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Abstract: This paper presents a novel family of bivariate continuous Lomax generators known as the
BFGMLG family, which is constructed using univariate Lomax generator (LG) families and the Farlie
Gumbel Morgenstern (FGM) copula. We have derived several structural statistical properties of our
proposed bivariate family, such as marginals, conditional distribution, conditional expectation, product
moments, moment generating function, correlation, reliability function, and hazard rate function. The
paper also introduces four special submodels of the new family based on the Weibull, exponential,
Pareto, and log-logistic baseline distributions. The study establishes metrics for local dependency and
examines the significant characteristics of the proposed bivariate model. To provide greater flexibility,
a multivariate version of the continuous FGMLG family are suggested. Bayesian and maximum
likelihood methods are employed to estimate the model parameters, and a Monte Carlo simulation
evaluates the performance of the proposed bivariate family. Finally, the practical application of the
proposed bivariate family is demonstrated through the analysis of four data sets.
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1. Introduction

The Lomax distribution is a heavy-tailed probability model defined by scale and shape parameters,
and has various real-world applications in fields like business, medicine, engineering, biology and
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finance. In recent years, adding extra shape parameters to the basic distribution has resulted in the
development of new univariate continuous distributions. Cordeiro et al. [1] introduced the Lomax-G
(LG) family of distributions, a continuous univariate family based on the Lomax distribution, with two
additional positive parameters, α and β. The cumulative density function (cdf) of this family is derived
by

FLG(x;α, β, ζ) = 1 −
(

β

β − log
[
1 −G(x; ζ)

])α , (1.1)

where G(x; ζ) is the baseline cdf and ζ is a vector of parameters, (1 × k), k = 1, 2, 3, .... The survival
function (SF) and the probability density function (pdf) of the LG family are given by

S LG(x;α, β, ζ) =

(
β

β − log
[
1 −G(x; ζ)

])α , (1.2)

and
fLG(x;α, β, ζ) = αβα

g(x; ζ)[
1 −G(x; ζ)

] [
β − log (1 −G(x; ζ))

]α+1 , α, β > 0, (1.3)

where g(x; ζ) is the baseline pdf. Bivariate distributions were proposed and studied by many
authors, and they have found extensive use in the fields such as insurance, finance, economics, risk
management, hydrology, environment, management science, operations research, reliability, survival
analysis, engineering, medical sciences, and others. Recently, new bivariate distributions have been
constructed using classical univariate distributions based on different copula functions and Marshall-
Olkin methodology.

Using the copula function, Vaidyananthan et al. [2] proposed a bivariate Lindley distribution using
Morgenstern approach. Baharith et al. [3] introduced two bivariate Pareto Type II distributions; one is
derived from copula and the other through a mixture and copula. Peres et al. [4] proposed a bivariate
model based on a defective Gompertz distribution and a Clayton copula function to capture dependence
between the lifetimes. Almetwally and Muhammed [5] introduced a new bivariate Fréchet distribution
using Farlie-Gumbel-Morgenstern (FGM) and Ali-Mikhail-Haq (AMH) AMH copula functions, and
discussed their properties. Peres et al. [6] used bivariate standard Weibull lifetime distributions
with different copula functions for real data applications. Zhao et al. [7] presented Farlie-Gumble-
Morgenstern bivariate Lomax-Claim distribution. Haj Ahmad et al. [8] introduced bivariate modified
extended exponential based on FGM. Qura et al. [9] obtained Bivariate power Lomax distribution
based on FGM copula. El-Sherpieny et al. [10] introduced Bivariate Weibull-G Family Based on FGM
Copula Function and discussed their statistical properties.

Using the Marshall-Olkin technique, Muhammed et al. [11] proposed a bivariate inverse Weibull
(BIW) distribution, characterized by inverse Weibull marginals. Eliwa and El-Morshedy [12] proposed
the bivariate Gumbel-G family, a new class of bivariate distributions based on univariate Gumbel-
G families. Alotaibi et al. [13] developed a new bivariate exponentiated half logistic distribution
with explicit forms for its joint probability density function and cumulative distribution function. El-
Sherpieny et al. [14] discussed accelerated life testing for bivariate distributions based on progressive
censored samples with random removal.

To understand and motivate the construction of our BFGMLG family, it is important to first examine
the fundamentals of copulas. The Sklar theorem, which was established by Sklar in 1959 [15] and is
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central to the theory of copulas, states that multivariate distributions can be created by using copula
functions that can be derived from the joint distribution function of two or more marginal univariate
distributions (Nelsen [16]). In the range [0, 1], consider a random vector F(X) = (F1(X1), ..., Fd(Xd)) =

(U1, ...,Ud) that follows a d-variate copula with d uniform marginal distributions. Let θ represent the
d-variate copula’s parameter vector and (F1(x1), ..., Fd(xd)) ∈ [0, 1]d, the respective copula is a function
C : [0; 1]d → [0; 1] that satisfies

Cd(F1(x1), ..., Fd(xd); θ) = Cθ(F1(x1), ..., Fd(xd)) = Cθ(u1, ..., ud)
= P [F1(X1) ≤ F1(x1), ..., Fd(Xd) ≤ Fd(xd)] .

(1.4)

An element of θ is referred to as a dependence parameter. The joint density function of F(X) is denoted
by cd and its formula is:

cd(F(x1), ..., F(xd); θ) =
∂d

∂F(x1), ..., ∂F(xd)
Cd(F(x1), ..., F(xd); θ). (1.5)

Then, the joint cdf of X, denoted by Fd is obtained by

Fd(x1, ....., xd) = Cd(F1(X1), ..., Fd(Xd); θ) = Cθ(F1(X1), ..., Fd(Xd)); x ∈ Rd, (1.6)

and the joint pdf, denoted by fd, is obtained by

fd(x1, ..., xd) = cd(F1(x1), ..., Fd(xd); θ)
d∏

j=1

f j(x j); x ∈ Rd, (1.7)

where f j(x j), j = 1, ..., d are the marginal density functions, and cd(F(x1), ..., F(xd); θ) being the
derivative of order d of (1.6) with respect to x1, ..., xd. When the random variables are independent,
cd(F(x1), ..., F(xd); θ) = 1. For the bivariate case, (d = 2), a function C[0, 1]2 → [0, 1] is considered
a bivariate copula if it satisfies the conditions C(0, u) = C(u, 0) = 0, C(1, u) = C(u, 1) = u, and
C(v2, u2)−C(v2, u1)−C(v1, u2)+C(v1, u1) ≥ 0 for all u, v ∈ [0; 1], 0 ≤ v1 ≤ v2 ≤ 1 and 0 ≤ u1 ≤ u2 ≤ 1.

For a bivariate distribution, the joint cdf is given as

F(x1, x2) = Cθ(F1(x1), F2(x2)). (1.8)

The density of the associated joint is

f (x1, x2) = f1(x1) f2(x2)cθ(F1(x1), F2(x2)). (1.9)

For building a broad class of multivariate distributions based on marginals from various families,
the copula approach offers a potent tool. Through a copula in which the dependence structure and
marginals are separately specified, any joint distribution function may be represented. A good source
on copulas can be found at Nelsen [16] and Joe [17].

One of the most well-known parametric families of copulas, the Farlie Gumbel Morgenstern (FGM)
copula was discussed by Gumbel [18]. The FGM copula and its density are presented as
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C(u1, u2) = u1 u2 (1 + θ(1 − u1)(1 − u2)) ,−1 ≤ θ ≤ 1, (1.10)

and
c(u1, u2) = 1 + θ(1 − 2u1)(1 − 2u2) (1.11)

respectively. As a result, the FGM copula is simple and adaptable when handling the construction of
bivariate distributions with complex marginal distributions with regards to functions. We use it in our
study to creat Bivariate Lomax generator family, which we have dubbed the BFGMLG family.

The cdf and pdf of FGM copula are represented as follows:

C(F(x1; ζ1), F(x2; ζ2)) = F(x1; ζ1)F(x2; ζ2)
(
1 + θ

[
(1 − F(x1; ζ1)) (1 − F(x2; ζ2))

])
, (1.12)

and
c(F(x1; ζ1), F(x2; ζ2)) = 1 + θ

[
(1 − 2F(x1; ζ1)) (1 − 2F(x2; ζ2))

]
; θ ∈ [−1, 1]. (1.13)

Our motivation for proposing this article is to:

(1) Construct a new bivariate continuous family of distributions, namely the BFGMLG family, that
can effectively model bivariate continuous data with heavy-tailed and skewed distributions, which
is useful in a variety of applications.

(2) Address the lack of existing distributions in modeling certain random bivariate phenomena, and
provide a more comprehensive modeling approach.

(3) Generate various special bivariate models and realize all sorts of hazard rate functions (hrfs), which
can provide more accurate and detailed information about the phenomena being studied.

(4) Build a multivariate FGMLG family, namely the MFGMLG family, that can fit multivariate data
and provide a more comprehensive modeling approach for more complex phenomena.

(5) Meet the growing demands of applied fields by providing a more flexible and powerful tool for
modeling heavy-tailed dependence structures in environmental, medical and computer science
applications.

Our proposed BFGMLG family provides a new approach to modeling non-Gaussian and heavy-
tailed dependence structures in environmental, medical and computer science applications. The
univariate Lomax generator has been shown to be a good fit for modeling survival data with heavy
tails, and the Farlie Gumbel Morgenstern (FGM) copula has been used successfully to model non-
Gaussian dependence structures. By combining the univariate Lomax generator and the Farlie Gumbel
Morgenstern (FGM) copula, we have created a more powerful and flexible tool for modeling bivariate
continuous data bivariate continuous data with heavy-tailed and skewed distributions, which is useful
in a variety of applications.

This paper is organized as follows: In Section 2, we introduce a new family of bivariate lomax
generator using the univariate lomax generator family and the FGM copula function. In Section 3, we
present some new submodels from the general class. We derive some properties of BFGMLG family
including, marginal distributions, conditional distributions, regression function, moment generating
function and product moments in Section 4. In Section 5, We present the reliability and some concepts
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of dependence for our proposed bivariate family. In Section 6, we introduce a multivariate FGMLG
family. Section 7 discusses the methods for estimating model parameters that are unknown, including
Bayesian estimation and maximum likelihood. In Section 8, the performance of the estimators is
thoroughly evaluated through a Monte Carlo simulation study. The use of real data sets and their
interpretations are discussed in Section 9, followed by the presentation of conclusions.

2. BFGMLG family

Using any copula function, the joint cdf and pdf of the bivariate LG family are defined as follows

F(x1, x2) = C
(
1 −

(
β1

β1 − log
[
1 −G(x1; ζ1)

])α1

, 1 −
(

β2

β2 − log
[
1 −G(x2; ζ2)

])α2
)

(2.1)

and

fBFGMLG(x1, x2) =α1β
α1
1

g(x1; ζ1)[
1 −G(x1; ζ1)

] [
β1 − log (1 −G(x1; ζ1))

]α1+1

α2β
α2
2

g(x2; ζ2)[
1 −G(x2; ζ2)

] [
β2 − log (1 −G(x2; ζ2))

]α2+1

c
(
1 −

(
β1

β1 − log
[
1 −G(x1; ζ1)

])α1

, 1 −
(

β2

β2 − log
[
1 −G(x2; ζ2)

])α2
)
,

(2.2)

we derive the joint cdf and pdf of the BFGMLG family using the FGM copula function, as defined in
Eqs (1.12) and (1.13) and the bivariate LG family based on any copula function, as outlined in Eqs (2.1)
and (2.2) as follows:

FBFGMLG(x1, x2) =

[
1 −

(
β1

β1 − log
[
1 −G(x1; ζ1)

])α1
] [

1 −
(

β2

β2 − log
[
1 −G(x2; ζ2)

])α2
]

[
1 + θ

(
β1

β1 − log
[
1 −G(x1; ζ1)

])α1
(

β2

β2 − log
[
1 −G(x2; ζ2)

])α2
]
,

(2.3)

fBFGML−G(x1, x2) = α1β
α1
1

g(x1; ζ1)[
1 −G(x1; ζ1)

] [
β1 − log (1 −G(x1; ζ1))

]α1+1

α2β
α2
2

g(x2; ζ2)[
1 −G(x2; ζ2)

] [
β2 − log (1 −G(x2; ζ2))

]α2+1[
1 + θ

(
2
[

β1

β1 − log
[
1 −G(x1; ζ1)

]]α1

− 1
) (

2
[

β2

β2 − log
[
1 −G(x2; ζ2)

]]α2

− 1
)]
.

(2.4)

Sreelakshm [19] introduced the relationship between copulas and reliability copulas which is
described as follows:

S (x1, x2) = 1 − F(x1) − F(x2) + C(F(x1), F(x2)). (2.5)
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Based in Eq (2.5), The FGM survival function can be found as follows:

S (x1, x2) = 1 − F(x1) − F(x2) + F(x1)F(x2) [1 + θ (1 − F(x1)) (1 − F(x2))] .

The following is the survival function for BFGMLG family:

S BFGMLG(x1, x2) =

(
β1

β1 − log
[
1 −G(x1; ζ1)

])α1
(

β2

β2 − log
[
1 −G(x2; ζ2)

])α2

[
1 + θ

(
1 −

(
β1

β1 − log
[
1 −G(x1; ζ1)

])α1
) (

1 −
(

β2

β2 − log
[
1 −G(x2; ζ2)

])α2
)]
.

(2.6)

3. Special BFGMLG distributions

We presented four special models of the BFGMLG family of distributions in this section. When
the cdf G(x) and pdf g(x) have simple analytic expressions, the pdf (2.4) will be most feasible. Taking
the baseline distributions, we focus on providing four sub-models of this family: Weibull (W), Log-
Logistic (LL) and Pareto (Pa). Table 1 shows the cdf and pdf of the baseline models. The BFGMLG
family is very adaptable in its sub-models and can approach various bivariate distributions by altering
its parameters.

Table 1. baseline models in cdf and pdf.

Model Cdf: G(x; ζ) Pdf: g(x; ζ)
Weibull 1 − exp

[
− (bx)a] ; x > 0 abaxa−1exp

[
− (bx)a]

Exponential 1 − e−(bx) ; x > 0 b e−(bx)

Pareto 1 − (1 + x)−b ; x > 0 b (1 + x)−(1+b)

Log-Logistic 1 −
[
1 +

(
x
a

)b
]−1

; x > 0 b
ab xb−1

[
1 +

(
x
a

)]−2

3.1. BFGMLG-Weibull (BFGMLGW) distribution

The cdf and pdf of the BFGMLGW distribution are obtained by using the LG family and the Weibull
distribution to obtain the LG-Weibull (LGW) distribution as follows:

FBFGMLGW(x1, x2) =

[
1 −

(
β1

β1 + (b1x1)a1

)α1
] [

1 −
(

β2

β2 + (b2x2)a2

)α2
]

[
1 + θ

(
β1

β1 + (b1x1)a1

)α1
(

β2

β2 + (b2x2)a2

)α2
]
,

(3.1)

fBFGMLGW(x1, x2) =

α1β
α1
1 a1ba1

1

xa1−1
1[

β1 + (b1x1)a1
]α1+1

 α2β
α2
2 a2ba2

2

xa2−1
2[

β2 + (b2x2)a2
]α2+1

{
1 + θ

[
2
(

β1

β1 + (b1x1)a1

)α1

− 1
] [

2
(

β2

β2 + (b2x2)a2

)α2

− 1
]}
,

(3.2)

• When a1 = a2 = 1, we obtain a new bivariate FGM Lomax exponential (BFGMLE), which is an
univariate distribution of Lomax exponential.
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• When β1 = β2 = 1 in addition to b1 = b2 = 1, we obtain a new bivariate of two-parameter Burr
distribution (BFGMB), which is an univariate Burr distribution has been introduced by Burr [20].
• When α1 = α2 = β1 = β2 = b1 = b2 = 1, we obtain a new bivariate log-logistic distribution

(BFGMLL), which is an univariate one-parameter log-logistic distribution has been presented by
Bain [21] (In economics, this is known as the one-parameter Fisk distribution).
• When α1 = α2 = a1 = a2 = b1 = b2 = 1, we obtain a new bivariate Pareto type II (BFGMP),

which is an univariate Pareto type II distribution has been introduced and studied by Lomax [22]

3.2. BFGMLG-exponential (BFGMLGE) distribution

The cdf and pdf of the BFGMLGE distribution are produced by obtaining LG-exponential (LGE)
distribution using the LG family and exponential distribution a follows:

FBFGMLE(x1, x2) =

[
1 −

(
β1

β1 + b1x1

)α1
] [

1 −
(

β2

β2 + b2x2

)α2
]

[
1 + θ

(
β1

β1 + b1x1

)α1
(

β2

β2 + b2x2

)α2
]
,

(3.3)

fBFGMLE(x1, x2) =

 α1β
α1
1 b1[

β1 + b1x1
]α1+1

  α2β
α2
2 b2[

β2 + b2x2
]α2+1

{
1 + θ

[
2
(

β1

β1 + b1x1

)α1

− 1
] [

2
(

β2

β2 + b2x2

)α2

− 1
]}
.

(3.4)

Figures 1–3 discussed three shapes of joint density and joint hazard BFGMLE distribution. These
3-dimensional figures indicates that BFGMLE distribution have different shapes.
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Figure 1. 3-dimension of joint density of BFGMLE.
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Figure 2. 3-dimension of joint density of BFGMLE.

1

2

3

4

1

2

3

0.5

1.0

1.5

2.0

2.5

α1 = 1.6 β1 = 2 b1 = 1.8 α2 = 1.9 β2 = 2.5 b2 = 1.7 θ = 0.8

0.5

1.0

1.5

y

0.5

1.0

1.5

x
y

0.5

1.0

1.5

f(x, y)

x
y

0.5

1.0

1.5

1

2

3

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

α1 = 1.6 β1 = 2 b1 = 1.8 α2 = 1.9 β2 = 2.5 b2 = 1.7 θ = 0.8

0.5

1.0

1.5

2.0

y
0.5

1.0

1.5

2.0

x

y
0.5

1.0

1.5

2.0

h(x, y)

x

y
0.5

1.0

1.5

2.0

Figure 3. 3-dimension of joint density of BFGMLE.

3.3. BFGMLG-Pareto (BFGMLGP) distribution

The cdf and pdf of the BFGMLGP distribution are produced by obtaining LG-Exponential (LGP)
distribution using the LG family and Exponential distribution a follows:

FBFGMLGP(x1, x2) =

[
1 −

(
β1

β1 + b1 log(1 + x1)

)α1
] [

1 −
(

β2

β2 + b2 log(1 + x2)

)α2
]

[
1 + θ

(
β1

β1 + b1 log(1 + x1)

)α1
(

β2

β2 + b2 log(1 + x2)

)α2
]
,

(3.5)
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fBFGMLGP(x1, x2) =α1β
α1
1

b1

(1 + x1)
[
β1 + b1 log(1 + x1)

]α1+1

α2β
α2
2

b2

(1 + x2)
[
β2 + b2 log(1 + x2)

]α2+1{
1 + θ

[
2
(

β1

β1 + b1 log(1 + x1)

)α1

− 1
] [

2
(

β2

β2 + b2 log(1 + x2)

)α2

− 1
]}
.

(3.6)

3.4. BFGMLG-log-logistic (BFGMLGLL) distribution

The cdf and pdf of the BFGMLLL distribution are obtained by using the LG family and the Normal
distribution to obtain the LG-Weibull (LGLL) distribution as follows:

FBFGMLGLL(x1, x2) =

1 −
 β1

β1 + log
(
1 +

(
x1
a1

)b1
)

α1

1 −

 β2

β2 + log
(
1 +

(
x2
a2

)b2
)

α2
1 + θ

 β1

β1 + log
(
1 +

(
x1
a1

)b1
)

α1

 β2

β2 + log
(
1 +

(
x2
a2

)b2
)

α2
 ,

(3.7)

fBFGMLGLL(x1, x2) =
α1β

α1
1 b1

ab1
1

xb1−1
1[

1 +
(

x1
a1

)b1
] [
β1 + log

(
1 +

(
x1
a1

)b1
)]α1+1

α2β
α2
2 b2

ab2
2

xb2−1
2[

1 +
(

x2
a2

)b2
] [
β2 + log

(
1 +

(
x2
a2

)b2
)]α2+1

1 + θ

2
 β1

β1 + log
(
1 +

(
x1
a1

)b1
)

α1

− 1

2
 β2

β2 + log
(
1 +

(
x2
a2

)b2
)

α2

− 1


 .

4. Properties of BFGMLG family

In this section, we introduce some properties of BFGMLG family such as the marginal distributions
and its linear representation, conditional distributions, moment generating function and product
moments.

4.1. The Marginal distributions

The marginal cdfs of the joint BFGMLG family mentioned in Eq (2.3) can be represented as follows
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FLG(xi;αi, βi, ζi) = 1 −
(

βi

βi − log
[
1 −G(xi; ζi)

])αi

, αi, βi > 0, i = 1, 2. (4.1)

The marginal density functions of the joint BFGMLG family stated in Eq (2.4), are LG family
marginals and are given as:

f (xi;αi, βi, ζi) = αiβ
αi
i

g(xi; ζi)[
1 −G(xi; ζi)

] [
βi − log (1 −G(xi; ζi))

]αi+1 , αi, βi > 0. (4.2)

We present a useful linear representation for the marginal cdfs of the BFGMLG family. Using power
series, expanding the logarithmic function and an equation by Gradshteyn et al. [23] for a power series
raised to a positive integer n, we get

FLG(xi;αi, βi, ζi) =

∞∑
k,q≥0

υ(i)
k,qW (i)

k+q(xi, ζi); i = 1, 2, (4.3)

where W (i)
k+q(xi, ζi) = Gk+q(xi, ζi) represents the cdf of the exponentiated-G (exp-G) family of

distributions, with a power parameter (k + q) and υ(i)
k,q = (−1)kdk,qα

(k)
i /(β

k
i k!) with dk,0 = 1 and (for

q ≥ 1) dk,q = q−1
q∑

h=1

[h(k+1)−q]
h+1 dk,q−h.

Also, the marginal pdfs for the BFGMLG family can be expressed in a linear representation as follows

fLG(xi;αi, βi, ζi) =

∞∑
k,q≥0
k+q≥1

υ(i)
k,qw(i)

k+q(xi, ζi); i = 1, 2, (4.4)

where w(i)
k+q(xi, ζi) = (k + q)g(xi, ζi)Gk+q−1(xi, ζi) represents the pdf of the exp-G family of distributions

with a power parameter of (k + q).

4.2. The conditional distributions

The conditional probability distribution, cumulative distribution function, and survival function of
Xi given X j = x j are presented for i, j = 1, 2 where i , j as follows.

The conditional probability distribution of Xi given X j = x j is

f (xi | x j) =
αi

βi

g(xi; ζi)[
1 −G(xi; ζi)

]ω 1
αi

+1

i (xi;αi, βi, ζi){
1 + θ

[
2ωi(xi;αi, βi, ζi) − 1

] [
2ω j(x j;α j, β j, ζ j) − 1

]}
,

(4.5)

where ω j(z j;α j, β j, ζ j) =

(
β j

β j−log[1−G(z j;ζ j)]

)α j

and j = 1, 2, z is vector of x1 and x2. The conditional cdf
of Xi given Y j = y j is

F(xi | x j) = P(Xi ≤ xi | Y j = y j) (4.6)

= (1 − ωi(xi;αi, βi, ζi))
{
1 + θ ωi(xi;αi, βi, ζi)

[
2ω j(x j;α j, β j, ζ j) − 1

]}
.
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The conditional survival of Xi given X j = x j is

S (xi | x j) = P(Xi > xi | X j = x j) (4.7)

= ωi(xi;αi, βi, ζi)
{
1 − θ

[
1 − ωi(xi;αi, βi, ζi)

] [
2ω j(x j;α j, β j, ζ j) − 1

]}
.

By (4.6), we can generate a bivariate sample of the LG family using the conditional approach

(1) Generate U and V independently from a uniform(0, 1) distribution.

(2) Set x1 = QLG(u) = G−1
{
1 − eβ1[1−(1−u)−1/α1]

}
.

(3) Use numerical analysis such as Newton-Raphson to find x2 by setting F(x2 | x1) = V in (4.6).

(4) Repeat 1-3 (n) times to get (x1i, x2i), i = 1, 2, . . . , n.

4.3. Regression function, moment generating function and product moments

In this subsection, we introduce the regression function, moment generating function, and product
moments.

4.3.1. Regression function

Before introducing the regression function of Xi given X j = x j, let’s first examine the rth moment
and the probability weighted moments (PWMs) of Xi when Xi ∼ LG(xi;αi, βi, ζi), where i = 1, 2. The
rth moment of Xi, denoted by µ′(r)

i , can be written as µ′(r)
i =

∫ +∞

−∞
xr

i f (xi; ζi)dxi. By using Eq (4.4), we
obtain

µ′(r)
i =

∞∑
k,q≥0
k+q≥1

υ(i)
k,qE(Xr

i,k+q); i = 1, 2. (4.8)

Here, Xr
i,k+q is a random variable with the cdf of W (i)

k+q(xi, ζi) and pdf of w(i)
k+q(xi, ζi). The expectation of

Xr
i,k+q is given by E(Xr

i,k+q) = ri!
λ

ri
i

ki+qi−1∑
li=0

(−1)li

(li+1)ri+1

(
ki+qi−1

li

)
. Setting r = 1 in Eq (4.8), we obtain the mean of

Xi, denoted by µ′i , for i = 1, 2. We can also obtain PWMs, which are mainly used to estimate parameters
for a distribution whose inverse cannot be expressed explicitly. The (n, s)th PWM of Xi is denoted by
η(i)

(n,s) and can be expressed as η(i)
(n,s) = E

[
Xn

i F s(Xi)
]

=
∫ +∞

−∞
xn

i F s(xi, ζi) f (xi, ζi)dxi. By using Eq (4.4) and
F s(xi, ζi) =

∑
k+q≥0

ϕ(i)
s,k+qG

k+q(xi, ζi); where ϕ(i)
s,k+q = ((ki+qi)υ

(i)
s,0)−1 ∑ki+qi

hi=1 [hi(si+1)−(ki+qi)] υ
(i)
hi
ϕsi,(ki+qi−hi),

we obtain
η(i)

(n,s) =
∑

ki+qi≥0

∑
ki ,qi≥0
ki+qi≥1

(ki + qi) υ
(i)
k,q ϕ

(i)
s,k+q Ξ(i)

n (2k + 2q − 1); i = 1, 2, (4.9)

where Ξn(m) =
∫ 1

0
QG(u)numdu. Setting n = 1 and s = 1 in Eq (4.9), we obtain η(i) = E

[
XiF(Xi, ζi)

]
of Xi, i = 1, 2. In BFGMLG family, the regression function of Xi given X j = x j or the conditional
expectation of Xi given X j = x j is calculated using the conditional density of Xi given X j = x j in (4.5),
as follows:

E(Xi | X j = x j) = µ′i
[
1 + θ − 2θ F(x j;α j, β j, ζ j) + Ωi

(
4θ F(x j;α j, β j, ζ j) − 2θ

)]
, (4.10)

where i, j = 1, 2 and i , j, and Ωi = η(i)/µ′i = E [XiF(Xi)] /E[Xi].
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4.3.2. Moment generating function

Let (X1, X2) represent a random variable with pdf defined in Eq (1.3). The moment generating
function of (X1, X2) is then obtained by,

MX1,X2(t1, t2) = E(et1X1et2X2) =

∞∑
n1=0

∞∑
n2=0

(t1)n1

n1!
(t2)n2

n2!
µ′n1
µ′n2

[1 + θ

−2θΩn2
2 − 2θΩn1

1 + 4θΩn1
1 Ω

n2
2

]
, (4.11)

where Ω
ni
i = η(i)

ni /µ
′ni

i = E
[
Xni

i F(Xi)
]
/E[Xni

i ] for i = 1, 2.

4.3.3. Product moments

If the distribution of the random variable (X1, X2) follows the BFGMLG family, then the rth and sth
joint moments around zero, denoted by µ′rs

i , can be expressed as follows:

µ′rs
i = E(Xr

1Xs
2) = µ′r1 µ

′s
2
[
1 + θ − 2θΩs

2 − 2θΩr
1 + 4θΩr

1Ω
s
2
]
, (4.12)

The covariance and correlation coefficient (ρ) between X1 and X2 can be calculated from Eq (4.12)
as follows:

cov(X1, X2) = µ′1 µ
′
2 θ [1 − 2Ω2 − 2Ω1 + 4Ω1Ω2] , (4.13)

and
ρ(X1, X2) =

θ [1 − 2Ω2 − 2Ω1 + 4Ω1Ω2]√
µ′(2)

1
(µ′1)2 − 1

√
µ′(2)

2
(µ′2)2 − 1

. (4.14)

where µ′(2)
i =

∫ ∞
−∞

x2
i g(xi; ζi)dxi. It can be observed that when θ = 0, ρ becomes 0, indicating that X1

and X2 are independent.

5. Reliability and dependence

A bivariate random vector (X1, X2) with joint density f (x1, x2) and survival function S (x1, x2) =

P(X1 > x1, X2 > x2) has a bivariate hazard rate function, as stated by Basu [24], given by:

h(x1, x2) =
f (x1, x2)
S (x1, x2)

. (5.1)

The hazard rate function of BFGMPLG family is

hBFGMLG(x1, x2) =
α1 g(x1; ζ1)[

1 −G(x1; ζ1)
] [
β1 − log (1 −G(x1; ζ1))

]
α2 g(x2; ζ2)[

1 −G(x2; ζ2)
] [
β2 − log (1 −G(x2; ζ2))

]
1 + θ

[
2ω1(x1;α1, β1, ζ1) − 1

] [
2ω2(x2;α2, β2, ζ2) − 1

]
1 + θ

[
1 − ω1(x1;α1, β1, ζ1)

] [
1 − ω2(x2;α2, β2, ζ2)

] .

(5.2)
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5.1. Hazard gradient functions

Consider a bivariate random vector (X1, X2) with joint density f (x1, x2) and survival function
S (x1, x2), then, as stated by Johnson et al. [25], the bivariate hazard rate function in vector form is
given by

h(x1, x2) = (
−∂ ln S (x1, x2)

∂x1
,
−∂ ln S (x1, x2)

∂x2
), (5.3)

For FGM copula, Vaidyanathan et al. [2] introduced −∂ ln S (x1,x2)
∂x1

as follows:

−∂ ln S (x1, x2)
∂x1

= h(x1)
[
1 −

(
[1 − F(x1)]−1

[
(θF(x2))−1 + 1

]
− 1

)−1
]
. (5.4)

From (2.6), we get

−∂ ln S (x1, x2)
∂x1

=
α1 g(x1; ζ1)[

1 −G(x1; ζ1)
] [
β1 − log (1 −G(x1; ζ1))

]{
1 −

θ ω2(x2;α2, β2, ζ2)
[
1 − ω1(x1;α1, β1, ζ1)

]
1 + θ

[
1 − ω1(x1;α1, β1, ζ1)

] [
1 − ω2(x2;α2, β2, ζ2)

]} , (5.5)

−∂ ln S (x1, x2)
∂x2

=
α2 g(x2; ζ2)[

1 −G(x2; ζ2)
] [
β2 − log (1 −G(x2; ζ2))

]{
1 −

θ ω1(x1;α1, β1, ζ1)
[
1 − ω2(x2;α2, β2, ζ2)

]
1 + θ

[
1 − ω1(x1;α1, β1, ζ1)

] [
1 − ω2(x2;α2, β2, ζ2)

]} . (5.6)

By substituting the above expressions in (5.3), the vector hazard rate function of BFGMPLG family
is obtained. The Eqs (5.5) and (5.6) have two terms: The first term is the hazard rate of the univariate
Lomax family distributions, and the second term is a positive increasing function for positive θ and is
a negative decreasing function for negative θ.

Also, the conditional hazard rate function h(x1 | X2 = x2) of X1 given X2 = x2 and h(x2 | X1 = x1) of
X2 given X1 = x1 for the BFGMLG family are

h(x1 | X2 = x2) =
α1

β1

g(x1; ζ1)[
1 −G(x1; ζ1)

]ω 1
α1
1 (x1;α1, β1, ζ1){

1 + θ
[
2ω1(x1;α1, β1, ζ1) − 1

] [
2ω2(x2;α2, β2, ζ2) − 1

]
1 − θ

[
1 − ω1(x1;α1, β1, ζ1)

] [
2ω2(x2;α2, β2, ζ2) − 1

] } , (5.7)

and
h(x2 | X1 = x1) =

α2

β2

g(x2; ζ2)[
1 −G(x2; ζ2)

]ω 1
α2
2 (x2;α2, β2, ζ2){

1 + θ
[
2ω1(x1;α1, β1, ζ1) − 1

] [
2ω2(x2;α2, β2, ζ2) − 1

]
1 − θ

[
1 − ω2(x2;α2, β2, ζ2)

] [
2ω1(x1;α1, β1, ζ1) − 1

] } . (5.8)

In reliability theory and lifetime data analysis, the concept of random variable dependence is
extremely useful. Covariance and product moment correlation are traditional methods for determining
the degree of dependence between two variables. In addition to these traditional measures, several
other concepts of new dependence have been suggested in the literature. In this subsections, we will
study various measures of dependence for the BFGMLG family and discuss their important properties.
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5.2. Positive quadrant dependence

Definition 5.1. Let (X1; X2) be a bivariate random vector with distribution and marginals F(x1, x2),
F(x1) and F(x2), respectively. (X1; X2) is considered to be positive quadrant dependent (PQD) if

F(x1, x2) ≥ F(x1)F(x2) for x1 and x2,

or, equivalently, if

S (x1, x2) ≥ S (x1)S (x2) for x1 and x2

where S (x1, x2), S (x1) and S (x2) symbolise the joint and marginals survival functions. If the reverse
inequality holds, the random vector (X1; X2) is negative quadrant dependent (NQD) ( Lehmann [26]
and Nelsen [16]).

Proposition 5.1. Let (X1, X2) ∼ BFGMLG(α1, β1, ζ1, α2, β2, ζ2, θ). Then the BFGMLG family is PQD
(NQD) for a positive (negative) value of θ.

Proof. From Eq (2.6), the marginal survival functions S (x1) and S (x2) are easy to obtain. One can
quickly determine that S (x1, x2) ≥ (≤)S (x1)S (x2), which relates to the PQD (NQD) of the BFGMLG
family using joint and marginal survival function.

Remark 5.1. X1 and X2 are positively (negatively) correlated if Cov(X1; X2) ≥ 0 (≤ 0), respectively.
Therefore, for the BFGMLG family, Cov(X1, X2) ≥ 0 (≤ 0) is a direct consequence of the PQD (NQD)
property, respectively.

5.3. Regression dependence

Compared to PQD, regression dependence is a stronger concept of dependence.

Definition 5.2. F(x1, x2) is positively regression dependent if (Nelsen [16]):

P(X2 > x2 | X1 = x1) is increasing in x1 for all values of x2.

Proposition 5.2. Let (X1, X2) ∼ BFGMLG(α1, β1, ζ1, α2, β2, ζ2, θ) with cdf function F(x1, x2). Then,
F(x1, x2) in (2.3) is positively regression dependent.

Proof. The conditional survival function P(X2 > x2 | X1 = x1) of X2 on X1 = x1 is given in Eq (4.7).
On differentiation with respect to x1, we obtain:

∂

∂x1
P(X2 > x2 | X1 = x1) =

2θα1β1g(x1; ζ1)ω
(1− 1

α1
)

1 (x1;α1, β1, ζ1)[
1 −G(x1; ζ1)

]
ω2(x2;α2, β2, ζ2)

[
1 − ω2(x2;α2, β2, ζ2)

][
β1 − log (1 −G(x1; ζ1))

]2

 ≥ 0. (5.9)

We start with a local dependence function to establish the TP2 property of the BFGMLG family.
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5.4. A local dependence function γ(x1, x2)

Holland and Wang [27] introduced a local dependence function (x1, x2), to study the dependence
between random variables X1 and X2, and defined it as follows:

γ(x1, x2) =
∂2

∂x1∂x2
ln f (x1, x2). (5.10)

This dependence function, is an effective tool for investigating the totally positive of order 2 (TP2)
property of a bivariate distribution. Holland and Wang [27], and Balakrishnan and Lai [28] investigated
the detailed properties of γ(x1, x2).

Proposition 5.3. Let (X1, X2) ∼ BFGMLG(α1, β1, ζ1, α2, β2, ζ2, θ). Then, its local dependence function
is

γ(x1, x2) =α1β
α1
1

g(x1; ζ1)[
1 −G(x1; ζ1)

] [
β1 − log (1 −G(x1; ζ1))

]α1+1

α2β
α2
2

g(x2; ζ2)[
1 −G(x2; ζ2)

] [
β2 − log (1 −G(x2; ζ2))

]α2+1

4 θ[
1 + θ

(
2
[

β1

β1−log[1−G(x1;ζ1)]

]α1

− 1
) (

2
[

β2

β2−log[1−G(x2;ζ2)]

]α2

− 1
)]2 .

(5.11)

It is worth nothing, that when θ = 0, then γ(x1, x2) = 0, implying that X1 and X2 are independent.
Holland and Wang [27] and Nelsen [16] demonstrated that a bivariate density f (x1, x2) has the TP2
(totally positive of order 2) property if and only if γ(x1, x2) ≥ 0 and has the TN2 (totally negative of
order 2) property if and only if γ(x1, x2) < 0. The final result for the TP2 property of the BFGMLG
family is as follows:

Proposition 5.4. Let (X1, X2) ∼ BFGMLG(α1, β1, ζ1, α2, β2, ζ2, θ) with density f (x1, x2) defined in (2.4).
Then, f (x1, x2) has the TP2 property if θ ≥ 0 and the TN2 property if θ < 0.

It is worth noting that TP2 is a stronger concept of dependence than other well-known forms of
dependence such as stochastically increasing (SI), right-tail increasing (RTI), association, and positive
quadrant dependence (PQD). It has been established that TP2 implies these other forms of dependence,
as shown by Nelsen [16] and Balakrishnan and Lai [28]. As a result, the BFGMLG family has all of
these dependence properties for 0 ≤ θ ≤ 1.

5.5. Clayton-Oakes association measure

Based on the survival function and its dervatives , Clayton [29] and Oakes [30] defined a local
dependence function as:

l(x1, x2) =
f (x1, x2) S (x1, x2)

S 1(x1, x2) S 2(x1, x2)
(5.12)

where S 1(x1, x2) = ∂
∂x1

S (x1, x2) and S 2(x1, x2) = ∂
∂x2

S (x1, x2).

Proposition 5.5. Let (X1, X2) ∼ BFGMLG(α1, β1, ζ1, α2, β2, ζ2, θ), then,

AIMS Mathematics Volume 8, Issue 8, 17539–17584.



17554

l(x1, x2) =

{
1 + θ

[
2ω1(x1;α1, β1, ζ1) − 1

] [
2ω2(x2;α2, β2, ζ2) − 1

]}{
1 + θ

[
1 − ω2(x2;α2, β2, ζ2)

] [
1 − 2ω1(x1;α1, β1, ζ1)

]}{
1 + θ

[
1 − ω1(x1;α1, β1, ζ1)

] [
1 − ω2(x2;α2, β2, ζ2)

]}{
1 + θ

[
1 − ω1(x1;α1, β1, ζ1)

] [
1 − 2ω2(x2;α2, β2, ζ2)

]} , (5.13)

It is simple to demonstrate that for l(x1, x2) = 1, the random variables X1 and X2 are independent.
From Eq (5.13), the random variables X1 and X2 are independent for θ = 0. For 0 < θ < 1, we have
l(x1, x2) > 1, implying that (X1, X2) is right corner set increasing (RCSI) ( Nelsen [16]).

5.6. Conditional probability measure ψ(x1, x2)

By using conditional probability, Anderson et al. [31] defined a measure of association for random
vector (X1, X2) ψ(x1, x2) as:

ψ(x1, x2) =
P(X1 > x1 | X2 > x2)

P(X1 > x1)
=

S (x1, x2)
S (x1, 0) S (0, x2)

. (5.14)

From Eq (5.14), it is evident that ψ(x1, x2) = 1 if and only if X1 and X2 are independent. Moreover,
if ψ(x1, x2) > 1 for all (x1, x2), then (X1, X2) is positively quadrant dependent (PQD). It is also worth
noting that l(x1, x2) > 1 implies ψ(x1, x2) > 1. The BFGMLG family exhibits the following property.

Proposition 5.6. Let (X1, X2) ∼ BFGMLG(α1, β1, ζ1, α2, β2, ζ2, θ), then,

ψ(x1, x2) = 1 + θ
[
1 − ω1(x1;α1, β1, ζ1)

] [
1 − ω2(x2;α2, β2, ζ2)

]
. (5.15)

We can see from Eq (5.15) that when θ = 0, we get ψ(x1, x2) = 1. As a result, X1 and X2 are
independent. Similarly, X1 and X2 are PQD when θ > 0.

5.7. BFGMLG family and dependence measures

The product moments correlation is a measure of linear dependence that can produce misleading
results, even when the dependence is strong for non-elliptical random variables. Copula-based
measures of concordance can capture non-linear dependence and are widely regarded as the superior
alternative to linear correlation. In this section, we introduce some measures of dependence based on
copulas for the BFGMLG family, such as Spearman’s rho (ρc), Gini’s gamma (γc), and the measure of
regression dependence r(X1, X2), which are defined in Nelsen [32] and Popović et al. [33].

5.8. Spearman’s rho (ρc)

The proportional to the probability of concordance minus the probability of discordance for two
vectors is denoted as Spearman’s rho (ρc). For copula terms, Spearman’s (ρc) is defined as:

ρc = 12
∫ 1

0

∫ 1

0
C {F(x1), F(x2)} dF(x1) dF(x2) − 3.

In case of the FGM copula, Spearman’s rho (ρcθ) is θ
3 and means that ρcθ ∈ [−1

3 ,
1
3 ].
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5.9. Gini’s gamma (γc)

Nelsen [32] defined Gini’s measure of association for X1 and X2, denoted by γc, as follows:

γc = 4
∫ 1

0
{C [F(x1), F(x1)] + C [F(x1), 1 − F(x1)]} dF(x1) − 2.

In case of FGM copula, Gini’s gamma γc is γcθ = 4
15θ and this means that γcθ ∈ [−4

15 ,
4

15 ].

5.10. A measure of regression dependence

Dette et al. [34] proposed a measure of regression dependence between two random variables X1

and X2, defined in terms of the copula C. This measure quantifies the strength of the relationship
between the variables and is given by

r(X1, X2) = 6
∫ 1

0

∫ 1

0

(
∂

∂F(x1)
C(F(x1), F(x2))

)2

dF(x1)dF(x2) − 2. (5.16)

For the FGM copula, a measure of regression dependence between two random variables X1 and X2 is
given by

(
θ2

30 −
θ
4

)
and this means that r ∈ [0.216, 0.283].

6. Multivariate FGMLG family

In this section, we discuss the multivariate of the FGMLG family. The multivariate aspect
of the FGMLG family is important for modeling the dependence structure of multiple variables
simultaneously. The joint distribution function of the d-variate FGM copula, denoted by Cd, is defined
by Johnson and Kotz [35] as follows:

Cθ(F1(x1), ..., Fd(xd)) =

d∏
j=1

F j(x j)

1 +

d∑
m=2

∑
1≤ j1<...< jm≤d

θ j1,..., jm

(
1 − F j1(x j1)

)
...

(
1 − F jm(x jm)

) , (6.1)

where (F1(x1), ..., Fd(xd)) ∈ [0, 1]d and θ j1,..., jm ∈ θ is a parameter. The dependence parameters in the
d-variate FGM copula are

∑d
j=2

(
d
j

)
= 2d − d − 1. The formula for the joint density function of F(X) ,

denoted by cd , is as follows:

cθ(F(x1), ..., F(xd)) = 1 +

d∑
m=2

∑
1≤ j1<...< jm≤d

θ j1,..., jm

(
1 − 2F j1(x j1)

)
...

(
1 − 2F jm(x jm)

)
. (6.2)

By using Eq (4.1) and (1.6), the joint cdf of the multivariate FGM lomax generator family, denoted by
(MFGMLG) family, is

Fd(x1, ..., xd;α j, β j, θ j, ζ j) =


d∏

j=1

1 −

 β j

β j − log
[
1 −G j(x j; ζ j)

] α j
1 +

d∑
m=2

∑
1≤ j1<...< jm≤d

θ j1,..., jm

 β j1

β j1 − log
[
1 −G j1 (x j1 ; ζ j1 )

] α j1

...

 β jm

β jm − log
[
1 −G jm (x jm ; ζ jm )

] α jm
 .

(6.3)
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The joint density function of the MFGMLG family of distributions by using Eqs (4.2) and (1.7) is

fd(x1, ..., xd) =

d∏
j=1

α jβ
α j

j

g j(x j; ζ j)[
1 −G j(x j; ζ j)

] [
β j − log

(
1 −G j(x j; ζ j)

)]α j+11 +

d∑
m=2

∑
1≤ j1<...< jm≤d

θ j1,..., jm

2
 β j1

β j1 − log
[
1 −G j1(x j1; ζ j1)

]
α j1

− 1

 ...
...

2
 β jm

β jm − log
[
1 −G jm(x jm; ζ jm)

]
α jm

− 1


 .

7. Methods for estimating parameters

In this section, we introduce two estimation methods for the parameters Θ = (α1, β1, ζ1, α2, β2, ζ2, θ)
of the bivariate continuous FGMLG family: Maximum likelihood estimation (MLE) and Bayesian
estimation.

7.1. Maximum likelihood estimation

In this subsection, we study the problem of determining the maximum likelihood estimators (MLEs)
of the unknown parameters of the BFGMLG family distributions using a random sample. We assume
that {(X11, X21) , ..., (X1n, X2n)} is a random bivariate sample from BFGMLG ∼ (α1, β1, ζ1, α2, β2, ζ2, θ).
For a sample of size n, the log-likelihood function is given by:

ln L =n lnα1 + nα1 ln β1 +

n∑
i=1

ln g(x1i, ζ1) − (α1 + 1)
n∑

i=1

ln
[
β1 − log (1 −G(x1i; ζ1))

]
−

n∑
i=1

ln
[
1 −G(x1i; ζ1)

]
+ n lnα2 + nα2 ln β2 +

n∑
i=1

ln g(x2i, ζ2)

−

n∑
i=1

ln
[
1 −G(x2i; ζ2)

]
− (α2 + 1)

n∑
i=1

ln
[
β2 − log (1 −G(x2i; ζ2))

]
+

n∑
i=1

ln
[
1 + θ

[
2ω1i(x1i;α1, β1, ζ1) − 1

] [
2ω2i (x2i;α2, β2, ζ2) − 1

]]
.

(7.1)

By differentiating (7.1) with respect to α1, β1, ζ1, α2, β2, ζ2, and θ, and equating the resulting expressions
to zero, we obtain the normal equations as follows:

∂L(Θ)
∂α j

=
n
α j

+ n ln β j −

n∑
i=1

ln
[
β j − log

(
1 −G(x ji; ζ j)

)]

+

n∑
i=1

2θ (2ωli (xli;αl, βl, ζl) − 1)ω ji

(
x ji;α j, β j, ζ j

)
lnω

1
α j

ji

(
x ji;α j, β j, ζ j

)
1 + θ

[
2ω1i(x1i;α1, β1, ζ1) − 1

] [
2ω2i (x2i;α2, β2, ζ2) − 1

] = 0,

(7.2)
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∂L(Θ)
∂β j

=
nα j

β j
− (α j + 1)

n∑
i=1

[
β j − log

(
1 −G(x ji; ζ j)

)]−1

−

n∑
i=1


2θα j (2ωli (xli;αl, βl, ζl) − 1)ω

(1− 1
α j

)

ji

(
x ji;α j, β j, ζ j

)
1 + θ

[
2ω1i(x1i;α1, β1, ζ1) − 1

] [
2ω2i (x2i;α2, β2, ζ2) − 1

]
log

(
1 −G(x ji; ζ j)

)
[
β j − log

(
1 −G(x ji; ζ j)

)]2

 = 0,

∂L(Θ)
∂ζ j

=

n∑
i=1

φ(x ji, ζ j)
g(x ji, ζ j)

− (α j + 1)
n∑

i=1

Φ(x ji; ζ j)(
1 −G(x ji; ζ j)

) [
β j − log

(
1 −G(x ji; ζ j)

)]
−

n∑
i=1


2θα j (2ωli (xli;αl, βl, ζl) − 1)ω

(1− 1
α j

)

ji

(
x ji;α j, β j, ζ j

)
1 + θ

[
2ω1i(x1i;α1, β1, ζ1) − 1

] [
2ω2i (x2i;α2, β2, ζ2) − 1

]
β jΦ(x ji; ζ j)(

1 −G(x ji; ζ j)
) [
β j − log

(
1 −G(x ji; ζ j)

)]2

 = 0,

∂L(Θ)
∂θ

=

n∑
i=1

[
2ω1i(x1i;α1, β1, ζ1) − 1

] [
2ω2i (x2i;α2, β2, ζ2) − 1

]
1 + θ

[
2ω1i(x1i;α1, β1, ζ1) − 1

] [
2ω2i (x2i;α2, β2, ζ2) − 1

] = 0, (7.3)

where Φ(x ji; ζ j) =
∂g(x ji;ζ j)

∂ζ j
, Φ(x ji; ζ j) =

∂G(x ji;ζ j)
∂ζ j

and j = (1, 2), l = (1, 2); j , l, (for example, j = 1 then
l = 2).

The non-linear normal equations involved in finding the MLEs of the unknown parameters
are complex and manually solving them can be time-consuming and inconvenient. Therefore,
computational methods are used to determine the MLEs of the parameters. In addition, based on
large sample theory and ML estimates of the asymptotic distribution, we can obtain approximate
confidence intervals (CI) for the parameters α1, β1, ζ1, α2, β2, ζ2, and θ. Specifically, the parameter
vector Θ = (α1, β1, ζ1, α2, β2, ζ2, θ) follows a multivariate normal distribution with mean Θ and
covariance matrix I−1(Θ), where I−1 is the inverse of the observed information matrix obtained as:

I−1(Θ̂) = −E



Iα̂1α̂1

Iβ̂1α̂1
Iβ̂1β̂1

Iζ̂1α̂1
Iζ̂1β̂1

Iζ̂1ζ̂1

Iα̂2α̂1 Iα̂2β̂1
Iα̂2ζ̂1

Iα̂2α2

Iβ̂2α̂1
Iβ̂2β̂1

Iβ̂2ζ̂1
Iβ̂2α̂2

Iβ̂2β̂2

Iζ̂2α̂1
Iζ̂2β̂1

Iζ̂2ζ̂1
Iζ̂2α̂2

Iζ̂2β̂2
Iζ̂2ζ̂2

Iθ̂α̂1
Iθ̂β̂1

Iθ̂ζ̂1
Iθ̂α̂2

Iθ̂β̂2
Iθ̂ζ̂2

Iθ̂θ̂



−1

. (7.4)

I(Θ) is the second derivatives of the natural logarithm of the likelihood function evaluated at Θ̂ =

(α̂1, β̂1, ζ̂1, α̂2, β̂2, ζ̂2, θ̂). As a result, for the parameters α1, β1, ζ1, α2, β2, ζ2 and θ for j = 1, 2, 100(1− γ)
% approximate CI are given as: α̂ j ± Zγ/2

√
Iα̂ jα̂ j , β̂ j ± Zγ/2

√
Iβ̂ jβ̂ j

, ζ̂ j ± Zγ/2
√

Iζ̂ jζ̂ j
and θ̂ ± Zγ/2

√
Iθ̂θ̂ ,

where Zγ/2 is the percentile of the standard normal distribution with right tail probability γ

2 .
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7.2. Bayesian estimation

Before discussing how a Bayesian technique could estimate a population parameter, it is crucial
to understand one key difference between frequentest and Bayesian statisticians. The difference is
whether a statistician considers a parameter to be an unknowable constant or a random variable. An
estimator or decision rule used in estimating theory and decision theory that minimises the posterior
expected value of a loss function is referred to as a Bayes estimator, also known as a Bayes action
(i.e., the posterior expected loss). In other words, it maximises the posterior expectation of the utility
function. The following steps are often followed when using the Bayesian technique with a bivariate
model based on the FGM copula for inference:

(1) The joint independent prior distribution is Π(Θ) =
∏p−1

j=1 π j(Θ j) by selecting the independent prior
distributions π j(Θ j); j = 1, ..., p − 1 for all parameters, where p = length(Θ).

(2) For the copula parameter π j(θ), select the independent prior distribution where −1 ≤ θ ≤ 1.

(3) By obtaining the likelihood function for the joint statistical model L(x, y|Θ) that reflects our
perceptions of X and Y under the assumption of Θ.

(4) Do the joint posterior distribution calculation. Applying the Bayes law of conditional probabilities,
we obtain Π(Θ|x, y) as

Π(Θ|x, y) =
Π(Θ) L(x, y|Θ)∫

Θ1
...

∫
Θ j

Π(Θ) L(x, y|Θ)dΘ1...dΘ j
.

(5) For Θ j; j = 1, ..., p, obtain the proportionate posterior distribution.

(6) Use Gibbs sampling or the Metropolis-Hastings (MH) algorithm to numerically analyse Bayesian
estimate using Markov chain Monte Carlo (MCMC).

(7) Pick out loss functions that are symmetric and asymmetric.

To learn more about Bayesian algorithms, consult the citations provided by Suzuki et al. [36]
and Louzada et al. [37]. We employed informative prior as independent gamma distributions in the
parameter vector Θ. We used prior distributions that are not informative, such as uni f orm(w7, q7);
−1 < θ < 1, for the copula parameter. The independent joint prior density function of Θ for the
BFGMLG family can be stated as follows:

Π(Θ) ∝ αw1−1
1 βw2−1

1 ζw3−1
1 αw4−1

2 βw5−1
2 ζw6−1

2
1

q7 − w7
e−(q1α1+q2β1+q3ζ1+q4α2+q5β2+q6ζ2). (7.5)

The estimate and variance-covariance matrix of the MLE approach can be used to find the
appropriate hyper-parameters of the independent joint prior. The estimated hyper-parameters can be
expressed as by equating the mean and variance of the gamma priors.

w j =

[
1
L

∑L
i=1 Θ̂i

j

]2

1
L−1

∑L
i=1

[
Θ̂i

j −
1
L

∑L
i=1 Θ̂i

j

]2 ; j = 1, ..., p − 1,
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q j =

1
L

∑L
i=1 Θ̂i

j

1
L−1

∑L
i=1

[
Θ̂i

j −
1
L

∑L
i=1 Θ̂i

j

]2 ; j = 1, ..., p − 1.

where L denotes the quantity of iterations. The calculated hyper-parameter for the copula parameter is
denoted by

w7 =

√√√
3

L − 1

L∑
i=1

θ̂i −
1
L

L∑
i=1

θ̂i

2

−
1
L

L∑
i=1

θ̂i,

q7 =
1
L

L∑
i=1

θ̂i −

√√√
3

L − 1

L∑
i=1

θ̂i −
1
L

L∑
i=1

θ̂i

2

.

The likelihood function of the BFGMLG family yields the joint posterior density function of Θ,
which is as follows.

Π(Θ|x1, x2) =αn+w1−1
1 βw2+nα1−1

1 ζn+w3−1
1

n∏
i=1

g(x1i; ζ1)e−(q1α1+q2β1+q3ζ1)[
1 −G(x1i; ζ1)

] [
β1 − log (1 −G(x1i; ζ1))

]α1+1

αn+a4−1
2 βnα2+a5−1

2 ζn+w6−1
2

n∏
i=1

g(x2i; ζ2)e−(α2+q5β2+q6ζ2)[
1 −G(x2i; ζ2)

] [
β2 − log (1 −G(x2i; ζ2))

]α2+1

n∏
i=1

[
1 + θ

(
2
[

β1

β1 − log
[
1 −G(x1i; ζ1)

] ]α1

− 1
) (

2
[

β2

β2 − log
[
1 −G(x2i; ζ2)

] ]α2

− 1
)]
.

(7.6)

By using the most common of symmetric loss function, which is a squared error loss function. The
Bayes estimators of Θ̃ based on squared error loss function is given by

S (Θ̃) = E
(
Θ̃ − Θ

)2

=

∫ ∞

0
...

∫ ∞

0

∫ 1

−1

(
Θ̃ − Θ

)2
Π(Θ|x, y)dΘ1...dΘ5.

(7.7)

It is noteworthy that the integrals provided by Eq (7.7) cannot be computed directly. Because of
this, we apply the MCMC to determine an approximated integral value. An essential subclass of
MCMC approaches are Gibbs sampling and more general Metropolis within Gibbs samplers. The
two most popular MCMC method examples are the MH algorithm and Gibbs sampling. Similar to
acceptance-rejection sampling, the MH method assumes that a candidate value can be produced from
a proposal distribution that is a normal distribution for each iteration of the process. Gibbs sampling
measurements include.

7.3. Highest posterior density

The approach of Chen and Shao [38] was extensively used to construct the HPD intervals of
unknown benefit distribution parameters in highest posterior density (HPD) intervals for Bayesian
estimate. For instance, a 95% HPD interval can be constructed using the lower and upper percentiles
of the MCMC sample results as the two ends, respectively. The following is how Bayes, reliable
intervals of the Θ parameters are obtained:
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(1) Arrange Θ j; j = 1, ..., 5 as α[1]
l < α[2]

l < ... < α[L]
l , β[1]

l < β[2]
l < ... < β[L]

l , ζ[1]
l < ζ[2]

l < ... < ζ[L]
l , and

θ[1] < θ[2] < ... < θ[L] where l = 1, 2, and L is the length of MCMC generated.

(2) The 95% symmetric credible intervals of α1, β1, α2, β2 and θ become
(
α

L250/10000

l , α
L9750/10000

l

)
,(

β
L250/10000

l , β
L9750/10000

l

)
,
(
ζ

L250/10000

l , ζ
L9750/10000

l

)
and

(
θL250/10000 , θL9750/10000

)
.

8. Simulation

For comparing the likelihood and Bayesian estimation methods, MCMC simulation studies were
performed. The results are presented in Table 2 α1 = 1.6, β1 = 2, b1 = 1.8, α2 = 1.9, β2 = 2.5, b2 =

1.7, Table 3 α1 = 0.5, β1 = 1.2, b1 = 1.2, α2 = 0.8, β2 = 0.5, b2 = 1.3, Table 4 α1 = 3.2, β1 =

3, b1 = 0.6, α2 = 3.3, β2 = 2.5, b2 = 0.5, and Table 5 α1 = 2, β1 = 0.3, b1 = 1.8, α2 = 1.3, β2 =

0.5, b2 = 1.9. Based on the bias, mean squared errors (MSE), and length of confidence intervals
(LCI), numerical assessments were carried out. First, 5000 samples of the BFGM LGE model were
created. For computational time of Bayesian estimation, we simulated 12000 MCMC samples and
ignored the first 2000 iterations as burn-in. It should be noted that all estimating methods work better
when n ⇒ +∞, as shown by Tables 2–5. The best guess is a value with a lower range of numerical
assessments. It should be emphasised that the MLE and Bayesian approaches are generally suggested
for statistical modelling and applications; this assessment, as shown in Tables 2–5, is mostly based
on a thorough simulation study, and the simulation, as is well known, comes before the application
on real data. Furthermore, despite the efficiency of likelihood method, and the Bayesian approach
remains the most effective and reliable of likelihood method, but all likelihood methods are effective.
Although using simulation to compare various estimation methods is not prohibited, in this section
we use simulation studies to evaluate them rather than compare them. However, since real data are
frequently used to compare various estimation methods, we decided to present four applications for
this particular use.

The following conclusions can be drawn from Table 2–5:

• The proposed estimates of the parameters for the BFGM LGE distribution performed well, which
is the key general observation.
• The results of Tables show that the BFGM LGE distribution is stable since the range of bias, and

MSE for seven parameters of the BFGM LGE distribution is fairly modest.
• As the sample size increases, we occasionally observe a decrease in the bias, MSE, and LCI for

all estimations.
• This indicates that for high sample sizes, several estimating methodologies yield correct bias and

MSE findings.
• Due to the gamma information, the Bayes estimates of the BFGM LGE distribution’s parameters

behaved more predictably than the other estimates. Regarding HPD credible intervals, the same
statement might be made.
• The Bayesian estimation approach is the most accurate way to estimate the BFGM LGE

distribution parameter.
• When increasing the value of the copula parameter θ, the estimated MSE will become as low

as possible, knowing that the maximum correlation for the data based on FGM copula is from
–0.3333 to 0.3333.
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Table 2. MLE and Bayesian for α1 = 1.6, β1 = 2, b1 = 1.8, α2 = 1.9, β2 = 2.5, b2 = 1.7.

θ 0.5 -0.5

MLE Bayesian MLE Bayesian

n Bias MSE LACI Bias MSE LCCI Bias MSE LACI Bias MSE LCCI

40

α1 0.6642 2.5631 5.7131 0.0618 0.1894 1.6150 0.6374 2.5308 5.7165 0.0658 0.2322 1.5180

β1 0.0914 0.2767 2.0318 -0.0668 0.2347 2.0232 0.0798 0.2744 2.0303 -0.0543 0.2364 2.0032

b1 -0.1782 0.4246 2.4581 -0.0139 0.3391 2.1761 -0.1569 0.4143 2.4481 -0.0162 0.3239 2.1852

α2 0.8666 3.7683 6.8125 0.0237 0.2075 1.6963 0.7872 3.2469 6.3570 0.0861 0.2667 1.7660

β2 0.0405 0.2302 1.8750 -0.0405 0.2141 1.7384 0.0391 0.2258 1.8573 -0.0276 0.2046 2.0520

b2 -0.1679 0.5383 5.7131 0.0200 0.2877 1.6150 -0.1547 0.5114 5.7165 -0.0284 0.2557 1.5180

θ 0.0313 0.5964 2.0318 -0.0799 0.1861 2.2316 -0.0100 0.4295 2.0303 0.0665 0.1740 2.3239

100

α1 0.1752 0.3612 2.2548 0.0064 0.0491 0.8035 0.2046 0.4470 2.4965 0.0175 0.0422 0.7744

β1 0.0343 0.1065 1.2729 -0.0330 0.1010 1.2207 0.0429 0.1129 1.3070 -0.0228 0.1027 1.2420

b1 -0.0625 0.1490 1.4936 -0.0117 0.0895 1.1471 -0.0727 0.1585 1.5350 -0.0141 0.0928 1.2017

α2 0.3277 0.9488 3.5976 0.0017 0.0577 0.9101 0.3041 0.8366 3.3831 -0.0019 0.0540 0.8953

β2 0.0303 0.0953 1.2046 -0.0120 0.0911 1.1253 0.0182 0.1039 1.2623 -0.0421 0.0911 1.2087

b2 -0.0893 0.2283 2.2548 -0.0030 0.0807 0.8035 -0.0749 0.2409 2.4965 0.0035 0.0903 0.7744

θ 0.0136 0.0893 1.2729 -0.0142 0.0592 1.2207 0.0209 0.0877 1.3070 0.0201 0.0613 1.2420

150

α1 0.1062 0.2098 1.7477 0.0047 0.0162 0.4926 0.1267 0.2186 1.7653 -0.0016 0.0155 0.4721

β1 0.0150 0.0816 1.1188 -0.0031 0.0287 0.6601 0.0316 0.0794 1.0979 -0.0163 0.0296 0.6836

b1 -0.0331 0.1073 1.2783 -0.0069 0.0285 0.6710 -0.0511 0.1078 1.2720 0.0023 0.0281 0.6623

α2 0.1991 0.4197 2.4178 -0.0074 0.0186 0.5191 0.2074 0.5468 2.7837 0.0070 0.0182 0.5398

β2 0.0173 0.0703 1.0373 -0.0057 0.0298 0.6699 0.0123 0.0731 1.0596 0.0010 0.0304 0.6850

b2 -0.0581 0.1631 1.7477 0.0102 0.0256 0.4926 -0.0500 0.1709 1.7653 -0.0036 0.0248 0.4721

θ -0.0045 0.0574 1.1188 -0.0051 0.0252 0.6601 0.0259 0.0571 1.0979 0.0112 0.0244 0.6836
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Table 3. MLE and Bayesian for α1 = 0.5, β1 = 1.2, b1 = 1.2, α2 = 0.8, β2 = 0.5, b2 = 1.3.

θ 0.5 -0.5

MLE Bayesian MLE Bayesian

n Bias MSE LACI Bias MSE LCCI Bias MSE LACI Bias MSE LCCI

40

α1 0.0493 0.0263 0.6064 0.0329 0.0110 0.3321 0.0529 0.0291 0.6363 0.0419 0.0202 0.3301

β1 0.0482 0.0897 1.1592 0.0222 0.0824 1.0749 0.0350 0.0879 1.1543 -0.0010 0.0724 1.0832

b1 -0.0743 0.0965 1.1827 -0.0207 0.0823 1.0073 -0.0613 0.0926 1.1688 -0.0414 0.0825 1.0784

α2 0.1523 0.1993 1.6459 0.0934 0.0568 0.7018 0.1653 0.2367 1.7946 0.0989 0.0505 0.6934

β2 0.1584 0.1107 1.1472 0.1222 0.1026 1.0164 0.0840 0.0865 1.1051 0.0763 0.0794 1.0563

b2 -0.0709 0.0284 0.6064 -0.0862 0.0281 0.3321 -0.0372 0.0233 0.6363 -0.0130 0.0231 0.3301

θ -0.1969 0.3862 1.1592 -0.1401 0.1784 1.7491 0.1981 0.3824 1.1543 0.1576 0.1911 1.0083

100

α1 0.0189 0.0072 0.3240 0.0113 0.0028 0.1950 0.0188 0.0075 0.3312 0.0105 0.0026 0.1875

β1 0.0245 0.0358 0.7362 -0.0085 0.0282 0.6092 0.0224 0.0408 0.7876 -0.0204 0.0371 0.6949

b1 -0.0361 0.0372 0.7428 -0.0271 0.0280 0.6116 -0.0356 0.0418 0.7898 -0.0340 0.0377 0.7030

α2 0.0433 0.0308 0.6674 0.0229 0.0117 0.3956 0.0747 0.0395 0.7224 0.0485 0.0161 0.4309

β2 0.0837 0.0339 0.6429 0.0640 0.0318 0.6687 0.0249 0.0281 0.6504 0.0037 0.0232 0.6388

b2 -0.0312 0.0062 0.3240 -0.0385 0.0051 0.1950 -0.0062 0.0050 0.3312 -0.0329 0.0042 0.1875

θ -0.2354 0.1483 0.7362 -0.1084 0.0726 1.0917 0.2461 0.1543 0.7876 0.0986 0.0694 1.0949

150

α1 0.0105 0.0040 0.2455 0.0050 0.0014 0.1379 0.0101 0.0041 0.2480 0.0060 0.0015 0.1425

β1 0.0120 0.0255 0.6241 -0.0005 0.0247 0.6095 0.0134 0.0256 0.6257 0.0004 0.0246 0.6300

b1 -0.0198 0.0265 0.6342 -0.0049 0.0247 0.6333 -0.0206 0.0263 0.6306 -0.0136 0.0257 0.6443

α2 0.0301 0.0184 0.5181 -0.0068 0.0059 0.2884 0.0463 0.0206 0.5322 0.0192 0.0071 0.3130

β2 0.0799 0.0243 0.5249 0.0343 0.0134 0.4284 0.0024 0.0166 0.5048 -0.0146 0.0122 0.4182

b2 -0.0298 0.0042 0.2455 -0.0157 0.0040 0.1379 0.0032 0.0027 0.2480 0.0008 0.0026 0.1425

θ -0.2273 0.1132 0.6241 -0.0402 0.0258 0.6095 0.2368 0.1207 0.6257 0.0465 0.0283 0.6300
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Table 4. MLE and Batesian for α1 = 3.2, β1 = 3, b1 = 0.6, α2 = 3.3, β2 = 2.5, b2 = 0.5.

MLE Bayesian MLE Bayesian

θ n Bias MSE LACI Bias MSE LCCI θ Bias MSE LACI Bias MSE LCCI

-0.15

40

α1 0.6833 3.4841 6.8204 -0.1041 0.4623 2.2573

0.5

0.7402 3.2912 6.4959 -0.0106 0.5286 2.4698

β1 -0.0263 0.0143 0.4574 -0.0125 0.0139 0.3885 -0.0180 0.0136 0.4523 0.0105 0.0134 0.4078

b1 0.0679 0.1654 1.5745 0.0973 0.0816 0.9472 0.0296 0.1481 1.5047 0.0858 0.0765 0.9481

α2 0.6594 2.9687 6.2505 -0.0324 0.5044 2.6858 0.6772 3.0802 6.3501 -0.0728 0.4937 2.6797

β2 -0.0145 0.0095 0.3790 0.0162 0.0041 0.2764 -0.0173 0.0102 0.3896 0.0173 0.0094 0.4057

b2 0.0320 0.1077 6.8204 0.0861 0.0779 2.2573 0.0379 0.1087 6.4959 0.0844 0.0642 2.4698

θ -0.0396 0.3552 0.4574 0.0185 0.1822 2.3885 0.0746 0.3478 0.4523 -0.0481 0.1809 2.4780

100

α1 0.3429 1.4142 4.4712 -0.0047 0.1052 1.2379 0.3705 1.5705 4.6953 -0.0391 0.1573 1.2966

β1 -0.0091 0.0035 0.2300 -0.0082 0.0021 0.2143 -0.0104 0.0049 0.2702 -0.0068 0.0031 0.2385

b1 0.0229 0.0635 0.9853 0.0272 0.0187 0.5007 0.0239 0.0738 1.0616 0.0329 0.0195 0.5208

α2 0.4194 1.6384 4.7485 0.0186 0.1558 1.2810 0.4265 1.5347 4.5616 -0.0038 0.1567 1.3404

β2 -0.0066 0.0034 0.2288 -0.0042 0.0029 0.2130 -0.0052 0.0032 0.2196 0.0057 0.0028 0.2040

b2 0.0090 0.0516 4.4712 0.0212 0.0142 1.2379 0.0072 0.0488 4.6953 0.0279 0.0148 1.2966

θ 0.0010 0.0887 0.2300 0.0357 0.0676 1.4257 0.0148 0.0913 0.2702 -0.0191 0.0610 1.3085

150

α1 0.3785 1.1527 3.9450 0.0040 0.0355 0.6047 0.3417 1.1933 4.0693 -0.0020 0.0408 0.6865

β1 -0.0025 0.0026 0.2004 -0.0028 0.0020 0.1661 -0.0045 0.0028 0.2079 -0.0038 0.0026 0.1969

b1 -0.0065 0.0489 0.8676 0.0089 0.0067 0.3038 0.0024 0.0516 0.8907 0.0088 0.0071 0.3201

α2 0.2558 1.0589 3.9138 -0.0028 0.0335 0.7266 0.2570 1.0715 3.9326 -0.0134 0.0343 0.6677

β2 -0.0040 0.0016 0.1576 0.0049 0.0013 0.1466 -0.0062 0.0020 0.1748 0.0060 0.0017 0.1668

b2 0.0116 0.0323 3.9450 0.0104 0.0053 0.6047 0.0183 0.0361 4.0693 0.0153 0.0054 0.6865

θ 0.0290 0.0614 0.2004 0.0185 0.0245 0.6605 0.0081 0.0577 0.2079 -0.0067 0.0250 0.6856

-0.5

40

α1 0.7308 3.2146 6.4213 -0.0362 0.5308 2.4565

0.9

0.6092 2.9147 6.2624 -0.0316 0.4271 2.7672

β1 -0.0242 0.0184 0.5230 -0.0352 0.0144 0.5066 -0.0320 0.0237 0.5915 -0.0143 0.0214 0.4288

b1 0.0461 0.1705 1.6093 0.0855 0.0697 0.9645 0.0669 0.1828 1.6581 0.0629 0.0564 0.8594

α2 0.5884 2.8634 6.2225 -0.0365 0.5645 2.6689 0.5819 2.9359 6.3281 -0.1317 0.5600 2.8388

β2 -0.0206 0.0140 0.4568 -0.0028 0.0139 0.3686 -0.0286 0.0169 0.4979 -0.0672 0.0144 0.4647

b2 0.0455 0.1214 6.4213 0.0722 0.0632 2.4565 0.0633 0.1395 6.2624 0.0695 0.0581 2.7672

θ -0.0661 0.5414 0.5230 0.0673 0.1729 2.5661 0.2054 0.5363 0.5915 -0.0635 0.2254 2.4288

100

α1 0.4469 1.6378 4.7032 -0.0081 0.1372 1.3354 0.3991 1.5133 4.5691 -0.0081 0.1738 1.3429

β1 -0.0068 0.0042 0.2533 -0.0265 0.0041 0.2496 -0.0094 0.0047 0.2657 -0.0209 0.0031 0.2478

b1 0.0071 0.0700 1.0375 0.0204 0.0165 0.4827 0.0185 0.0730 1.0587 0.0280 0.0199 0.5014

α2 0.4426 1.6895 4.7932 -0.0258 0.1696 1.3443 0.3827 1.2969 4.2117 -0.0027 0.1207 1.2901

β2 -0.0054 0.0029 0.2091 -0.0166 0.0021 0.2305 -0.0043 0.0025 0.1973 0.0181 0.0021 0.1824

b2 0.0086 0.0481 4.7032 0.0288 0.0148 1.3354 0.0085 0.0420 4.5691 0.0324 0.0180 1.3429

θ 0.0117 0.0828 0.2533 0.0235 0.0622 1.2958 0.0418 0.0981 0.2657 -0.0397 0.0573 1.2780

150

α1 0.3594 1.1807 4.0216 0.0002 0.0332 0.6673 0.2830 1.0412 3.8494 -0.0195 0.0524 0.7180

β1 -0.0034 0.0026 0.1989 0.0019 0.0031 0.1681 -0.0055 0.0026 0.1996 -0.0015 0.0025 0.1582

b1 -0.0012 0.0487 0.8654 0.0109 0.0063 0.2974 0.0100 0.0473 0.8532 0.0104 0.0058 0.2990

α2 0.2935 1.0624 3.8752 0.0031 0.0372 0.6906 0.2357 0.9354 3.6830 0.0034 0.0343 0.7426

β2 -0.0038 0.0021 0.1782 -0.0153 0.0021 0.6791 -0.0053 0.0021 0.1774 -0.0013 0.0020 0.1671

b2 0.0066 0.0339 4.0216 0.0069 0.0052 0.6673 0.0136 0.0341 3.8494 0.0059 0.0048 0.7180

θ -0.0031 0.0576 0.1989 0.0052 0.0225 0.6813 -0.0068 0.0589 0.1996 -0.0228 0.0215 0.5821
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Table 5. MLE and Bayesian for α1 = 2, β1 = 0.3, b1 = 1.8, α2 = 1.3, β2 = 0.5, b2 = 1.9.
MLE Bayesian MLE Bayesian

θ n Bias MSE LACI Bias MSE LCCI θ Bias MSE LACI Bias MSE LCCI

-0.15

40

α1 1.0143 4.9522 7.7775 0.0841 0.2636 1.8706

0.5

0.9613 4.5273 7.4447 0.0663 0.2608 1.8408
β1 0.1733 0.1369 1.2833 0.0549 0.0338 0.5966 0.1669 0.1333 1.2733 0.0597 0.0382 0.6486
b1 -0.0526 0.0170 0.4681 0.0313 0.0137 0.3180 -0.0495 0.0160 0.4565 0.0333 0.0131 0.4332
α2 0.4559 1.1468 3.8048 0.1357 0.5264 1.7408 0.4318 1.2689 4.0805 0.1242 0.3579 1.4666
β2 0.1879 0.1805 1.4959 0.0913 0.1122 1.2078 0.1858 0.1922 1.5575 0.0962 0.1017 1.1277
b2 -0.0731 0.0367 7.7775 0.0067 0.0316 1.8706 -0.0764 0.0421 7.4447 -0.0400 0.0360 1.8408
θ -0.0316 0.2794 1.2833 -0.0422 0.1900 0.5966 0.0405 0.5765 1.2733 -0.0667 0.1829 0.6486

100

α1 0.3365 0.8459 3.3610 -0.0128 0.0851 1.0826 0.3609 0.9159 3.4763 0.0153 0.0836 1.1241
β1 0.0657 0.0327 0.6615 0.0163 0.0096 0.3313 0.0689 0.0333 0.6622 0.0180 0.0095 0.3557
b1 -0.0150 0.0021 0.1701 0.0150 0.0011 0.1305 -0.0158 0.0022 0.1732 -0.0057 0.0020 0.1329
α2 0.1245 0.1899 1.6397 0.0264 0.0488 0.8204 0.1391 0.1948 1.6426 0.0262 0.0475 0.8099
β2 0.0586 0.0481 0.8298 0.0302 0.0265 0.6300 0.0684 0.0501 0.8354 0.0232 0.0234 0.5434
b2 -0.0177 0.0060 3.3610 0.0158 0.0051 1.0826 -0.0206 0.0057 3.4763 -0.0248 0.0041 1.1241
θ 0.0119 0.0961 0.6615 0.0169 0.0605 0.3313 -0.0042 0.0857 0.6622 -0.0291 0.0600 0.3557

150

α1 0.2656 0.5411 2.6936 0.0052 0.0262 0.6156 0.1982 0.5555 2.8178 -0.0020 0.0270 0.6374
β1 0.0529 0.0208 0.5273 0.0094 0.0031 0.2180 0.0375 0.0201 0.5360 0.0073 0.0032 0.2168
b1 -0.0107 0.0011 0.1241 0.0028 0.0010 0.1169 -0.0083 0.0012 0.1335 -0.0025 0.0012 0.1162
α2 0.0888 0.1088 1.2472 -0.0061 0.0123 0.4072 0.0693 0.0765 1.0503 0.0021 0.0170 0.4846
β2 0.0457 0.0311 0.6693 0.0039 0.0086 0.3643 0.0390 0.0237 0.5838 0.0065 0.0095 0.3752
b2 -0.0132 0.0031 2.6936 0.0065 0.0030 0.6156 -0.0106 0.0021 2.8178 -0.0142 0.0020 0.6374
θ 0.0170 0.0590 0.5273 0.0015 0.0265 0.2180 0.0004 0.0614 0.5360 -0.0040 0.0243 0.2168

-0.5

40

α1 0.8840 4.2754 7.3311 0.0703 0.2511 1.8356

0.9

0.7771 3.8798 7.1069 0.0690 0.2436 1.7781
β1 0.1515 0.1250 1.2532 0.0522 0.0338 0.6200 0.1412 0.1239 1.2660 0.0673 0.0327 0.5908
b1 -0.0451 0.0146 0.4397 0.0297 0.0136 2.2754 -0.0437 0.0158 0.4628 0.0419 0.0103 0.4219
α2 0.4555 1.4084 4.2979 0.1482 0.4878 1.4970 0.4095 1.0311 3.6485 0.0993 0.3547 1.5127
β2 0.1788 0.1880 1.5491 0.0781 0.0911 0.9930 0.1729 0.1801 1.5220 0.0793 0.0923 1.0526
b2 -0.0751 0.0411 7.3311 -0.0533 0.0338 1.8356 -0.0704 0.0354 7.1069 -0.0336 0.0307 1.7781
θ 0.0050 0.3328 1.2532 0.0893 0.1663 0.6200 0.1092 0.6525 1.2660 -0.1034 0.2147 0.5908

100

α1 0.3469 0.9713 3.6179 0.0006 0.0860 1.1228 0.2859 0.9612 3.6823 0.0299 0.0703 0.9825
β1 0.0660 0.0344 0.6797 0.0145 0.0084 0.3432 0.0594 0.0358 0.7048 0.0258 0.0085 0.3382
b1 -0.0156 0.0024 0.1839 0.0010 0.0021 0.1728 -0.0148 0.0027 0.1942 0.0024 0.0021 0.1130
α2 0.1270 0.1732 1.5542 0.0158 0.0424 0.7388 0.1543 0.2115 1.7012 0.0429 0.0447 0.7300
β2 0.0642 0.0471 0.8134 0.0195 0.0251 0.5907 0.0774 0.0504 0.8271 0.0425 0.0323 0.6208
b2 -0.0186 0.0050 3.6179 -0.0178 0.0041 1.1228 -0.0250 0.0066 3.6823 -0.0315 0.0051 0.9825
θ 0.0414 0.0874 0.6797 0.0273 0.0597 0.3432 0.0002 0.0900 0.7048 -0.0616 0.0618 0.3382

150

α1 0.1793 0.4412 2.5085 0.0057 0.0257 0.6040 0.2291 0.5390 2.7390 0.0075 0.0279 0.6210
β1 0.0360 0.0170 0.4923 0.0089 0.0030 0.2054 0.0425 0.0195 0.5218 0.0113 0.0033 0.2037
b1 -0.0073 0.0009 0.1118 -0.0160 0.0009 0.6565 -0.0089 0.0010 0.1218 0.0046 0.0009 0.1070
α2 0.0638 0.0831 1.1025 0.0001 0.0173 0.5019 0.0760 0.0951 1.1736 -0.0007 0.0148 0.4239
β2 0.0329 0.0250 0.6060 0.0049 0.0094 0.3650 0.0355 0.0275 0.6357 0.0053 0.0094 0.3515
b2 -0.0095 0.0024 2.5085 -0.0019 0.0022 0.6040 -0.0107 0.0027 2.7390 0.0005 0.0027 0.6210
θ 0.0362 0.0594 0.4923 0.0128 0.0252 0.2054 0.0039 0.0530 0.5218 -0.0222 0.0229 0.2037

9. Application

To demonstrate the value of the suggested L-G family models, four applications from the
environmental, medical and lifetime contexts are taken into consideration in this section. Table 6
discussed correlation dependence measure to confirm the data has correlation range from −1

3 to 1
3 .
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Table 6. Correlation dependence measure.

Environmental Diabetic nephropathy kidney patients Computer series system
ρc -0.1341 0.0418 0.0511 -0.0306

9.1. Environmental data

In this subsection, we take a look at a real-world bivariate data set on (X, Y) that includes
data from 51 of the largest cities in the USA, with X standing for average precipitation (in
millimetres) and Y standing for average maximum temperature (in degrees Celsius). The data created
by the National Climatic Data Centre (NCDC) of the USA and made available on the website
https://www.ncdc.noaa.gov have been replicated below. This is the bivariate data set in Table 7.

For the data description, we obtained Figure 4 to check outliers of these environmental data and
described differentiates different categories as a scatter plot (strip), respectively. While Figure 5
discussed violin plot of these data which has been discussed to show peaks in the environmental data
and visualize the distribution of numerical data. By Figures 4 and 5, we note that the data has right
skewed shapes and hasn’t symmetric ships.

Table 8 lists the estimates’ results together with certain goodness-of-fit metrics, and Figures 6 and 7
show the estimated cdf with empirical cdf, pdf with histogram, and PP-plots for each sample and
marginal distribution, respectively. We observe that these environmental data fit these LGW and LGLL
distributions.
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Table 7. Environmental data with average values.

No. precipitation maximum temperature No. precipitation maximum temperature
1 99 12 27 108 10
2 61 17 28 135 18
3 86 7 29 102 6
4 113 13 30 48 10
5 96 5 31 66 23
6 99 2 32 90 7
7 83 12 33 22 20
8 57 2 34 72 4
9 80 6 35 176 7
10 79 4 36 107 6
11 75 5 37 84 12
12 70 14 38 83 10
13 15 6 39 37 20
14 62 2 40 67 3
15 87 4 41 83 12
16 95 18 42 36 3
17 81 4 43 49 18
18 71 19 44 39 18
19 44 5 45 102 14
20 13 14 46 66 14
21 52 20 47 154 8
22 97 8 48 72 6
23 146 11 49 63 22
24 52 26 50 83 11
25 52 1 51 77 8
26 29 3
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Figure 6. CDF and PDF estimated LG distributions: Environmental data.
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Table 8. MLE of marginal models for environmental data.

Etimates SE AIC CAIC BIC HQIC CVM AD KS PVKS

LGE

x

α 38.9815 38.6657

551.8213 557.6168 552.3319 554.0359 0.1277 0.7508 0.3088 0.0001β 19.8679 21.6752

b 0.0067 0.0044

y

α 84.3428 138.8010

347.1617 352.9572 347.6723 349.3763 0.0656 0.4347 0.1829 0.0658β 23.4514 69.9253

b 0.0269 0.0719

LGW

x

α 4.8013 5.6889

506.4401 514.1674 507.3096 509.3929 0.0678 0.4173 0.0721 0.9534
β 5.5102 10.2114

b 2.8242 0.5020

a 0.0129 0.0075

y

α 77.5320 258.1893

332.2403 339.9676 333.1099 335.1932 0.0646 0.4144 0.0889 0.8151
β 0.5124 1.7079

b 1.6684 0.1847

a 0.0043 0.0012

LGP

x

α 107.8997 165.2554

689.1122 694.9077 689.6229 691.3269 0.3204 1.8797 0.4932 0.0000β 24.8648 133.6627

b 0.0543 0.3039

y

α 99.4600 145.5079

420.8929 426.6884 421.4036 423.1076 0.1461 0.9875 0.3806 0.0000β 13.0680 77.2472

b 0.0584 0.3380

LGLL

x

α 75.6384 3.1556

506.4294 514.1567 507.2990 509.3822 0.0673 0.4159 0.0714 0.9574
β 13.2360 6.1562

b 152.8863 39.1425

a 2.7976 0.5018

y

α 63.7445 11.6990

332.4175 340.1448 333.2871 335.3704 0.0653 0.4198 0.0910 0.7922
β 1.4164 5.9881

b 107.8428 16.7536

a 1.6986 0.1939
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Figure 7. PP plot estimated LG distributions: Environmental data.

Tables 9 and 10 show the MLE and Bayesian estimation method, respectively for the parameters
of L-G family models for two case only because the LGE and LGP distribution are not fitting for this
data see Table 8. Table 9 discussed comparison of bivariate models based on bivariate L-G family
model by using AIC, CIAC, BIC, HQIC, CVM, and AD measures. By these results, we conclude the
BFGM LGW distribution is best models comparison another bivariate distribution as BFGM LGLL
and bivariate FGM generalized half-logistic (BFGMGHL) by Hassan and Chesneau [39], according to
AIC, CIAC, BIC, HQIC, CVM, and AD. When comparing Bayesian estimates and MLE, we note that
Bayesian is better than MLE according to the value of SE.
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Table 9. MLE of bivariate models for environmental data.

BFGM LGW BFGM LGLL BFGMGHL
Etimates SE Etimates SE Etimates SE

α1 5.3868 8.1572 46.5772 951.1889 37.7384 16.0986
β1 5.5366 12.0311 8.3576 194.8530 0.6771 0.3674
b1 2.7920 0.5547 149.7490 176.4606
a1 0.0123 0.0074 2.8181 0.4991
α2 88.1141 307.7538 106.1346 401.4176 5.6825 4.3687
β2 0.5653 1.9718 1.1013 6.1811 0.7623 0.7176
b2 1.6910 0.1885 171.9876 418.5592
a2 0.0043 0.0012 1.6993 0.1928
θ -0.2846 0.4216 -0.2839 0.4207 0.2744 1.1290
AIC 840.2217 840.2770 872.5342
CAIC 844.6120 844.6672 873.8675
BIC 857.6082 857.6634 882.1933
HQIC 846.8656 846.9209 876.2253
CVM 7.6899 7.6927 7.7377
AD 46.1279 46.1322 46.8422

Table 10. Bayesian estimation of parameter for bivariate models: Environmental data.

α1 β1 b1 a1 α2 β2 b2 a2 θ

BFGM LGW
mean 10.8227 5.2411 2.6673 0.0102 147.4914 0.9004 1.7212 0.0045 -0.6354
sd 8.0436 3.2584 0.4678 0.0050 74.7410 0.4937 0.1800 0.0011 0.1927

BFGM LGLL
mean 99.3319 11.3700 205.0953 2.6880 168.2901 2.2241 155.1508 1.6927 0.1995
sd 70.7136 7.6248 56.8707 0.3891 155.9503 1.3720 86.1843 0.1821 0.3673

9.2. Diabetic nephropathy

We have taken into account both serum creatinine (SrCr) and the length of diabetes in this
subsection. Since the patients’ diabetes was already known, we are calculating the complications that
may result from it. Based on SrCr levels, the data has been divided into two groups: Those with diabetic
nephropathy (DN) (SrCr ≥ 1.4mg/dl) and those without diabetic nephropathy (SrCr < 1.4mg/dl). SrCr
reports were provided for each patient from the 200 patients whose reports were available. From
January 2012 to August 2013, the pathology reports of these patients were gathered from the path lab
of Dr. Lal. This data, which includes the mean duration of diabetes for 132 individuals with types 2
diabetic nephropathy over various time intervals, was discussed by Grover et al. [40]. These data are:
Duration of diabetes: 7.4, 9, 10, 11, 12, 13, 13.75, 14.92, 15.8286, 16.9333, 18, 19, 20, 21, 22, 23, 24,
26, 26.6.
Serum Creatinine: 1.925, 1.5, 2, 1.6, 1.7, 1.7533, 1.54, 1.694, 1.8843, 1.8433, 1.832, 1.59, 1.7833, 1.2,
1.792, 1.5, 1.5033, 2, 2.14.

For the diabetic nephropathy data description, we obtained Figure 8 to check outliers of these
diabetic nephropathy data and described differentiates different categories as a scatter plot (strip),
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respectively. While Figure 9 discussed violin plot of these data which has been discussed to show
peaks in the diabetic nephropathy data and visualize the distribution of numerical data. By Figures 8
and 9, we note that the data has right skewed shapes and hasn’t symmetric ships.
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Figure 8. Box-plot and strip plot for diabetic nephropathy data.
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Figure 9. Violin plot for diabetic nephropathy data.

Table 11 lists the estimates’ results together with certain goodness-of-fit metrics, and Figures 10
and 11 show the estimated cdf with empirical cdf, pdf with histogram, and PP-plots for each sample
and marginal distribution, respectively. We observe that these diabetic nephropathy data fit these LGW
and LGLL distributions.
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Figure 10. CDF and PDF estimated LG distributions: diabetic nephropathy data.
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Figure 11. PP plot estimated LG distributions: diabetic nephropathy data.
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Table 11. MLE of marginal models for diabetic nephropathy data.

Etimates SE AIC CAIC BIC HQIC CVM AD KS PVKS

LGE

x

α 83.4811 17.9433

151.9146 154.7479 153.5146 152.3941 0.0277 0.2028 0.3577 0.0111β 25.6754 19.5167

b 0.0181 0.0534

y

α 59.7456 21.5655

65.0366 67.8700 66.6366 65.5161 0.0334 0.2686 0.5274 0.0001β 9.0446 4.2133

b 0.0882 0.0156

LGW

x

α 12.8529 27.4009

127.4632 131.2410 130.3204 128.1026 0.0214 0.1648 0.0810 0.9986
β 4.2719 62.0344

b 3.4676 0.6752

a 0.0389 0.1645

y

α 8.0457 34.5386

4.1345 7.9122 6.9916 4.7738 0.0248 0.1915 0.1020 0.9890
β 0.6660 0.3894

b 9.6559 3.2397

a 0.4286 0.2456

LGP

x

α 92.9088 208.3350

191.6448 194.4781 193.2448 192.1243 0.0449 0.3106 0.5263 0.0000β 21.5151 286.7493

b 0.0816 1.0828

y

α 57.5959 18.1517

82.2695 85.1028 83.8695 82.7490 0.0390 0.3152 0.5485 0.0000β 5.6356 7.3131

b 0.0989 0.0316

LGLL

x

α 39.3819 162.9695

127.3556 131.1334 130.2128 127.9950 0.0209 0.1616 0.0839 0.9976
β 0.4879 2.3355

b 67.6007 93.1076

a 3.4403 0.6451

y

α 8.4545 42.1638

4.1357 7.9134 6.9928 4.7750 0.0248 0.1916 0.1024 0.9886
β 0.0276 0.0910

b 3.2636 2.5462

a 9.6417 3.5093
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Tables 12 and 13 show the MLE and Bayesian estimation method, respectively for the parameters
of L-G family models for two case only because the LGE and LGP distribution are not fitting for this
data see Table 11. Table 12 discussed comparison of bivariate models based on bivariate L-G family
model by using AIC, CIAC, BIC, HQIC, CVM, and AD measures. By these results, we conclude the
BFGM LGLL distribution is best models comparison another bivariate distribution as BFGM LGW
and bivariate FGM lomax-claim (BFGMLC) by Zho et al. [7], according to AIC, CIAC, BIC, HQIC,
CVM, and AD. When comparing Bayesian estimates and MLE, we note that Bayesian is better than
MLE according to the value of SE.

Table 12. MLE of bivariate models for Diabetic nephropathy data.

BFGM LGW BFGM LGLL BFGMLC
Etimates SE Etimates SE Etimates SE

α1 32.6177 105.9016 77.5037 47.2668 32.3700 1.1932
β1 10.6376 2.1516 0.2441 0.1904 0.0027 0.0013
b1 3.4194 0.6425 103.1134 44.4474 0.5165 0.1517
a1 0.0381 0.0152 3.4021 0.6322
α2 9.3182 373.1280 14.8761 9.5541 10.0287 0.5802
β2 0.3185 515.7803 0.2144 0.1812 0.9969 0.3516
b2 9.5726 21.9642 2.8331 1.0156 0.0000 0.0001
a2 0.3893 67.9071 9.4468 1.9058
θ 0.0538 0.6022 0.0547 0.5574 0.8882 0.0407
AIC 133.4597 133.4271 157.2159
CAIC 153.4597 153.4271 167.3977
BIC 141.9597 141.9270 163.8270
HQIC 134.8982 134.8656 158.3348
CVM 1.0015 0.9937 1.0773
AD 5.2629 5.2112 6.2834

Table 13. Bayesian estimation of parameter for bivariate models: Diabetic nephropathy data.

α1 β1 b1 a1 α2 β2 b2 a2 θ

BFGM LGW
mean 39.1079 7.0735 3.2451 0.0317 11.2465 0.2944 9.7805 0.3569 -0.2001

2-11 sd 28.2717 6.9918 0.5942 0.0174 7.8451 0.2773 2.9191 0.0709 0.0556

BFGM LGLL
mean 180.6559 0.8817 97.9884 3.2370 30.4859 0.9295 2.9327 9.1782 -0.0309

2-11 sd 146.6881 0.4004 29.2129 0.4890 21.9932 0.6312 0.6546 1.7057 0.1032

9.3. Computer series system-simulated data

The data was sourced from Oliveira et al. [41]. A processor and memory make up the n = 50
simulated rudimentary computer series systems in the data set. If both parts of the system function
properly, the computer operates. Let’s say the system is experiencing a latent deteriorating process.
The degeneration advances quickly over a brief period of time (in hours). It makes the system more
vulnerable to shocks, making it possible for a deadly shock to randomly destroy the first, second, or
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both components. The independence presumption could not be accurate because a deadly shock can
simultaneously kill both components, so we used FGM copula to discussed this problem. The data set
is given as follows:
Processor lifetime: 1.9292 3.6621 3.6621 3.6621 1.0833 1.0833 0.3309 0.3309 0.5784 0.5520 1.9386
2.1000 0.9867 0.9867 1.3989 2.3757 3.5202 2.3364 0.8584 4.3435 1.1739 1.3482 3.0935 2.1396
1.3288 0.1115 0.8503 0.1955 0.4614 3.3887 0.1181 5.0533 1.6465 0.9096 1.7494 0.1058 0.1058
0.9938 5.7561 5.7561 0.6270 0.7947 0.5079 2.5913 2.5372 1.1917 1.5254 1.0986 1.0051 1.3640.
Memory lifetime: 3.9291 0.0026 0.0026 0.0026 3.3059 3.3059 0.3309 0.3309 1.8795 0.5520 4.0043
2.0513 0.9867 0.9867 4.1268 2.7953 1.4095 0.1624 1.9556 1.0001 3.3857 1.9705 3.0935 2.1548
0.9689 0.1115 2.8578 0.1955 0.8584 1.9796 0.0884 2.3238 2.0197 0.6214 2.3643 0.1058 0.1058
1.7689 0.3212 0.3212 1.7289 0.7947 5.3535 2.5913 2.4923 0.0801 4.4088 1.0986 1.0051 1.3640.

The computer data was presented as a series system, and the likelihood function should ideally be
based on the likelihood for series system data. However, in our analysis, we used a different approach
by modeling the time to the first failure as a continuous distribution. Although this approach is not
specific to series systems, it can still provide useful insights into the data. For the data description, we
obtained Figure 12 to check outliers of these data and described differentiates different categories as
a scatter plot (strip), respectively. While Figure 13 discussed violin plot of these data which has been
discussed to show peaks in the data and visualize the distribution of numerical data. By Figures 12 and
13, we note that the data has right skewed shapes and hasn’t symmetric ships.
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Figure 12. Box-plot and strip plot for computer series system data.

0

2

4

6

x

x

0

2

4

y

x

y

Figure 13. Violin plot for computer series system data.
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Table 14 discussed MLE estimator of marginal parameters with standard error (SE), also different
measures of goodness of fit as Akaike information criterion (AIC), the corrected AIC (CAIC), the
Bayesian information criterion (BIC), the Hannan-Quinn information criterion (HQIC), the Cramer-
von Mises (CVM), and the Anderson–Darling (AD), and Kolmogorov-Smirnov (KS) statistics with P-
value (PVKS) for all competitive models as Lomax G exponential (LGE), Lomax G Weibull (LGW),
Lomax G Pareto (LGP), and Lomax G- Log-Logistic (LGLL). Table 14 lists the estimates’ results
together with certain goodness-of-fit metrics, and Figures 14 and 15 show the estimated cdf with
empirical cdf, pdf with histogram, and PP-plots for each sample and marginal distribution, respectively.
We observe that these data fit these distributions.

Table 14. MLE of marginal models for computer series system data.

Etimates SE AIC CAIC BIC HQIC CVM AD KS PVKS

LGE

x

α 76.4346 13.9515

161.8862 167.6223 162.4080 164.0706 0.0363 0.2786 0.1275 0.3909β 10.6443 9.2913

b 0.0805 0.6494

y

α 146.6252 5.1560

155.1517 160.8877 155.6734 157.3360 0.1634 1.0349 0.1334 0.3355β 119.7771 24.5216 ..

b 0.5025 0.4872

LGW

x

α 33.4734 124.1500

160.9341 167.5022 161.8230 163.8465 0.0352 0.2728 0.0712 0.9616
β 5.5518 75.6627

b 1.2336 0.1543

a 0.1274 1.3690

y

α 5.7086 3.7167

159.6049 167.2530 160.4938 162.5174 0.2204 1.3799 0.1418 0.2669
β 1.4932 19.8523

b 0.9397 0.1168

a 0.1677 2.2953

LGP

x

α 75.3043 9.2516

183.3328 189.0688 183.8545 185.5171 0.1028 0.7927 0.2445 0.0051β 6.8581 8.8796

b 0.1036 0.0915

y

α 8.6340 12.6090

173.7290 179.4651 174.2508 175.9133 0.4277 2.5704 0.1968 0.0416β 1.5722 98.6888

b 0.2294 14.0499

LGLL

x

α 1495.255 354.2560

160.8776 168.5257 161.7665 163.7900 0.0407 0.2845 0.0736 0.9492
β 1.5659 0.9854

b 523.6691 95.5166

a 1.2167 0.1060

y

α 5164.399 165.1982

156.2214 163.8695 157.1103 159.1339 0.1787 1.1297 0.1443 0.2487
β 1.0828 0.8522

b 19561.244 780.7736

a 0.8980 0.1082
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Figure 14. Estimated LG distributions: Computer series system data.
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Figure 15. Estimated LG distributions: Computer series system data.

Tables 15 and 16 show the MLE and Bayesian estimation method, respectively for the parameters of
L-G family models. Table 15 discussed comparison of bivariate models based on bivariate L-G family
model by using AIC, CIAC, BIC, HQIC, CVM, and AD measures. By these results, we conclude
the BFGM LGE distribution is best models comparison another bivariate distribution according to
AIC, CIAC, BIC, HQIC, CVM, and AD. When comparing Bayesian estimates and MLE, we note that
Bayesian is better than MLE according to the value of SE.
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Table 15. MLE for computer series system data.

BFGM LGE BFGM LGW BFGM LGP BFGM LGLL BFGM LC

Etimates SE Etimates SE Etimates SE Etimates SE Etimates SE

α1 147.3693 78.5271 35.4338 18.6493 160.7897 52.5459 370.201 31.369 134.2571 56.9368

β1 116.6487 60.0803 5.7763 8.7089 78.2561 15.1095 0.694 15.312 0.0045 0.0018

b1 0.4715 1.9090 1.2079 0.1668 0.5808 55.1790 346.102 34.266 825.2748 19.1517

a1 0.1263 1.3683 1.193 0.138

α2 146.6066 51.5343 189.6576 86.5617 137.4092 87.5797 5165.707 10.040 68.9989 56.7898

β2 119.7495 62.7662 40.6490 78.2630 29.7471 9.0236 1.000 2.907 0.0095 0.0078

b2 0.5164 2.3986 0.9069 0.1084 0.2856 7.6191 19561.19 610.643 369.3705 256.5926

a2 0.1179 1.4935 0.906 0.108

θ 0.4987 0.3314 0.4139 0.3435 0.8581 0.3257 0.410 0.344 0.5054 0.3286

AIC 317.0232 317.9571 351.2878 317.8398 319.6854

CAIC 319.6898 322.4571 353.9545 322.3398 322.3521

BIC 330.4073 335.1653 364.6720 335.0480 335.1696

HQIC 322.1199 324.5100 356.3846 324.3928 324.7822

CVM 7.1673 7.6779 7.9260 7.6778 7.7252

AD 40.5523 43.7650 43.5415 43.7399 43.7716

Table 16. Bayesian estimation of parameter for bivariate models: Computer series system.

α1 β1 b1 a1 α2 β2 b2 a2 θ

BFGM LGE
mean 87.6009 119.8282 1.0653 58.1685 178.0698 2.0726 0.5010

2-11 sd 50.7412 33.6634 0.6837 32.0613 39.2821 0.6151 0.2948

BFGM LGW
mean 67.1512 24.2494 1.1909 0.2751 82.8430 105.1435 0.9167 0.7610 0.4701

2-11 sd 13.9465 8.0916 0.1446 0.1337 39.4208 67.3779 0.1111 0.3451 0.3640

BFGM LGLL
mean 144.3689 1.4465 111.7554 1.1397 1272.2821 0.5740 19369.5048 0.8174 1.0769

2-11 sd 30.2474 0.2892 27.4467 0.0988 9.5403 0.4079 99.9004 0.0462 0.2149

BFGM LGP
mean 93.9844 237.0822 2.8319 99.9061 40.9085 0.5557 0.5869

2-11 sd 31.2070 13.6399 2.7624 42.2993 13.3844 0.2808 0.2531

9.4. Kidney patients data

The data set presented by McGilchrist and Aisbett [42]. This information shows how often
infections return in kidney patients. Let’s say x and y are the first and second recurrence times,
respectively. The data presented for 30 patients as follows:
First recurrence time: 8, 23, 22, 447, 30, 24, 7, 511, 53, 15, 7, 141, 96, 149, 536, 152, 402, 13, 39, 12,
113, 132, 34, 2, 130, 17, 185, 292, 22, 15.
Second recurrence time: 16, 13, 28, 318, 12, 245, 9, 30, 196, 154, 333, 8, 38, 70, 25,362, 24, 66, 46,
40, 201, 156, 30, 25, 26, 4, 117, 114, 159, 108.
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In order to check for outliers in the data for kidney patients and to distinguish between different
groups, we obtained Figure 16 and represented it as a scatter plot (strip), respectively. While Figure 17
discussed a violin plot of these data that was used to illustrate data peaks and depict the distribution
of kidney patient data. We can see from Figures 16 and 17 that the kidney patients data exhibits right-
skewed shapes and non-symmetric ships. For all competitive models, including LGE, LGW, LGP,
and LGLL, Table 17 addressed the MLE estimator of marginal parameters with SE as well as several
measures of goodness of fit, including AIC, CAIC, BIC, HQIC, CVM, AD, and KS statistics with
PVKS. Figures 18 and 19 display the estimated cdf with empirical cdf, pdf with histogram, and PP-
plots for each sample and marginal distribution, respectively. Table 17 displays the estimates’ results
along with various goodness-of-fit measures. We note that the kidney patients data are consistent with
these distributions.
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Figure 17. Violin plot for kidney patients data.
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Table 17. MLE of marginal models: Kidney patients.

Etimates SE AIC CAIC BIC HQIC CVM AD KS PVKS

LGE

x

α 1.6241 0.9281

348.9320 353.1356 349.8551 350.2768 0.1174 0.6549 0.1341 0.6533β 2.0743 1.4259

b 0.0212 0.0733

y

α 10.3515 9.5644

341.6516 345.8551 342.5746 342.9963 0.1102 0.6092 0.1532 0.4821β 32.3030 12.0899

b 0.0347 0.1593

LGW

x

α 2.4795 5.6282

350.8655 356.4702 352.4655 352.6585 0.1206 0.6784 0.1368 0.6288
β 2.7580 1.8529

b 0.9084 0.3785

a 0.0161 0.0424

y

α 0.7994 0.6637

345.2155 350.8203 346.8155 347.0085 0.0908 0.5437 0.1308 0.6842
β 1.6446 1.9677

b 1.4834 0.5208

a 0.0339 0.1628

LGP

x

α 21.0619 19.2427

385.4904 389.6940 386.4135 386.8352 0.0715 0.4710 0.3752 0.0004β 6.3487 3.3107

b 0.0771 0.7684

y

α 3.2661 1.2152

397.0708 401.2743 397.9938 398.4155 0.0717 0.4834 0.3724 0.0005β 1.5504 1.0915

b 0.1219 0.0916

LGLL

x

α 175.4646 75.3074

350.8699 356.4747 352.4699 352.6630 0.1222 0.6920 0.1389 0.6088
β 54.4813 46.1912

b 285.4688 181.4908

a 0.8753 0.4343

y

α 8.8665 8.1862

347.1499 352.7547 348.7499 348.9429 0.0900 0.5838 0.1530 0.4838
β 14.8596 12.0452

b 26.9063 13.6426

a 1.7673 0.5273
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Figure 18. Estimated LG distributions: Kidney patients.
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Figure 19. Estimated LG distributions: Kidney patients.
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Tables 18 and 19 show the MLE and Bayesian estimation method, respectively for the parameters of
L-G family models. Table 18 discussed comparison of bivariate models based on bivariate L-G family
model by using AIC, CIAC, BIC, HQIC, CVM, and AD measures. By these results, we conclude the
BFGM LGE distribution is best models comparison anther bivariate distribution according to AIC,
CIAC, BIC, HQIC, CVM, and AD. When comparing Bayesian estimates and MLE, we note that
Bayesian is better than MLE according to the value of SE.

Table 18. MLE of bivariate models: Kidney patients.

BFGM LGE BFGM LGW BFGM LGLLog BFGM LGP BFGM LC

Etimates SE Etimates SE Etimates SE Etimates SE Etimates SE

α1 1.6301 0.9353 3.6680 1.0296 175.4646 38.1556 146.0044 82.5462 1.3445 0.7207

β1 46.4487 26.254 2.1477 1.3569 54.4813 42.5162 118.4694 48.3222 0.0155 0.0157

b1 0.4731 0.9140 0.8571 0.4542 285.4688 128.5598 0.2064 0.0141 14.1703 11.4864

a1 0.0070 0.0084 0.8753 0.4986

α2 8.8120 2.2553 10.3885 3.7640 8.8665 4.4967 143.3950 1.7083 5.3623 1.3412

β2 111.0747 56.380 13.9674 11.2431 14.8596 12.1520 129.6081 74.3266 0.0024 0.0005

b2 0.1434 2.6325 0.9747 0.1967 30.4746 25.9423 0.2260 0.2090 17.7349 14.8967

a2 0.0153 0.0317 1.7673 1.2649

θ 0.4032 0.3765 0.3763 0.2927 0.0610 0.0513 0.3610 0.2778 0.3963 0.4530

AIC 690.0815 695.8045 699.6651 774.6638 690.9825

CAIC 694.9724 704.8045 708.6651 779.7547 696.1334

BIC 701.6899 708.4153 712.2759 784.4722 712.3589

HQIC 695.0193 699.8388 703.6994 777.8016 699.5733

CVM 4.0697 4.0564 4.0277 4.1747 4.2653

AD 27.9690 26.8935 25.7854 27.6079 27.9913

Table 19. Bayesian estimation of parameter for bivariate models: kidney patients data.
α1 β1 b1 a1 α2 β2 b2 a2 θ

BFGM LGE
mean 1.7050 212.2050 2.5467 24.6862 256.5568 0.1274 0.0811

sd 0.8656 16.6110 0.3316 7.6916 70.5392 0.0942 0.2436

BFGM LGW
mean 4.0559 2.1217 0.8666 0.0074 4.8123 24.6371 0.9755 0.0874 0.6470

sd 0.9888 1.1917 0.1684 0.0073 3.4960 10.3928 0.1856 0.0316 0.2745

BFGM LGLL
mean 23.2650 13.4323 0.1703 3.2662 1.5206 0.1106 0.0889

sd 8.0363 3.0128 0.0471 0.0123 0.8806 0.0617 0.0580

BFGM LGP
mean 159.9208 39.1830 285.6908 0.8706 8.4728 13.8619 30.8455 1.7398 0.0419

sd 7.7641 2.9656 0.7591 0.0162 1.0027 0.7175 0.5174 0.0338 0.0034

10. Conclusions

In conclusion, the BFGMLG family proposed in this study represents a new approach to modeling
bivariate continuous data with skewed and heavy-tailed distributions, which is useful in a variety
of applications. The BFGMLG family is based on the FGM copula function and univariate LG
family to handle non-normality in the data. The family includes several distributions such as bivariate
exponential LG distribution, bivariate Weibull LG distribution, bivariate Pareto LG distribution, and
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bivariate log-logistic distribution, which are all derived based on the FGM copula function. This family
has been shown to have various structural statistical properties and can model local dependence as well
as concepts such as PQD, TP2, SI, and RTI. Additionally, the proposed family has been extended to
the multivariate BFGMLG family to model and support multivariate data. The performance of the
proposed family has been evaluated using two estimation methods, ML and Bayesian estimation, and
Bayesian estimation has been found to offer the best performance. The application of the proposed
family to four different data sets in the fields of Environmental, computer and medicine sciences has
demonstrated its superiority over competing bivariate probability models such as BFGM Lomax Claim
and bivariate FGM generalized half-logistic. Overall, the BFGMLG family has shown great potential
for use in various fields, and future work will focus on studying the properties of its multivariate version
family.
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