In this paper, we investigate the dynamical behavior of traveling waves for a generalized Vakhnenko-Parkes-modified Vakhnenko-Parkes (VP-mVP) equation with non-homogeneous power law nonlinearity. By the dynamical systems approach and the singular traveling wave theory, the existence of all possible bounded traveling wave solutions is discussed, including smooth solutions (solitary wave solutions, periodic wave solutions and breaking wave solutions) and non-smooth solutions (solitary cusp wave solutions and periodic cusp wave solutions). We not only obtain all the explicit parametric conditions for the existence of 5 kinds of bounded traveling wave solutions, but also give their exact explicit expressions. Moreover, we qualitatively analyze the dynamical behavior of these traveling waves by using the bifurcation of phase portraits under different parameter conditions, and strictly prove the evolution of different traveling waves with their exact expressions.
Citation: Feiting Fan, Xingwu Chen. Dynamical behavior of traveling waves in a generalized VP-mVP equation with non-homogeneous power law nonlinearity[J]. AIMS Mathematics, 2023, 8(8): 17514-17538. doi: 10.3934/math.2023895
In this paper, we investigate the dynamical behavior of traveling waves for a generalized Vakhnenko-Parkes-modified Vakhnenko-Parkes (VP-mVP) equation with non-homogeneous power law nonlinearity. By the dynamical systems approach and the singular traveling wave theory, the existence of all possible bounded traveling wave solutions is discussed, including smooth solutions (solitary wave solutions, periodic wave solutions and breaking wave solutions) and non-smooth solutions (solitary cusp wave solutions and periodic cusp wave solutions). We not only obtain all the explicit parametric conditions for the existence of 5 kinds of bounded traveling wave solutions, but also give their exact explicit expressions. Moreover, we qualitatively analyze the dynamical behavior of these traveling waves by using the bifurcation of phase portraits under different parameter conditions, and strictly prove the evolution of different traveling waves with their exact expressions.
[1] | R. Abazari, Application of (G'/G)-expansion method to travelling wave solutions of three nonlinear evolution equation, Comput. Fluids, 39 (2010), 1957–1963. http://dx.doi.org/10.1016/j.compfluid.2010.06.024 doi: 10.1016/j.compfluid.2010.06.024 |
[2] | M. Ablowitz, P. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, New York: Cambridge University Press, 1991. http://dx.doi.org/10.1017/CBO9780511623998 |
[3] | M. Ablowitz, Z. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29 (2016), 915–946. http://dx.doi.org/10.1088/0951-7715/29/3/915 doi: 10.1088/0951-7715/29/3/915 |
[4] | M. Arshad, A. Seadawy, D. Lu, J. Wang, Travelling wave solutions of generalized coupled Zakharov-Kuznetsov and dispersive long wave equations, Results Phys., 6 (2016), 1136–1145. http://dx.doi.org/10.1016/j.rinp.2016.11.043 doi: 10.1016/j.rinp.2016.11.043 |
[5] | H. Baskonus, J. Guirao, A. Kumar, F. Vidal Causanilles, G. Bermudez, Complex mixed dark-bright wave patterns to the modified $\alpha$ and modified Vakhnenko-Parkes equations, Alex. Eng. J., 59 (2020), 2149–2160. http://dx.doi.org/10.1016/j.aej.2020.01.032 doi: 10.1016/j.aej.2020.01.032 |
[6] | G. Bluman, S. Anco, Symmetry and integration methods for differential equations, New York: Springer Science, 2008. http://dx.doi.org/10.1007/b97380 |
[7] | N. Cheemaa, A. Seadawy, S. Chen, More general families of exact solitary wave solutions of the nonlinear Schrödinger equation with their applications in nonlinear optics, Eur. Phys. J. Plus, 133 (2018), 547. http://dx.doi.org/10.1140/epjp/i2018-12354-9 doi: 10.1140/epjp/i2018-12354-9 |
[8] | S. Deng, G. Chen, J. Li, Bifucations and exact traveling wave solutions in the generalized Sasa-Satsuma equation, Int. J. Bifurcat. Chaos, 32 (2022), 2250092. http://dx.doi.org/10.1142/S0218127422500924 doi: 10.1142/S0218127422500924 |
[9] | D. Feng, J. Li, J. Jiao, Dynamical behavior of singular traveling waves of ($n$+1)-dimensional nonlinear Klein-Gordon equation, Qual. Theory Dyn. Syst., 18 (2019), 265–287. http://dx.doi.org/10.1007/s12346-018-0285-0 doi: 10.1007/s12346-018-0285-0 |
[10] | S. Grobmeyer, J. Brons, M. Seidel, O. Pronin, Carrier-envelope-offset frequency stable 100 w-level femtosecond thin-disk oscillator, Laser Photonics Rev., 13 (2019), 1800256. http://dx.doi.org/10.1002/lpor.201800256 doi: 10.1002/lpor.201800256 |
[11] | R. Hirota, Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192. http://dx.doi.org/10.1103/PhysRevLett.27.1192 doi: 10.1103/PhysRevLett.27.1192 |
[12] | H. Jafari, N. Kadkhoda, C. Khalique, Travelling wave solutions of nonlinear evolution equations using the simplest equation method, Comput. Math. Appl., 64 (2012), 2084–2088. http://dx.doi.org/10.1016/j.camwa.2012.04.004 doi: 10.1016/j.camwa.2012.04.004 |
[13] | M. Jimbo, M. Kruskal, T. Miwa, Painlevé test for the self-dual Yang-Mills equation, Phys. Lett. A, 92 (1982), 59–60. http://dx.doi.org/10.1016/0375-9601(82)90291-2 doi: 10.1016/0375-9601(82)90291-2 |
[14] | D. Jyotia, S. Kumar, Modified Vakhnenko-Parkes equation with power law nonlinearity: Painlevé analysis, analytic solutions and conservation laws, Eur. Phys. J. Plus, 135 (2020), 762. http://dx.doi.org/10.1140/epjp/s13360-020-00785-y doi: 10.1140/epjp/s13360-020-00785-y |
[15] | S. Kumar, Painlevé analysis and invariant solutions of Vakhnenko-Parkes (VP) equation with power law nonlinearity, Nonlinear Dyn., 85 (2016), 1275–1279. http://dx.doi.org/10.1007/s11071-016-2759-4 doi: 10.1007/s11071-016-2759-4 |
[16] | J. Li, Singular nonlinear travelling wave equations: bifurcation and exact solutions, Beijing: Science Press, 2013. |
[17] | B. Li, Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics, Appl. Math. Lett., 112 (2021), 106822. http://dx.doi.org/10.1016/j.aml.2020.106822 doi: 10.1016/j.aml.2020.106822 |
[18] | B. Li, New breather and multiple-wave soliton dynamics for generalized Vakhnenko CParkes equation with variable coefficients, J. Comput. Nonlinear Dynam., 16 (2021), 091006. http://dx.doi.org/10.1115/1.4051624 doi: 10.1115/1.4051624 |
[19] | J. Li, G. Chen, More on bifurcations and dynamics of traveling wave solutions for a higher-order shallow water wave equation, Int. J. Bifurcat. Chaos, 29 (2019), 1950014. http://dx.doi.org/10.1142/S0218127419500147 doi: 10.1142/S0218127419500147 |
[20] | J. Li, G. Chen, J. Song, Completing the study of traveling wave solutions for three two-component shallow water wave models, Int. J. Bifurcat. Chaos, 30 (2020), 2050036. http://dx.doi.org/10.1142/S0218127420500364 doi: 10.1142/S0218127420500364 |
[21] | J. Li, G. Chen, Y. Zhou, Bifurcations and exact traveling wave solutions of two shallow water two-component systems, Int. J. Bifurcat. Chaos, 31 (2021), 2150001. http://dx.doi.org/10.1142/S0218127421500012 doi: 10.1142/S0218127421500012 |
[22] | J. Li, H. Dai, On the study of singular nonlinear traveling wave equations: dynamical system approach, Beijing: Science Press, 2007. |
[23] | B. Li, Y. Ma, Interaction dynamics of hybrid solitons and breathers for extended generalization of Vakhnenko equation, Nonlinear Dyn., 102 (2020), 1787–1799. http://dx.doi.org/10.1007/s11071-020-06024-4 doi: 10.1007/s11071-020-06024-4 |
[24] | B. Li, Y. Ma, L. Mo, Y. Fu, The N-loop soliton solutions for (2+1)-dimensional Vakhnenko equation, Comput. Math. Appl., 74 (2017), 504–512. http://dx.doi.org/10.1016/j.camwa.2017.04.036 doi: 10.1016/j.camwa.2017.04.036 |
[25] | J. Li, Y. Zhou, Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity, Discrete Cont. Dyn.-S, 13 (2020), 3083–3097. http://dx.doi.org/10.3934/dcdss.2020113 doi: 10.3934/dcdss.2020113 |
[26] | X. Li, M. Wang, A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms, Phys. Lett. A, 361 (2007), 115–118. http://dx.doi.org/10.1016/j.physleta.2006.09.022 doi: 10.1016/j.physleta.2006.09.022 |
[27] | X. Liu, C. He, New traveling wave solutions to the Vakhnenko-Parks equation, International Scholarly Research Notices, 2013 (2013), 178648. http://dx.doi.org/10.1155/2013/178648 doi: 10.1155/2013/178648 |
[28] | Y. Ma, B. Li, A direct method for constructing the traveling wave solutions of a modified generalized Vakhnenko equation, Appl. Math. Comput., 219 (2012), 2212–2219. http://dx.doi.org/10.1016/j.amc.2012.08.068 doi: 10.1016/j.amc.2012.08.068 |
[29] | Y. Ma, B. Li, W. Cong, A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput., 211 (2009), 102–107. http://dx.doi.org/10.1016/j.amc.2009.01.036 doi: 10.1016/j.amc.2009.01.036 |
[30] | F. Majid, H. Triki, T. Hayat, O. Aldossary, A. Biswas, Solitary wave solutions of the Vakhnenko-Parkes equation, Nonlinear Anal.-Model., 17 (2012), 60–66. http://dx.doi.org/10.15388/NA.17.1.14078 doi: 10.15388/NA.17.1.14078 |
[31] | A. Morrison, E. Parkes, V. Vakhnenko, The N loop soliton solution of the Vakhnenko equation, Nonlinearity, 12 (1999), 1427–1437. http://dx.doi.org/10.1088/0951-7715/12/5/314 doi: 10.1088/0951-7715/12/5/314 |
[32] | Y. Özkan, E. Yaşar, A. Seadawy, On the multi-waves, interaction and peregrine-like rational solutions of perturbed radhakrishnan-kundu-lakshmanan equation, Phys. Scr., 95 (2020), 085205. http://dx.doi.org/10.1088/1402-4896/ab9af4 doi: 10.1088/1402-4896/ab9af4 |
[33] | E. Parkes, The stablility of solutions of Vakhnenko's equation, J. Phys. A: Math. Gen., 26 (1993), 6469. http://dx.doi.org/10.1088/0305-4470/26/22/040 doi: 10.1088/0305-4470/26/22/040 |
[34] | H. Roshid, M. Kabir, R. Bhowmik, B. Datta, Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-$\phi(\xi)$)-expansion method, SpringerPlus, 3 (2014), 692. http://dx.doi.org/10.1186/2193-1801-3-692 doi: 10.1186/2193-1801-3-692 |
[35] | P. Russell, P. Holzer, W. Chang, A. Abdolvand, J. Travers, Hollow-core photonic crystal fibres for gas-based nonlinear optics, Nat. Photonics, 8 (2014), 278–286. http://dx.doi.org/10.1038/nphoton.2013.312 doi: 10.1038/nphoton.2013.312 |
[36] | A. Seadawy, Stability analysis of traveling wave solutions for generalized coupled nonlinear kdv equations, Appl. Math. Inf. Sci., 10 (2016), 209–214. http://dx.doi.org/10.18576/amis/100120 doi: 10.18576/amis/100120 |
[37] | A. Seadawy, N. Cheemaa, Propagation of nonlinear complex waves for the coupled nonlinear Schrdinger Equations in two core optical fibers, Physica A, 529 (2019), 121330. http://dx.doi.org/10.1016/j.physa.2019.121330 doi: 10.1016/j.physa.2019.121330 |
[38] | V. Vakhnenko, Solitons in a nonlinear model medium, J. Phys. A: Math. Gen., 25 (1992), 4181. http://dx.doi.org/10.1088/0305-4470/25/15/025 doi: 10.1088/0305-4470/25/15/025 |
[39] | V. Vakhnenko, E. Parkes, The two loop soliton solution of the Vakhnenko equation, Nonlinearity, 11 (1998), 1457. http://dx.doi.org/10.1088/0951-7715/11/6/001 doi: 10.1088/0951-7715/11/6/001 |
[40] | V. Vakhnenko, E. Parkes, The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method, Chaos Soliton. Fract., 13 (2002), 1819–1826. http://dx.doi.org/10.1016/S0960-0779(01)00200-4 doi: 10.1016/S0960-0779(01)00200-4 |
[41] | V. Vakhnenko, E. Parkes, The singular solutions of nonlinear evolution equation taking continuous part of the spectral data into account in inverse scattering method, Chaos Soliton. Fract., 45 (2012), 846–852. http://dx.doi.org/10.1016/j.chaos.2012.02.019 doi: 10.1016/j.chaos.2012.02.019 |
[42] | V. Vakhnenko, E. Parkes, Approach in theory of nonlinear evolution equations: the Vakhnenko-Parkes equation, Adv. Math. Phys., 2016 (2016), 2916582. http://dx.doi.org/10.1155/2016/2916582 doi: 10.1155/2016/2916582 |
[43] | V. Vakhnenko, E. Parkes, A. Michtchenko, The Vakhnenko equation from the view-point of the inverse scattering method for the KdV equation, Int. J. Diff. Equ. Appl., 1 (2000), 429–449. |
[44] | A. Wazwaz, The tanh method and the sine-cosine method for solving the KP-MEW equation, Int. J. Comput. Math., 82 (2005), 235–246. http://dx.doi.org/10.1080/00207160412331296706 doi: 10.1080/00207160412331296706 |
[45] | A. Wazwaz, The integrable Vakhnenko-Parkes (VP) and the modified Vakhnenko-Parkes (MVP) equations: multiple real and complex soliton solutions, Chinese J. Phys., 57 (2019), 375–381. http://dx.doi.org/10.1016/j.cjph.2018.11.004 doi: 10.1016/j.cjph.2018.11.004 |
[46] | A. Wazwaz, Multiple complex and multiple real soliton solutions for the integrable Sine-Gordon equation, Optik, 172 (2018), 622–627. http://dx.doi.org/10.1016/j.ijleo.2018.07.080 doi: 10.1016/j.ijleo.2018.07.080 |
[47] | F. Yang, F. Gyger, L. Thévenaz, Intense Brillouin amplifi-cation in gas using hollow-core waveguides, Nat. Photonics, 14 (2020), 700–708. http://dx.doi.org/10.1038/s41566-020-0676-z doi: 10.1038/s41566-020-0676-z |
[48] | Y. Ye, J. Song, S. Shen, Y. Di, New coherent structures of the Vakhnenko-Parkes equation, Results Phys., 2 (2012), 170–174. http://dx.doi.org/10.1016/j.rinp.2012.09.011 doi: 10.1016/j.rinp.2012.09.011 |
[49] | M. Zhang, Y. Ma, B. Li, Novel loop-like solitons for the generalized Vakhnenko equation, Chinese Phys. B, 22 (2013), 030511. http://dx.doi.org/10.1088/1674-1056/22/3/030511 doi: 10.1088/1674-1056/22/3/030511 |