a; | 0.8840 | 4.2754 | 7.3311 | 0.0703 | 0.2511 | 1.8356 0.7771 | 3.8798 | 7.1069 | 0.0690 | 0.2436 | 1.7781
Bi | 0.1515 | 0.1250 | 1.2532 | 0.0522 | 0.0338 | 0.6200 0.1412 | 0.1239 | 1.2660 | 0.0673 | 0.0327 | 0.5908
by | -0.0451 | 0.0146 | 0.4397 | 0.0297 | 0.0136 | 2.2754 -0.0437 | 0.0158 | 0.4628 | 0.0419 | 0.0103 | 0.4219
40 | @, | 0.4555 | 1.4084 | 42979 | 0.1482 | 0.4878 | 1.4970 0.4095 | 1.0311 | 3.6485 | 0.0993 | 0.3547 | 1.5127
B> | 0.1788 | 0.1880 | 1.5491 | 0.0781 | 0.0911 | 0.9930 0.1729 | 0.1801 | 1.5220 | 0.0793 | 0.0923 | 1.0526
b, | -0.0751 | 0.0411 | 7.3311 | -0.0533 | 0.0338 | 1.8356 -0.0704 | 0.0354 | 7.1069 | -0.0336 | 0.0307 | 1.7781
6 | 0.0050 | 0.3328 | 1.2532 | 0.0893 | 0.1663 | 0.6200 0.1092 | 0.6525 | 1.2660 | -0.1034 | 0.2147 | 0.5908
a; | 0.3469 | 0.9713 | 3.6179 | 0.0006 | 0.0860 | 1.1228 0.2859 | 0.9612 | 3.6823 | 0.0299 | 0.0703 | 0.9825
Bi | 0.0660 | 0.0344 | 0.6797 | 0.0145 | 0.0084 | 0.3432 0.0594 | 0.0358 | 0.7048 | 0.0258 | 0.0085 | 0.3382
b, | -0.0156 | 0.0024 | 0.1839 | 0.0010 | 0.0021 | 0.1728 -0.0148 | 0.0027 | 0.1942 | 0.0024 | 0.0021 | 0.1130
-0.5 | 100 | @, | 0.1270 | 0.1732 | 1.5542 | 0.0158 | 0.0424 | 0.7388 | 0.9 | 0.1543 | 0.2115 | 1.7012 | 0.0429 | 0.0447 | 0.7300
B> | 0.0642 | 0.0471 | 0.8134 | 0.0195 | 0.0251 | 0.5907 0.0774 | 0.0504 | 0.8271 | 0.0425 | 0.0323 | 0.6208
b, | -0.0186 | 0.0050 | 3.6179 | -0.0178 | 0.0041 | 1.1228 -0.0250 | 0.0066 | 3.6823 | -0.0315 | 0.0051 | 0.9825
6 | 0.0414 | 0.0874 | 0.6797 | 0.0273 | 0.0597 | 0.3432 0.0002 | 0.0900 | 0.7048 | -0.0616 | 0.0618 | 0.3382
a; | 0.1793 | 0.4412 | 2.5085 | 0.0057 | 0.0257 | 0.6040 0.2291 | 0.5390 | 2.7390 | 0.0075 | 0.0279 | 0.6210
B1 | 0.0360 | 0.0170 | 0.4923 | 0.0089 | 0.0030 | 0.2054 0.0425 | 0.0195 | 0.5218 | 0.0113 | 0.0033 | 0.2037
by | -0.0073 | 0.0009 | 0.1118 | -0.0160 | 0.0009 | 0.6565 -0.0089 | 0.0010 | 0.1218 | 0.0046 | 0.0009 | 0.1070
150 | e, | 0.0638 | 0.0831 | 1.1025 | 0.0001 | 0.0173 | 0.5019 0.0760 | 0.0951 | 1.1736 | -0.0007 | 0.0148 | 0.4239
B2 | 0.0329 | 0.0250 | 0.6060 | 0.0049 | 0.0094 | 0.3650 0.0355 | 0.0275 | 0.6357 | 0.0053 | 0.0094 | 0.3515
b, | -0.0095 | 0.0024 | 2.5085 | -0.0019 | 0.0022 | 0.6040 -0.0107 | 0.0027 | 2.7390 | 0.0005 | 0.0027 | 0.6210
6 | 0.0362 | 0.0594 | 0.4923 | 0.0128 | 0.0252 | 0.2054 0.0039 | 0.0530 | 0.5218 | -0.0222 | 0.0229 | 0.2037

9. Application

To demonstrate the value of the suggested L-G family models, four applications from the
environmental, medical and lifetime contexts are taken into consideration in this section. Table 6
discussed correlation dependence measure to confirm the data has correlation range from ‘71 to %
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Table 6. Correlation dependence measure.

Environmental Diabetic nephropathy kidney patients Computer series system
Oe -0.1341 0.0418 0.0511 -0.0306

9.1. Environmental data

In this subsection, we take a look at a real-world bivariate data set on (X, Y) that includes
data from 51 of the largest cities in the USA, with X standing for average precipitation (in
millimetres) and Y standing for average maximum temperature (in degrees Celsius). The data created
by the National Climatic Data Centre (NCDC) of the USA and made available on the website
https://www.ncdc.noaa.gov have been replicated below. This is the bivariate data set in Table 7.

For the data description, we obtained Figure 4 to check outliers of these environmental data and
described differentiates different categories as a scatter plot (strip), respectively. While Figure 5
discussed violin plot of these data which has been discussed to show peaks in the environmental data
and visualize the distribution of numerical data. By Figures 4 and 5, we note that the data has right
skewed shapes and hasn’t symmetric ships.

Table 8 lists the estimates’ results together with certain goodness-of-fit metrics, and Figures 6 and 7
show the estimated cdf with empirical cdf, pdf with histogram, and PP-plots for each sample and
marginal distribution, respectively. We observe that these environmental data fit these LGW and LGLL
distributions.
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Figure 4. Box-plot and strip plot for environmental data.
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Figure 5. Violin plot for environmental data.
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Table 7. Environmental data with average values.
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Figure 6. CDF and PDF estimated LG distributions: Environmental data.
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Table 8. MLE of marginal models for environmental data.

Etimates SE AIC CAIC BIC HQIC CVM AD KS PVKS
a | 38.9815 | 38.6657
B | 19.8679 | 21.6752 | 551.8213 | 557.6168 | 552.3319 | 554.0359 | 0.1277 | 0.7508 | 0.3088 | 0.0001
b | 0.0067 0.0044
LGE
a | 84.3428 | 138.8010
B | 23.4514 | 69.9253 | 347.1617 | 352.9572 | 347.6723 | 349.3763 | 0.0656 | 0.4347 | 0.1829 | 0.0658
b | 0.0269 0.0719
4.8013 5.6889
5.5102 10.2114
506.4401 | 514.1674 | 507.3096 | 509.3929 | 0.0678 | 0.4173 | 0.0721 | 0.9534
b | 2.8242 0.5020
a | 0.0129 0.0075
LGW
77.5320 | 258.1893
0.5124 1.7079
332.2403 | 339.9676 | 333.1099 | 335.1932 | 0.0646 | 0.4144 | 0.0889 | 0.8151
b | 1.6684 0.1847
a | 0.0043 0.0012
a | 107.8997 | 165.2554
B | 24.8648 | 133.6627 | 689.1122 | 694.9077 | 689.6229 | 691.3269 | 0.3204 | 1.8797 | 0.4932 | 0.0000
b | 0.0543 0.3039
LGP
99.4600 | 145.5079
13.0680 | 77.2472 | 420.8929 | 426.6884 | 421.4036 | 423.1076 | 0.1461 | 0.9875 | 0.3806 | 0.0000
b | 0.0584 0.3380
a | 75.6384 3.1556
B | 13.2360 6.1562
506.4294 | 514.1567 | 507.2990 | 509.3822 | 0.0673 | 0.4159 | 0.0714 | 0.9574
b | 152.8863 | 39.1425
a| 2.7976 0.5018
LGLL
a | 63.7445 11.6990
1.4164 5.9881
332.4175 | 340.1448 | 333.2871 | 335.3704 | 0.0653 | 0.4198 | 0.0910 | 0.7922
b | 107.8428 | 16.7536
a 1.6986 0.1939
AIMS Mathematics Volume 8, Issue 8, 17539-17584.
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Figure 7. PP plot estimated LG distributions: Environmental data.

Tables 9 and 10 show the MLE and Bayesian estimation method, respectively for the parameters
of L-G family models for two case only because the LGE and LGP distribution are not fitting for this
data see Table 8. Table 9 discussed comparison of bivariate models based on bivariate L-G family
model by using AIC, CIAC, BIC, HQIC, CVM, and AD measures. By these results, we conclude the
BFGM LGW distribution is best models comparison another bivariate distribution as BFGM LGLL
and bivariate FGM generalized half-logistic (BFGMGHL) by Hassan and Chesneau [39], according to
AIC, CIAC, BIC, HQIC, CVM, and AD. When comparing Bayesian estimates and MLE, we note that
Bayesian is better than MLE according to the value of SE.
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Table 9. MLE of bivariate models for environmental data.

BFGM LGW BFGM LGLL BFGMGHL
Etimates | SE Etimates | SE Etimates | SE
a; 5.3868 | 8.1572 46.5772 | 951.1889 | 37.7384 | 16.0986
B 5.5366 | 12.0311 8.3576 | 194.8530 | 0.6771 | 0.3674
by 2.7920 | 0.5547 149.7490 | 176.4606
a 0.0123 | 0.0074 2.8181 | 0.4991
ay 88.1141 | 307.7538 | 106.1346 | 401.4176 | 5.6825 | 4.3687
o 0.5653 | 1.9718 1.1013 | 6.1811 0.7623 | 0.7176
by 1.6910 | 0.1885 171.9876 | 418.5592
a, 0.0043 | 0.0012 1.6993 | 0.1928
0 -0.2846 | 0.4216 -0.2839 | 0.4207 0.2744 | 1.1290
AIC 840.2217 840.2770 872.5342
CAIC 844.6120 844.6672 873.8675
BIC 857.6082 857.6634 882.1933
HQIC 846.8656 846.9209 876.2253
CVM 7.6899 7.6927 7.7377
AD 46.1279 46.1322 46.8422

Table 10. Bayesian estimation of parameter for bivariate models: Environmental data.

aj Bi b a o2 Ji7) by ap 0
mean 10.8227 5.2411 2.6673 0.0102 147.4914 0.9004 1.7212 0.0045 -0.6354
BFGM LGW
sd 8.0436 3.2584 0.4678 0.0050 74.7410 0.4937 0.1800 0.0011 0.1927
mean 99.3319 11.3700 205.0953 2.6880 168.2901 2.2241 155.1508 1.6927 0.1995
BFGM LGLL
sd 70.7136  7.6248 56.8707 0.3891 1559503 1.3720 86.1843 0.1821 0.3673

9.2. Diabetic nephropathy

We have taken into account both serum creatinine (SrCr) and the length of diabetes in this
subsection. Since the patients’ diabetes was already known, we are calculating the complications that
may result from it. Based on SrCr levels, the data has been divided into two groups: Those with diabetic
nephropathy (DN) (SrCr > 1.4mg/dl) and those without diabetic nephropathy (SrCr < 1.4mg/dl). SrCr
reports were provided for each patient from the 200 patients whose reports were available. From
January 2012 to August 2013, the pathology reports of these patients were gathered from the path lab
of Dr. Lal. This data, which includes the mean duration of diabetes for 132 individuals with types 2
diabetic nephropathy over various time intervals, was discussed by Grover et al. [40]. These data are:
Duration of diabetes: 7.4, 9, 10, 11, 12, 13, 13.75, 14.92, 15.8286, 16.9333, 18, 19, 20, 21, 22, 23, 24,
26, 26.6.

Serum Creatinine: 1.925,1.5,2,1.6,1.7, 1.7533, 1.54, 1.694, 1.8843, 1.8433, 1.832, 1.59, 1.7833, 1.2,
1.792, 1.5, 1.5033, 2, 2.14.

For the diabetic nephropathy data description, we obtained Figure 8 to check outliers of these

diabetic nephropathy data and described differentiates different categories as a scatter plot (strip),

AIMS Mathematics Volume 8, Issue 8, 17539-17584.
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respectively. While Figure 9 discussed violin plot of these data which has been discussed to show
peaks in the diabetic nephropathy data and visualize the distribution of numerical data. By Figures 8

and 9, we note that the data has right skewed shapes and hasn’t symmetric ships.
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Figure 8. Box-plot and strip plot for diabetic nephropathy data.
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Figure 9. Violin plot for diabetic nephropathy data.
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Table 11 lists the estimates’ results together with certain goodness-of-fit metrics, and Figures 10
and 11 show the estimated cdf with empirical cdf, pdf with histogram, and PP-plots for each sample
and marginal distribution, respectively. We observe that these diabetic nephropathy data fit these LGW

and LGLL distributions.
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Figure 11. PP plot estimated LG distributions: diabetic nephropathy data.
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Table 11. MLE of marginal models for diabetic nephropathy data.

Etimates SE AIC CAIC BIC HQIC CVM AD KS PVKS
83.4811 | 17.9433
25.6754 | 19.5167 | 151.9146 | 154.7479 | 153.5146 | 152.3941 | 0.0277 | 0.2028 | 0.3577 | 0.0111
0.0181 0.0534
LGE
59.7456 | 21.5655
9.0446 4.2133 65.0366 | 67.8700 | 66.6366 | 65.5161 | 0.0334 | 0.2686 | 0.5274 | 0.0001
0.0882 0.0156
12.8529 | 27.4009
4.2719 62.0344
127.4632 | 131.2410 | 130.3204 | 128.1026 | 0.0214 | 0.1648 | 0.0810 | 0.9986
3.4676 0.6752
0.0389 0.1645
LGW
8.0457 34.5386
0.6660 0.3894
4.1345 7.9122 6.9916 4.7738 | 0.0248 | 0.1915 | 0.1020 | 0.9890
9.6559 3.2397
0.4286 0.2456
92.9088 | 208.3350
21.5151 | 286.7493 | 191.6448 | 194.4781 | 193.2448 | 192.1243 | 0.0449 | 0.3106 | 0.5263 | 0.0000
0.0816 1.0828
LGP
57.5959 | 18.1517
5.6356 7.3131 82.2695 | 85.1028 | 83.8695 | 82.7490 | 0.0390 | 0.3152 | 0.5485 | 0.0000
0.0989 0.0316
39.3819 | 162.9695
0.4879 2.3355
127.3556 | 131.1334 | 130.2128 | 127.9950 | 0.0209 | 0.1616 | 0.0839 | 0.9976
67.6007 | 93.1076
3.4403 0.6451
LGLL
8.4545 42.1638
0.0276 0.0910
4.1357 79134 6.9928 4.7750 | 0.0248 | 0.1916 | 0.1024 | 0.9886
3.2636 2.5462
9.6417 3.5093
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Tables 12 and 13 show the MLE and Bayesian estimation method, respectively for the parameters
of L-G family models for two case only because the LGE and LGP distribution are not fitting for this
data see Table 11. Table 12 discussed comparison of bivariate models based on bivariate L-G family
model by using AIC, CIAC, BIC, HQIC, CVM, and AD measures. By these results, we conclude the
BFGM LGLL distribution is best models comparison another bivariate distribution as BEFEGM LGW
and bivariate FGM lomax-claim (BFGMLC) by Zho et al. [7], according to AIC, CIAC, BIC, HQIC,
CVM, and AD. When comparing Bayesian estimates and MLE, we note that Bayesian is better than
MLE according to the value of SE.

Table 12. MLE of bivariate models for Diabetic nephropathy data.

BFGM LGW BFGM LGLL BFGMLC
Etimates SE Etimates SE Etimates SE
a; 32.6177 | 105.9016 | 77.5037 | 47.2668 | 32.3700 | 1.1932
Bi 10.6376 | 2.1516 0.2441 0.1904 | 0.0027 | 0.0013
by 3.4194 0.6425 | 103.1134 | 44.4474 | 0.5165 | 0.1517
a; 0.0381 0.0152 3.4021 0.6322
s 9.3182 | 373.1280 | 14.8761 | 9.5541 | 10.0287 | 0.5802
B> 0.3185 | 515.7803 | 0.2144 0.1812 | 0.9969 | 0.3516
b, 9.5726 | 21.9642 2.8331 1.0156 | 0.0000 | 0.0001
a 0.3893 | 67.9071 9.4468 1.9058
0 0.0538 0.6022 0.0547 0.5574 | 0.8882 | 0.0407
AIC 133.4597 133.4271 157.2159
CAIC 153.4597 153.4271 167.3977
BIC 141.9597 141.9270 163.8270
HQIC 134.8982 134.8656 158.3348
CVM 1.0015 0.9937 1.0773
AD 5.2629 5.2112 6.2834

Table 13. Bayesian estimation of parameter for bivariate models: Diabetic nephropathy data.

o Bi by a s B2 by a 0
mean 39.1079 7.0735 3.2451 0.0317 11.2465 0.2944 9.7805 0.3569 -0.2001
BFGM LGW
2-11 sd 282717 6.9918 0.5942 0.0174 7.8451 0.2773 29191 0.0709 0.0556
mean 180.6559 0.8817 97.9884 3.2370 30.4859 0.9295 29327 9.1782 -0.0309
BFGM LGLL
2-11 sd 146.6881 0.4004 29.2129 0.4890 21.9932 0.6312 0.6546 1.7057 0.1032

9.3. Computer series system-simulated data

The data was sourced from Oliveira et al. [41]. A processor and memory make up the n = 50
simulated rudimentary computer series systems in the data set. If both parts of the system function
properly, the computer operates. Let’s say the system is experiencing a latent deteriorating process.
The degeneration advances quickly over a brief period of time (in hours). It makes the system more
vulnerable to shocks, making it possible for a deadly shock to randomly destroy the first, second, or
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both components. The independence presumption could not be accurate because a deadly shock can
simultaneously kill both components, so we used FGM copula to discussed this problem. The data set
is given as follows:

Processor lifetime: 1.9292 3.6621 3.6621 3.6621 1.0833 1.0833 0.3309 0.3309 0.5784 0.5520 1.9386
2.1000 0.9867 0.9867 1.3989 2.3757 3.5202 2.3364 0.8584 4.3435 1.1739 1.3482 3.0935 2.1396
1.3288 0.1115 0.8503 0.1955 0.4614 3.3887 0.1181 5.0533 1.6465 0.9096 1.7494 0.1058 0.1058
0.9938 5.7561 5.7561 0.6270 0.7947 0.5079 2.5913 2.5372 1.1917 1.5254 1.0986 1.0051 1.3640.
Memory lifetime: 3.9291 0.0026 0.0026 0.0026 3.3059 3.3059 0.3309 0.3309 1.8795 0.5520 4.0043
2.0513 0.9867 0.9867 4.1268 2.7953 1.4095 0.1624 1.9556 1.0001 3.3857 1.9705 3.0935 2.1548
0.9689 0.1115 2.8578 0.1955 0.8584 1.9796 0.0884 2.3238 2.0197 0.6214 2.3643 0.1058 0.1058
1.7689 0.3212 0.3212 1.7289 0.7947 5.3535 2.5913 2.4923 0.0801 4.4088 1.0986 1.0051 1.3640.

The computer data was presented as a series system, and the likelihood function should ideally be
based on the likelihood for series system data. However, in our analysis, we used a different approach
by modeling the time to the first failure as a continuous distribution. Although this approach is not
specific to series systems, it can still provide useful insights into the data. For the data description, we
obtained Figure 12 to check outliers of these data and described differentiates different categories as
a scatter plot (strip), respectively. While Figure 13 discussed violin plot of these data which has been
discussed to show peaks in the data and visualize the distribution of numerical data. By Figures 12 and
13, we note that the data has right skewed shapes and hasn’t symmetric ships.
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Figure 12. Box-plot and strip plot for computer series system data.
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Figure 13. Violin plot for computer series system data.
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Table 14 discussed MLE estimator of marginal parameters with standard error (SE), also different
measures of goodness of fit as Akaike information criterion (AIC), the corrected AIC (CAIC), the
Bayesian information criterion (BIC), the Hannan-Quinn information criterion (HQIC), the Cramer-
von Mises (CVM), and the Anderson—Darling (AD), and Kolmogorov-Smirnov (KS) statistics with P-
value (PVKS) for all competitive models as Lomax G exponential (LGE), Lomax G Weibull (LGW),
Lomax G Pareto (LGP), and Lomax G- Log-Logistic (LGLL). Table 14 lists the estimates’ results
together with certain goodness-of-fit metrics, and Figures 14 and 15 show the estimated cdf with
empirical cdf, pdf with histogram, and PP-plots for each sample and marginal distribution, respectively.
We observe that these data fit these distributions.

Table 14. MLE of marginal models for computer series system data.

Etimates SE AIC CAIC BIC HQIC CVM AD KS PVKS
a | 76.4346 13.9515
X | B | 10.6443 9.2913 | 161.8862 | 167.6223 | 162.4080 | 164.0706 | 0.0363 | 0.2786 | 0.1275 | 0.3909
b | 0.0805 0.6494
LGE
a | 146.6252 | 5.1560
y | B | 1197771 | 24.5216 | 155.1517 | 160.8877 | 155.6734 | 157.3360 | 0.1634 | 1.0349 | 0.1334 | 0.3355
b | 0.5025 0.4872
a | 334734 | 124.1500
B | 55518 75.6627
X 160.9341 | 167.5022 | 161.8230 | 163.8465 | 0.0352 | 0.2728 | 0.0712 | 0.9616
b 1.2336 0.1543
a| 0.1274 1.3690
LGW
a | 5.7086 3.7167
B 1.4932 19.8523
y 159.6049 | 167.2530 | 160.4938 | 162.5174 | 0.2204 | 1.3799 | 0.1418 | 0.2669
b | 0.9397 0.1168
a| 0.1677 2.2953
a | 75.3043 9.2516
X|B| 6.8581 8.8796 | 183.3328 | 189.0688 | 183.8545 | 185.5171 | 0.1028 | 0.7927 | 0.2445 | 0.0051
b | 0.1036 0.0915
LGP
a | 8.6340 12.6090
y| B 1.5722 98.6888 | 173.7290 | 179.4651 | 174.2508 | 175.9133 | 0.4277 | 2.5704 | 0.1968 | 0.0416
b | 0.2294 14.0499
a | 1495.255 | 354.2560
B 1.5659 0.9854
X 160.8776 | 168.5257 | 161.7665 | 163.7900 | 0.0407 | 0.2845 | 0.0736 | 0.9492
b | 523.6691 | 95.5166
a 1.2167 0.1060
LGLL
a | 5164.399 | 165.1982
B 1.0828 0.8522
y 156.2214 | 163.8695 | 157.1103 | 159.1339 | 0.1787 | 1.1297 | 0.1443 | 0.2487
b | 19561.244 | 780.7736
a| 0.8980 0.1082
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Figure 15. Estimated LG distributions: Computer series system data.

Tables 15 and 16 show the MLE and Bayesian estimation method, respectively for the parameters of
L-G family models. Table 15 discussed comparison of bivariate models based on bivariate L-G family
model by using AIC, CIAC, BIC, HQIC, CVM, and AD measures. By these results, we conclude
the BFGM LGE distribution is best models comparison another bivariate distribution according to
AIC, CIAC, BIC, HQIC, CVM, and AD. When comparing Bayesian estimates and MLE, we note that
Bayesian is better than MLE according to the value of SE.
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Table 15. MLE for computer series system data.

BFGM LGE BFGM LGW BFGM LGP BFGM LGLL BFGM LC

Etimates SE Etimates SE Etimates SE Etimates SE Etimates SE
) 147.3693 | 78.5271 | 35.4338 | 18.6493 | 160.7897 | 52.5459 | 370.201 | 31.369 | 134.2571 | 56.9368
Bi 116.6487 | 60.0803 | 5.7763 8.7089 | 78.2561 | 15.1095 0.694 15.312 0.0045 0.0018
b 0.4715 1.9090 1.2079 0.1668 0.5808 | 55.1790 | 346.102 | 34.266 | 825.2748 | 19.1517
aj 0.1263 1.3683 1.193 0.138
@ 146.6066 | 51.5343 | 189.6576 | 86.5617 | 137.4092 | 87.5797 | 5165.707 | 10.040 | 68.9989 | 56.7898
B2 119.7495 | 62.7662 | 40.6490 | 78.2630 | 29.7471 | 9.0236 1.000 2.907 0.0095 0.0078
by 0.5164 2.3986 0.9069 0.1084 0.2856 7.6191 | 19561.19 | 610.643 | 369.3705 | 256.5926
a 0.1179 1.4935 0.906 0.108
0 0.4987 0.3314 0.4139 0.3435 0.8581 0.3257 0.410 0.344 0.5054 0.3286
AIC 317.0232 317.9571 351.2878 317.8398 319.6854
CAIC 319.6898 322.4571 353.9545 322.3398 322.3521
BIC 330.4073 335.1653 364.6720 335.0480 335.1696
HQIC 322.1199 324.5100 356.3846 324.3928 324.7822
CVM 7.1673 7.6779 7.9260 7.6778 7.7252
AD 40.5523 43.7650 43.5415 43.7399 43.7716

Table 16. Bayesian estimation of parameter for bivariate models: Computer series system.

ai B by a @ B2 by as 0
mean 87.6009 119.8282 1.0653 58.1685 178.0698 2.0726 0.5010
BFGM LGE
2-11 sd 50.7412 33.6634 0.6837 32.0613 39.2821 0.6151 0.2948
mean 67.1512 24.2494 1.1909 0.2751 82.8430 105.1435 0.9167 0.7610 0.4701
BFGM LGW
2-11 sd 13.9465 8.0916 0.1446 0.1337 39.4208 67.3779 0.1111 0.3451 0.3640
mean 144.3689 1.4465 111.7554 1.1397 1272.2821 0.5740 19369.5048 0.8174 1.0769
BFGM LGLL
2-11 sd 30.2474 0.2892 27.4467 0.0988 9.5403 0.4079 99.9004 0.0462 0.2149
mean 93.9844 237.0822 2.8319 99.9061 40.9085 0.5557 0.5869
BFGM LGP
2-11 sd 31.2070 13.6399 2.7624 42.2993 13.3844 0.2808 0.2531

9.4. Kidney patients data

The data set presented by McGilchrist and Aisbett [42]. This information shows how often
infections return in kidney patients. Let’s say x and y are the first and second recurrence times,
respectively. The data presented for 30 patients as follows:

First recurrence time: 8, 23, 22, 447, 30, 24, 7, 511, 53, 15, 7, 141, 96, 149, 536, 152, 402, 13, 39, 12,
113,132, 34,2, 130, 17, 185, 292, 22, 15.

Second recurrence time: 16, 13, 28, 318, 12, 245, 9, 30, 196, 154, 333, 8, 38, 70, 25,362, 24, 66, 46,
40, 201, 156, 30, 25, 26, 4, 117, 114, 159, 108.
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In order to check for outliers in the data for kidney patients and to distinguish between different
groups, we obtained Figure 16 and represented it as a scatter plot (strip), respectively. While Figure 17
discussed a violin plot of these data that was used to illustrate data peaks and depict the distribution
of kidney patient data. We can see from Figures 16 and 17 that the kidney patients data exhibits right-
skewed shapes and non-symmetric ships. For all competitive models, including LGE, LGW, LGP,
and LGLL, Table 17 addressed the MLE estimator of marginal parameters with SE as well as several
measures of goodness of fit, including AIC, CAIC, BIC, HQIC, CVM, AD, and KS statistics with
PVKS. Figures 18 and 19 display the estimated cdf with empirical cdf, pdf with histogram, and PP-
plots for each sample and marginal distribution, respectively. Table 17 displays the estimates’ results
along with various goodness-of-fit measures. We note that the kidney patients data are consistent with
these distributions.
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Figure 16. Box-plot and strip plot for kidney patients data.
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Figure 17. Violin plot for kidney patients data.
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Table 17. MLE of marginal models: Kidney patients.
Etimates SE AIC CAIC BIC HQIC CVM AD KS PVKS
a 1.6241 0.9281
B | 2.0743 1.4259 | 348.9320 | 353.1356 | 349.8551 | 350.2768 | 0.1174 | 0.6549 | 0.1341 | 0.6533
b | 0.0212 0.0733
LGE
a | 10.3515 9.5644
B | 32.3030 12.0899 | 341.6516 | 345.8551 | 342.5746 | 342.9963 | 0.1102 | 0.6092 | 0.1532 | 0.4821
b | 0.0347 0.1593
a | 24795 5.6282
B | 2.7580 1.8529
350.8655 | 356.4702 | 352.4655 | 352.6585 | 0.1206 | 0.6784 | 0.1368 | 0.6288
b | 0.9084 0.3785
a | 0.0161 0.0424
LGW
a | 0.7994 0.6637
B 1.6446 1.9677
345.2155 | 350.8203 | 346.8155 | 347.0085 | 0.0908 | 0.5437 | 0.1308 | 0.6842
b 1.4834 0.5208
a | 0.0339 0.1628
a | 21.0619 19.2427
B | 6.3487 3.3107 | 385.4904 | 389.6940 | 386.4135 | 386.8352 | 0.0715 | 0.4710 | 0.3752 | 0.0004
b | 0.0771 0.7684
LGP
3.2661 1.2152
1.5504 1.0915 | 397.0708 | 401.2743 | 397.9938 | 398.4155 | 0.0717 | 0.4834 | 0.3724 | 0.0005
b | 0.1219 0.0916
a | 1754646 | 75.3074
B | 544813 | 46.1912
350.8699 | 356.4747 | 352.4699 | 352.6630 | 0.1222 | 0.6920 | 0.1389 | 0.6088
b | 285.4688 | 181.4908
a | 08753 0.4343
LGLL
a | 8.8665 8.1862
B | 14.8596 12.0452
347.1499 | 352.7547 | 348.7499 | 348.9429 | 0.0900 | 0.5838 | 0.1530 | 0.4838
b | 26.9063 13.6426
a 1.7673 0.5273
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Tables 18 and 19 show the MLE and Bayesian estimation method, respectively for the parameters of
L-G family models. Table 18 discussed comparison of bivariate models based on bivariate L-G family
model by using AIC, CIAC, BIC, HQIC, CVM, and AD measures. By these results, we conclude the
BFGM LGE distribution is best models comparison anther bivariate distribution according to AIC,
CIAC, BIC, HQIC, CVM, and AD. When comparing Bayesian estimates and MLE, we note that
Bayesian is better than MLE according to the value of SE.

Table 18. MLE of bivariate models: Kidney patients.

BFGM LGE BFGM LGW BFGM LGLLog BFGM LGP BFGM LC
Etimates SE Etimates SE Etimates SE Etimates SE Etimates SE
) 1.6301 0.9353 | 3.6680 1.0296 | 175.4646 | 38.1556 | 146.0044 | 82.5462 | 1.3445 0.7207
Bi 46.4487 | 26.254 | 2.1477 1.3569 | 54.4813 | 42.5162 | 118.4694 | 48.3222 | 0.0155 0.0157
by 0.4731 0.9140 | 0.8571 0.4542 | 285.4688 | 128.5598 | 0.2064 0.0141 14.1703 | 11.4864
a 0.0070 0.0084 0.8753 0.4986

s 8.8120 | 2.2553 | 10.3885 | 3.7640 8.8665 4.4967 143.3950 | 1.7083 5.3623 1.3412
B2 111.0747 | 56.380 | 13.9674 | 11.2431 | 14.8596 | 12.1520 | 129.6081 | 74.3266 | 0.0024 0.0005
by 0.1434 | 2.6325 | 0.9747 0.1967 | 30.4746 | 25.9423 0.2260 0.2090 | 17.7349 | 14.8967

a 0.0153 0.0317 1.7673 1.2649
0 0.4032 | 0.3765 | 0.3763 0.2927 0.0610 0.0513 0.3610 0.2778 0.3963 0.4530
AIC 690.0815 695.8045 699.6651 774.6638 690.9825
CAIC 694.9724 704.8045 708.6651 779.7547 696.1334
BIC 701.6899 708.4153 712.2759 784.4722 712.3589
HQIC 695.0193 699.8388 703.6994 777.8016 699.5733
CVM 4.0697 4.0564 4.0277 4.1747 4.2653
AD 27.9690 26.8935 25.7854 27.6079 27.9913

Table 19. Bayesian estimation of parameter for bivariate models: kidney patients data.

a Bi b, aj (2%] B> b, a 0
BFGM LGE mean | 1.7050 | 212.2050 | 2.5467 24.6862 | 256.5568 | 0.1274 0.0811
sd 0.8656 16.6110 0.3316 7.6916 | 70.5392 | 0.0942 0.2436
BEGM LGW mean | 4.0559 2.1217 0.8666 | 0.0074 | 4.8123 | 24.6371 | 0.9755 | 0.0874 | 0.6470
sd 0.9888 1.1917 0.1684 | 0.0073 | 3.4960 | 10.3928 | 0.1856 | 0.0316 | 0.2745
mean | 23.2650 | 13.4323 0.1703 3.2662 1.5206 0.1106 0.0889
BFGM LGLL sd 8.0363 3.0128 0.0471 0.0123 0.8806 0.0617 0.0580
BEGM LGP mean | 159.9208 | 39.1830 | 285.6908 | 0.8706 | 8.4728 | 13.8619 | 30.8455 | 1.7398 | 0.0419
sd 7.7641 2.9656 0.7591 | 0.0162 | 1.0027 0.7175 0.5174 | 0.0338 | 0.0034

10. Conclusions

In conclusion, the BFEGMLG family proposed in this study represents a new approach to modeling
bivariate continuous data with skewed and heavy-tailed distributions, which is useful in a variety
of applications. The BFGMLG family is based on the FGM copula function and univariate LG
family to handle non-normality in the data. The family includes several distributions such as bivariate
exponential LG distribution, bivariate Weibull LG distribution, bivariate Pareto LG distribution, and
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bivariate log-logistic distribution, which are all derived based on the FGM copula function. This family
has been shown to have various structural statistical properties and can model local dependence as well
as concepts such as PQD, TP2, SI, and RTI. Additionally, the proposed family has been extended to
the multivariate BFEGMLG family to model and support multivariate data. The performance of the
proposed family has been evaluated using two estimation methods, ML and Bayesian estimation, and
Bayesian estimation has been found to offer the best performance. The application of the proposed
family to four different data sets in the fields of Environmental, computer and medicine sciences has
demonstrated its superiority over competing bivariate probability models such as BEFGM Lomax Claim
and bivariate FGM generalized half-logistic. Overall, the BFEGMLG family has shown great potential
for use in various fields, and future work will focus on studying the properties of its multivariate version
family.
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