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Abstract: In this paper, we investigate the dynamical behavior of traveling waves for a generalized
Vakhnenko-Parkes-modified Vakhnenko-Parkes (VP-mVP) equation with non-homogeneous power
law nonlinearity. By the dynamical systems approach and the singular traveling wave theory, the
existence of all possible bounded traveling wave solutions is discussed, including smooth solutions
(solitary wave solutions, periodic wave solutions and breaking wave solutions) and non-smooth
solutions (solitary cusp wave solutions and periodic cusp wave solutions). We not only obtain all
the explicit parametric conditions for the existence of 5 kinds of bounded traveling wave solutions, but
also give their exact explicit expressions. Moreover, we qualitatively analyze the dynamical behavior of
these traveling waves by using the bifurcation of phase portraits under different parameter conditions,
and strictly prove the evolution of different traveling waves with their exact expressions.
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1. Introduction

The research of nonlinear evolution equations, which describe the real features in a variety of
applied science, technology and engineering areas, is booming. The findings of their exact solutions
are helpful to understand a variety of qualitative and quantitative features of these nonlinear scientific
phenomena, which are widely present in nature such as vibration and self reinforcing solitary
waves [8, 9, 19, 25]. Specially, the study of the calculation and evolution of traveling wave solution,
a kind of analytical solution of nonlinear evolution equations about spatial translation invariance, is
helpful to understand the change process of the wave phenomena described by models under the action
of nonlinearity, and to explain the relevant natural phenomena. In last some decades, many useful
methods have been proposed to obtain traveling wave solutions with different physical structures, such
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as Hirota’s bilinear transformation [11], inverse scattering method [3], Bäcklund transformation [2],
the auxiliary equation mapping method and its extended modified form [7, 37], the modified extended
direct algebraic method [4], the logarithmic transformation and symbolic computation [32], extended
algebraic method [36].

Vakhnenko in 1992 first proposed a nonlinear evolution equation [38]

∂

∂x

(
∂

∂t
+ u

∂

∂x

)
u + u = 0, (1.1)

known as the Vakhnenko equation (VE), where u = u(x, t) represents the pulse wave envelopes,
variables x and t stand for normalized displacement and time, respectively. He pointed out that (1.1)
exhibits hydrodynamics nonlinearity similar to the Korteweg-de-Vries (KdV) equation, which implies
that it may at least partially possesses the significant properties inherent to the KdV equation, such
as the existence of soliton solutions. A series of traveling wave solutions for (1.1) and its variants
were obtained through the auxiliary equation method [29] and the traveling wave reduction combined
with a smart variable transformation [28]. Li-Ma used the Hirota bilinear method to derive N-order
solutions and discussed the interaction dynamics of hybrid solitons and breathers for a generalized VE
in [23]. Moreover, Vakhnenko and Parkes found (1.1) possesses loop-like wave solutions [31, 33, 39].
Additionally, Li et al. calculated N-loop soliton solutions of a (2+1)-dimensional VE and observed the
dynamical interactions among the N-solitons are elastic [24]. These loop-like waves describe a special
physical phenomenon where waves may be compressed in the spatiotemporal domain, and have shown
great application prospects in ultra-fast optics [10]. In fact, (1.1) is still an integrable system originally
proposed to describe the propagation of high-frequency waves in relaxing media. Additionally, many
studies have shown that photons have better performance when propagating in relaxed media than in
traditional media [35,47], so (1.1) also has important applications in high-speed optical fibers [17,49].

Later in 1998, Vakhnenko and Parkes unintentionally evolved VE into another new equation [39]

uuxxt − uxuxt + u2ut = 0, (1.2)

namely, Vakhnenko-Parkes (VP) equation, by transforming the independent variables when they
derived the exact two loop soliton solutions of (1.1). This transformation causes (1.2) to no longer have
loop-like wave solutions, but the cusp-like wave solutions still exist. As a remarkable and important
model to describe the propagation of gravity wave along the channel under the influence of Coriolis
force, (1.2) has been proved to be integrable in sense of possessing multiple soliton-solutions [40, 43].
Vakhnenko and Parkes found singular solutions of (1.2) with the inverse scattering method in [41]
and the N-soliton solution with Hirota’s method in [42]. The variable separation solutions with new
coherent stuctures of (1.2), such as the soliton-type, instanton-type and rogue wave-type stuctures,
were obtained in [48] by means of the variable separation approach based on the corresponding
Bäcklund transformation. Moreover, there have been many profound achievements in the traveling
wave solutions of (1.2), among which various methods have been developed including the (G’/G)-
expansion method [1], the improved (G’/G)-expansion method [27], the simplest equation method [12],
the exp-function and Exp(-φ(ξ))-expansion method [34] and the Hirota method [45]. Recently, Li
proposed an extended Hirota bilinear method to construct the soliton, breather and multiple-wave
soliton solutions of a generalized VP equation with time-dependent coefficients, and pointed out that
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the obtained soliton solutions can degenerate into existing single soliton solutions while the breather
and multiple-wave soliton solutions are obtained for the first time [18].

In order to obtain more new and meaningful results, Majid et al. further extended (1.2) to family of
the VP equation with power law nonlinearity [30]

uuxxt + auxuxt + bu2nut = 0, (1.3)

where a, b are nonzero real constants and n ∈ Z+ indicates the power law nonlinearity parameter. Using
the ansatz method, they confirmed the existence of non-topological solitary waves for any exponent
n > 1/2, topological solitary waves exist only in the case when n = 3/2 and closed form solitary
wave solutions exist only for a = −1. And then the exact topological and non-topological solitary
wave solutions of (1.3) were calculated in [30]. In [15], the Painlevé property of (1.3) was analysed
by the Kruskal approach [13], its symmetry was derived with help of the Lie group formalism [6] and
invariant solutions of (1.3) are obtained through Bäcklund transformation method. In 2020, Jyoti and
Kumar proposed a modified Vakhnenko-Parkes (mVP) equation with power law nonlinearity in the
following generalised form [14]

uuxxt + auxuxt + bu3nut = 0, (1.4)

where a, b are nonzero real constants and n , 1/3 is a power law nonlinearity parameter. For a = −1,
b = 1 and n = 1, (1.4) reduces to the modified form of (1.2), which was first introduced by Wazwaz
in 2018 and is called the mVP equation. In the same year, Wazwaz proved the complete integrability of
the mVP equation by applying the Painlevé analysis in [45] and introduced two complex forms of the
simplified Hirota’s method to determine its multiple traditional and complex soliton solutions in [46],
respectively. Then, Jyotia and Kumar [14] used the Kruskal approach to perform the Painlevé analysis
of the mVP equation. In [5], the sine-Gordon expansion method [44] was presented to obtain the mixed
dark bright wave patterns and some exact solutions, which comprises the hyperbolic, trigonometric,
rational and exponential function with few licentious parameter. Further, in order to understand
the dynamic behavior of these analytical solutions with different physical structures, authors of [5]
completed their graphical analysis by means of 2D, 3D and contour plots.

However, there are still few studies on the analytical solutions of (1.3) and (1.4), especially
the traveling wave solutions. The purpose of this paper is to systematically discuss the traveling
wave solutions of family of VP equation exhibiting power law nonlinearity. Using the sense of the
generalized Korteweg-de Vries-modified Korteweg-de Vries (KdV-mKdV) equation with high-order
nonlinear terms [26], we consider a generalized Vakhnenko-Parkes-modified Vakhnenko-Parkes (VP-
mVP) equation with non-homogeneous power law nonlinearity

uuxxt + αuxuxt +
(
βu2n + γu3n

)
ut = 0, (1.5)

where n ∈ Z+ is a power law nonlinearity parameter, and α, β, γ are nonzero real constants. It’s not
hard to see that when the parameters are taken as different values, the VP equation, the mVP equation
and Eqs (1.3) and (1.4) can be derived from (1.5). Because a traveling wave solution of a nonlinear
partial differential equation (NPDE) usually corresponds to a orbit of its traveling wave system in
phase space, this correspondence just makes the bifurcation method of dynamical system become
an effective way to study nonlinear evolution equations, and more detailed research ideas and usage
techniques can be found in [16, 22]. In recent years, Li and Liu et al. have utilized and developed
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this method to systematically analyze the existence laws of solitary waves, kink waves and periodic
waves in the parameter space [20, 21, 25, 27]. Based on these, we attempt to employ the bifurcation
method of dynamical systems to investigate all possible bounded traveling wave solutions of (1.5). The
topological phase portraits produced by the vector fields of the corresponding traveling wave system
of (1.5) determine all possible traveling wave solutions u(x, t) = φ(ξ), ξ = x − t. If there is a finite real
number M, such that |φ(ξ)| < M holds for any ξ, then φ(ξ) is called a bounded traveling wave solution,
otherwise it is called an unbounded traveling wave solution.

The rest of the paper is organized as follows: in Section 2 we first study the traveling wave system
corresponding to (1.5) to investigate the existence of all possible bounded traveling waves, including
solitary wave, periodic wave, breaking wave, solitary cusp wave and periodic cusp wave. Then, we
give all existence conditions of these waves in 4-dimensional parameter space of α, β, γ and an integral
parameter. In Sections 3 and 4, we derive exact explicit expressions of solitary wave solution, periodic
wave solution, breaking wave solution, solitary cusp wave solution and periodic cusp wave solution
of (1.5), and analyze the evolutionary relationship between them. Finally, simulations of these traveling
wave solutions and conclusions of this paper are given in Section 5.

2. Analysis of traveling wave system of (1.5)

Substituting u(x, t) = φ(ξ) with ξ = x− t into Eq (1.5) and integrating it once, we have the following
ordinary differential equation

φφ
′′

+
α − 1

2

(
φ
′
)2

+
β

2n + 1
φ2n+1 +

γ

3n + 1
φ3n+1 = G, (2.1)

where ′ denotes the derivative with respect to ξ, G is an integral constant. When we let φ
′

= y, then (2.1)
is transformed into 

dφ
dξ

= y,

dy
dξ

=
−α−1

2 y2 + f (φ)
φ

,

(2.2)

where f (φ) := −βφ2n+1/(2n + 1) − γφ3n+1/(3n + 1) + G. Since (2.2) is invariant under (α, β, γ,G) →
(−α,−β,−γ,−G), we need only to consider β > 0. When (α−1) and G are not 0 at the same time, (2.2)
is a singular traveling wave system of the first kind [22] with a singular straight line φ = 0, which
brings challenges to our study. Thus, we assume in (2.2) that

(α, β, γ,G) ∈ Ω :=
{
(α, β, γ,G) ∈ R4 : αγ

(
(α − 1)2 + G2

)
, 0, β > 0, α ∈ Z

}
.

Further, we introduce the transformation dξ = φdη, and then singular system (2.2) is reduced to the
following regular system 

dφ
dη

= φy,

dy
dη

= −
α − 1

2
y2 + f (φ).

(2.3)

Actually, (2.2) and (2.3) have the same first integral Hn(φ, y) of form

φα−1
[
y2 +

2β
(2n + 1)(2n + α)

φ2n+1 +
2γ

(3n + 1)(3n + α)
φ3n+1 −

2G
α − 1

]
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when (α − 1)(α + 2n)(α + 3n) , 0, of form

y2 +
2β

(2n + 1)2φ
2n+1 +

2γ
(3n + 1)2φ

3n+1 − 2G ln(φ)

when α = 1, of form

1
φ2n+1 y2 +

2β
2n + 1

ln(φ) +
2γ

n(3n + 1)
φn +

2G
2n + 1

1
φ2n+1

when α = −2n and of form

1
φ3n+1 y2 −

2β
n(2n + 1)

1
φn +

2γ
3n + 1

ln(φ) +
2G

3n + 1
1

φ3n+1

when α = −3n. This implies that (2.2) and (2.3) have the same topological phase portraits, except the
singular line φ = 0. Therefore, we can understand the phase portrait of (2.2) from that of (2.3).

2.1. Bifurcation curves of equilibria of regular system (2.3)

It is not difficult to know that from the expression of (2.3) the equilibria of (2.3) only exist on the
φ-axis and the singular line φ = 0, while the equilibria on the φ-axis are the ones of (2.2). So, we
first investigate the type and distribution of equilibria in (2.2), which requires us to determine the zeros
of f (φ). Since the derivative function f

′

(φ) = −φ2n (β + γφn) obviously has at most three zeros 0 and
φ±n := ± n

√
−β/γ, and then we have at most three bifurcation curves

G±n (β) = ±
n

√
−
β

γ

nβ3

(2n + 1)(3n + 1)γ2 and G0(β) ≡ 0. (2.4)

From
(
G±n (β)

)′
= ± n

√
−β/γβ2/

(
(2n + 1)γ2

)
, we can know that these three bifurcation curves do not

intersect each other. Further, we conclude that when n is odd, f (φ) has at most 2 zeros which are
denoted by φi

n(i = 1, 2) and satisfy φ1
n 6 φ2

n; when n is even, f (φ) has at most 3 zeros which are
denoted by ϕ j

n( j = 1, 2, 3) and satisfy ϕ1
n 6 ϕ

2
n 6 ϕ

3
n. Then,

(
φi

n, 0
)

(i = 1, 2) or
(
ϕ

j
n, 0

)
( j = 1, 2, 3) is an

equilibrium of (2.2) and has characteristic equation λ2 − φ0 f
′

(φ0) = 0, where φ0 is equal to φi
n or ϕ j

n.
This implies that the equilibria of (2.2) are distributed as follows:

(I) Under n = 2m − 1(m ∈ Z+) and γ > 0, there exist the following facts.

(I1) If G > G0(β), f (φ) has two zeros φ1
n and φ2

n, satisfying the inequality φ1
n < 0 < φ2

n. And
then (2.2) has exactly two equilibria (φ1

n, 0) and (φ2
n, 0), both of which are centers.

(I2) If G = G0(β), f (φ) has two zeros φ1
n and φ2

n, satisfying the inequality φ1
n < φ2

n = 0. And
then (2.2) has only one equilibrium (φ1

n, 0), which is a center.
(I3) If G+

n (β) < G < G0(β), f (φ) has two zeros φ1
n and φ2

n, satisfying the inequality φ1
n < φ2

n < 0.
And then (2.2) has exactly two equilibria

(
φ1

n, 0
)

and
(
φ2

n, 0
)
, of which the former is a center

and the latter is a saddle.
(I4) If G = G+

n (β), f (φ) has only one zero φ1
n, satisfying the inequality φ1

n = φ+
n < 0. And then (2.2)

has only one equilibrium
(
φ1

n, 0
)
, which is a degenerated equilibrium.

(I5) If G < G+
n (β), f (φ) has no zeros, which means that (2.2) has no equilibria.
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(II) Under n = 2m − 1(m ∈ Z+) and γ < 0, there exist the following facts.

(II1) If G > G+
n (β), f (φ) has no zeros, which means that (2.2) has no equilibria.

(II2) If G = G+
n (β), f (φ) has only one zero φ1

n, satisfying the inequality φ1
n = φ+

n > 0. And then (2.2)
has only one equilibrium

(
φ1

n, 0
)
, which is a degenerated equilibrium.

(II3) If G0(β) < G < G+
n (β), f (φ) has two zeros φ1

n and φ2
n, satisfying the inequality 0 < φ1

n < φ2
n.

And then (2.2) has exactly two equilibria
(
φ1

n, 0
)

and
(
φ2

n, 0
)
, of which the former is a center

and the latter is a saddle.
(II4) If G = G0(β), f (φ) has two zeros φ1

n and φ2
n, satisfying the inequality φ1

n = 0 < φ2
n. And

then (2.2) has only one equilibrium (φ2
n, 0), which is a saddle.

(II5) If G < G0(β), f (φ) has two zeros φ1
n and φ2

n, satisfying the inequality φ1
n < 0 < φ2

n. And
then (2.2) has exactly two equilibria (φ1

n, 0) and (φ2
n, 0), both of which are saddles.

(III) Under n = 2m(m ∈ Z+) and γ > 0, there exist the following facts.

(III1) If G > G0(β), f (φ) has only one zero ϕ1
n > 0. And then (2.2) has only one equilibrium

(
ϕ1

n, 0
)
,

which is a center.
(III2) If G = G0(β), f (φ) has only one zero ϕ1

n = 0, which implies that (2.2) has no equilibria.
(III3) If G < G0(β), f (φ) has only one zero ϕ1

n < 0. And then (2.2) has only one equilibrium
(
ϕ1

n, 0
)
,

which is a saddle.

(IV) Under n = 2m(m ∈ Z+) and γ < 0, there exist the following facts.

(IV1) If G > G+
n (β), f (φ) has only one zero ϕ1

n < 0. And then (2.2) has only one equilibrium
(
ϕ1

n, 0
)
,

which is a center.
(IV2) If G = G+

n (β), f (φ) has two zeros ϕ1
n and ϕ2

n, satisfying the inequality ϕ1
n < 0 < ϕ2

n = φ+
n . And

then (2.2) has exactly two equilibria
(
ϕ1

n, 0
)

and
(
ϕ2

n, 0
)
, of which the former is a center and

the latter is a degenerated equilibrium.
(IV3) If G0(β) < G < G+

n (β), f (φ) has three zeros ϕ1
n, ϕ2

n and ϕ3
n, satisfying the inequality ϕ1

n < 0 <
ϕ2

n < ϕ3
n. And then (2.2) has exactly three equilibria

(
ϕ1

n, 0
)
,
(
ϕ2

n, 0
)

and
(
ϕ3

n, 0
)
, of which the

first two are centers and the last one is a saddle.
(IV4) If G = G0(β), f (φ) has three zeros ϕ1

n, ϕ2
n and ϕ3

n, satisfying the inequality ϕ1
n < ϕ2

n = 0 < ϕ3
n.

And then (2.2) has exactly two equilibria
(
ϕ1

n, 0
)

and
(
ϕ3

n, 0
)
, of which the former is a center

and the latter is a saddle.
(IV5) If G−n (β) < G < G0(β), f (φ) has three zeros ϕ1

n, ϕ2
n and ϕ3

n, satisfying the inequality ϕ1
n <

ϕ2
n <0< ϕ3

n. And then (2.2) has exactly three equilibria
(
ϕ1

n, 0
)
,
(
ϕ2

n, 0
)

and
(
ϕ3

n, 0
)
, of which

the first one is a center and the last two are saddles.
(IV6) If G = G−n (β), f (φ) has two zeros ϕ1

n and ϕ2
n, satisfying the inequality ϕ1

n = φ−n < 0 < ϕ2
n. And

then (2.2) has exactly two equilibria
(
ϕ1

n, 0
)

and
(
ϕ2

n, 0
)
, of which the former is a degenerated

equilibrium and the latter is a saddle.
(IV7) If G < G−n (β), f (φ) has only one zero ϕ3

n > 0. And then (2.2) has only one equilibrium
(
ϕ3

n, 0
)
,

which is a saddle.

In addition, when (α − 1)G > G0(β), (2.3) also has two other equilibria P±
(
0,±
√

2G/(α − 1)
)

on
the singular line φ = 0. Their corresponding eigenvalues are

λ1 (P±) = ±

√
2G
α − 1

, λ2 (P±) = ∓(α − 1)

√
2G
α − 1

.
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Thus, P± are two saddles for α > 1 and are two nodes for α < 1. When G = G0(β), (2.3) has only one
equilibrium on the line φ = 0, lying at (0, 0). It is a high-order equilibrium because its Jacobian matrix
is degenerate. When (α − 1)G < G0(β) or α = 1, (2.3) has no equilibria on the line φ = 0.

To sum up, all bifurcation curves of (2.3) with respect to the equilibria are given in (2.4).

2.2. Bifurcation of phase portraits for regular system (2.3)

For a fixed integral constant h ∈ R, Hn(φ, y) = h defines a set of invariant curves, which corresponds
to a family of energy conservation orbits of (2.3). With the change of h, the dynamic behaviors of this
family of orbits will change, which requires us to find out their topology in phase plan (φ, y).

Lemma 2.1. In the phase plane (φ, y) of (2.3), the intersection between φ-axis and each family of
energy conservation orbits with energy h is given by Fn(φ) = h, where

Fn(φ) :=



2γ
(3n + 1)(3n + α)

φ3n+α +
2β

(2n + 1)(2n + α)
φ2n+α −

2G
α − 1

φα−1, for α , 1,−2n,−3n,

2γ
(3n + 1)2φ

3n+1 +
2β

(2n + 1)2φ
2n+1 − 2G ln | φ |, for α = 1,

2γ
n(3n + 1)

φn +
2β

2n + 1
ln | φ | +

2G
2n + 1

1
φ2n+1 , for α = −2n,

2γ
3n + 1

ln | φ | −
2β

n(2n + 1)
1
φn +

2G
3n + 1

1
φ3n+1 , for α = −3n.

It is not difficult to find that the bifurcation curves of equilibria of (2.3) we have given in (2.4) are
also bifurcation curves of its phase portraits. Moreover, from Lemma 2.1 we found another kind of
bifurcation curves of phase portraits in the cases of α > 1 and α < −3n, on which the corresponding
energy of the saddle of system (2.3) lying on φ-axis is 0. We denote this bifurcation curve as G∗n(β).

For n = 1, we can calculate the explicit expression of saddle of (2.3) lying on the φ-axis through the
Tianheng formula. Thus at the saddle making Hn(φ, y) = 0, that is, when α > 1, γ < 0 or α < −3, γ > 0,
the expression of the bifurcation curve G∗1(β) = G satisfies the following equation

2β
3(α + 2)

ω3 +
γ

2(α + 3)
ω4 −

2G
α − 1

= 0,

where

ω =
β −

√
β2 + 3( 3√δ1 +

3√δ2) +

√
2β2 − 3( 3√δ1 +

3√δ2) + 6
√
δ0

−3γ
,

δ0 =
β4

9
+ 9γ3G −

β2

3

(
3
√
δ1 +

3
√
δ2

)
+

(
3
√
δ1 +

3
√
δ2

)2
,

δ1,2 = −
3
2
γ3G

(
β2 ±

√
β4 + 12γ3G

)
.

For n > 1, since the explicit expression of saddle of (2.3) lying on φ-axis is difficult to obtain, we
only can draw the bifurcation curve G∗n(β) numerically. For example, let n = 2, (α−1)(α+2n)(α+3n), 0
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17521

and expand the following equation

s7 +
7β(α + 6)
5γ(α + 4)

s5 −
7G(α + 6)
γ(α − 1)

= (s − s1)2

s5 +

4∑
i=0

eisi

 .
Comparing the coefficients of each order of s on both sides of the above equation, we get the following
equations

e4 − 2s1 = 0,

s2
1 − 2e4s1 + e3 =

7β(α + 6)
5γ(α + 4)

,

e4s2
1 − 2e3s1 + e2 = 0,

e3s2
1 − 2e2s1 + e1 = 0,

e2s2
1 − 2e1s1 + e0 = 0,

e1s2
1 − 2e0s1 = 0,

e0s2
1 = −

7G(α + 6)
γ(α − 1)

.

And then, we obtain the expression of G∗2(β) as

G∗2(β) =
2 | α − 1 | (α + 6)2β3

35γ2(α + 4)3

√
−
β(α + 6)
γ(α + 4)

, for (α − 1)(α + 6) > 0, γ < 0.

Similarly, we can apply this method to simulate bifurcation curves G∗n(β) when n > 2. Further, for given
α, β and γ, we can get the value of G∗n(β) numerically, and obtain the bifurcation diagrams of (2.3) as
shown in the Figures 1–4.

(a) n = 2m − 1(m ∈ Z+), γ > 0. (b) n = 2m − 1(m ∈ Z+), γ < 0. (c) n = 2m(m ∈ Z+), γ > 0. (d) n = 2m(m ∈ Z+), γ < 0.

Figure 1. The bifurcation of phase portraits of system (2.3) when α = 1.
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(a) n = 2m − 1(m ∈ Z+), γ > 0. (b) n = 2m − 1(m ∈ Z+), γ < 0. (c) n = 2m(m ∈ Z+), γ > 0. (d) n = 2m(m ∈ Z+), γ < 0.

Figure 2. The bifurcation of phase portraits of system (2.3) when α > 1.

(a) n = 2m − 1(m ∈ Z+), γ > 0. (b) n = 2m − 1(m ∈ Z+), γ < 0. (c) n = 2m(m ∈ Z+), γ > 0. (d) n = 2m(m ∈ Z+), γ < 0.

Figure 3. The bifurcation of phase portraits of system (2.3) when −3n 6 α < 1.

(a) n = 2m − 1(m ∈ Z+), γ > 0. (b) n = 2m − 1(m ∈ Z+), γ < 0. (c) n = 2m(m ∈ Z+), γ > 0. (d) n = 2m(m ∈ Z+), γ < 0.

Figure 4. The bifurcation of phase portraits of system (2.3) when α < −3n.

Based on the above analysis, (1.5) has solitary wave solutions, solitary cusp wave solutions, periodic
wave solutions, periodic cusp wave solutions and breaking wave solutions, whose existence conditions
are concluded in Lemmas 2.2–2.6.

Lemma 2.2. If and only if α > 1, (1.5) has breaking wave solutions.

Lemma 2.3. When one of the following conditions holds, (1.5) has solitary wave solutions.
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(I) For the case of n = 2m − 1(m ∈ Z+) and γ > 0, one of the following conditions shall be met

(I1) α > −3n and G+
n (β) < G 6 G0(β);

(I2) −3n 6 α 6 1 and G = G+
n (β);

(I3) α < −3n is odd, and G+
n (β) 6 G < G∗n(β) or G = G0(β);

(I4) α < −3n is even, and G+
n (β) < G < G∗n(β) or G∗n(β) < G 6 G0(β).

(II) For the case of n = 2m − 1(m ∈ Z+) and γ < 0, one of the following conditions shall be met

(II1) α > 1 and G∗n(β) < G < G+
n (β);

(II2) −3n 6 α 6 1 is odd or α < −3n, and G < G+
n (β);

(II3) −3n 6 α 6 1 is even, and G0(β) 6 G < G+
n (β).

(III) For the case of n = 2m(m ∈ Z+) and γ > 0, one of the following conditions shall be met

(III1) α < −3n is odd, and G = G0(β);
(III2) α < −3n is even or −3n 6 α 6 1, and G 6 G0(β).

(IV) For the case of n = 2m(m ∈ Z+) and γ < 0, one of the following conditions shall be met

(IV1) α > 1 and G∗n(β) < G < G+
n (β) or G−n (β) < G 6 G0(β);

(IV2) α < −3n is odd, and G−n (β) 6 G < G+
n (β);

(IV3) α < −3n is even or −3n 6 α 6 1, and G < G+
n (β).

Lemma 2.4. When one of the following conditions holds, (1.5) has periodic wave solutions.

(I) For the case of n = 2m − 1(m ∈ Z+) and γ > 0, one of the following conditions shall be met
(I1) α < −3n is odd or −3n 6 α 6 1; (I2) α < −3n is even or α > 1, and G > G+

n (β).
(II) For the case of n = 2m − 1(m ∈ Z+) and γ < 0, one of the following conditions shall be met

(II1) G0
n(β) < G < G+

n (β); (II2) α < −3n and G < G0(β).
(III) For the case of n = 2m(m ∈ Z+) and γ > 0, one of the following conditions shall be met

(III1) α > 1 and G > G0(β); (III2) α 6 1 and G , G0(β).
(IV) For the case of n = 2m(m ∈ Z+) and γ < 0, one of the following conditions shall be met

(IV1) α > 1 and G > G−n (β); (IV2) α 6 1.

Lemma 2.5. When α > 1,G = G∗n(β) or α < 1,G = G0(β), (1.5) with γ < 0 has a non-smooth solitary
wave solution, also known as solitary cusp wave solution.

Lemma 2.6. When α > 1 and one of the following conditions holds, (1.5) has a non-smooth periodic
solitary wave solution, also known as periodic cusp wave solution.

(I) n = 2m(m ∈ Z+) and G > G0(β);
(II) n = 2m − 1(m ∈ Z+), γ > 0 and G > G0(β);

(III) n = 2m − 1(m ∈ Z+), γ < 0 and G0(β) < G < G∗n(β).

In fact, for a nonlinear evolution equation, a solitary wave solution (resp. a periodic wave solution)
corresponds to a homoclinic orbit (resp. periodic closed orbit) in its traveling wave system. In
particular, for a traveling wave system with singularity, when its homoclinic orbit (resp. periodic
closed orbit) intersects its singular line at two different saddles, the smooth solitary wave solution
(resp. smooth periodic wave solution) corresponding to the original NPDE will lose its smoothness
and evolve into solitary cusp wave solution (resp. periodic cusp wave solution). From the above
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correspondence and the Figures 1–4, it is not difficult to prove Lemmas 2.2–2.6, so the detailed proof
process is omitted here.

Moreover, by Lemmas 2.3–2.5 and [16, Theorems 2.3, 2.4 and 2.6] we get that when α < 1 and
G 6 G0(β) (2.2) has the following four special properties.
Property A. There are two heteroclinic orbits connecting the saddle

(
φ2

n, 0
)

(resp.
(
ϕ3

n, 0
)
) and the

degenerate equilibrium (0, 0) when n = 2m− 1(m ∈ Z+) (resp. n = 2m(m ∈ Z+)), γ < 0 and G = G0(β),
which gives rise to a solitary wave. And there are no equilibria inside the loop surrounded by these
two heteroclinic orbits.
Property B. There are infinitely many periodic orbits passing through the singular line φ = 0 and
intersecting at two points P± when G < G0(β), which give rise to a family of periodic waves. And there
are no equilibria inside this family of periodic orbits.
Property C. There are infinitely many homoclinic orbits intersecting to the singular line φ = 0 at (0, 0)
when G = G0(β), which give rise to a family of smooth solitary waves. And there are no equilibria
inside this family of homoclinic orbits.
Property D. There exists a homoclinic orbit passing through the singular line φ = 0 and intersecting
at two points P± in each of the following cases:
Case Da. n = 2m − 1(m ∈ Z+) and one of the following five conditions holds

(Da1) −3n 6 α < 1, γ > 0 and G+
n (β) 6 G < G0(β);

(Da2) α < −3n is odd, γ > 0 and G+
n (β) 6 G < G∗n(β);

(Da3) α < −3n is even, γ > 0 and G∗n(β) < G < G0(β);
(Da4) −3n 6 α < 1 is odd, γ < 0 and G < G0(β);
(Da5) α < −3n, γ < 0 and G < G0(β).

Case Db. n = 2m(m ∈ Z+) and one of the following conditions holds
(Db1) −3n 6 α < 1, γ > 0 and G < G0(β);
(Db2) α < −3n is even, γ > 0 and G < G0(β);
(Db3) α < −3n, γ < 0 and G−n (β) 6 G < G0(β);
(Db4) −3n 6 α < 1, γ < 0 and G < G0(β).

There are no equilibria inside this family of homoclinic orbits, and they give rise to a family of smooth
solitary waves.

3. Expressions of smooth wave solutions of (1.5)n=1

In this section, combined with the existence conditions of solitary wave solutions and periodic
wave solutions given by Lemmas 2.3 and 2.4, we calculate the explicit expressions of these two kinds
of solutions of (1.5) for the case of n = 1 and α = −1.

Theorem 3.1. For γ < 0, (1.5)n=1 holds the following conclusions:

(1) when G0(β) < G < G+
1 (β), there are a valley-solitary wave solution

φ1(ξ) = r1 −
(r2 − r1)

(
φ2

1 − r1

)
(
φ2

1 − r2

)
tanh2

(
1
4

√
−γ

(
φ2

1 − r1

) (
φ2

1 − r2

)
| ξ |

)
+ r1 − φ

2
1
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and a family of periodic wave solutions with expression

φ2(ξ, h) = r3 −
(r5 − r3) (r4 − r3)

(r5 − r4) sn2
(

1
4

√
−γ (r6 − r4) (r5 − r3) | ξ |,

√
(r5−r4)(r6−r3)
(r6−r4)(r5−r3)

)
+ r3 − r5

;

(2) when G = G0(β), there are infinitely many peak-solitary wave solutions

φ3

(
ξ, h̃

)
= s2 −

s2 (s2 − s1)

s2 − s1 tanh2
(

1
4

√
−γs1s2 | ξ |

) ,
where s1 =

(
4β − 2

√
4β2 + 9γh̃

)
/(−3γ), s2 =

(
4β + 2

√
4β2 + 9γh̃

)
/(−3γ), h̃ ∈

(
0, 4β2/(−9γ)

)
.

Moreover, ri(i = 1, 2, · · · , 6) satisfy inequalities r1 < r2, r3 < r4 < r5 < r6 and equations H1(r1, 0) =

H1(r2, 0) = H1(φ2
1, 0), H1(r3, 0) = H1(r4, 0) = H1(r5, 0) = H1(r6, 0) = h, h ∈

(
H1(φ1

1, 0),H1(φ2
1, 0)

)
,

where (φ1
1, 0) and (φ2

1, 0) are the center and the saddle of (2.2) respectively. It is worth noting that when
h→ H1(φ2

1, 0) − 0, we have
φ2(ξ, h)→ φ1(ξ),

which means that the solitary wave solution φ1(ξ) is the limit solution of this family of periodic wave
solutions φ2(ξ, h).

Theorem 3.2. For γ > 0,(1.5)n=1 holds the following conclusions:

(1) when G = G0(β), there are a family of periodic wave solutions with expression

φ4(ξ) = r8 −
r8(r8 − r7)

r7 tan2
(

1
4
√
γr7r8 | ξ |

)
+ r8

,

a family of valley-solitary wave solutions with expression

φ5(ξ) = r10 −
r10(r10 − r9)

r10 − r9 tanh2
(

1
4

√
−γr9r10 | ξ |

)
and a family of peak-solitary wave solutions with expression

φ6(ξ) = r9 +
r9(r10 − r9)

r9 − r10 tanh2
(

1
4

√
−γr9r10 | ξ |

) ;

(2) when G+
1 (β) < G < G0(β), there are a valley-solitary wave solution

φ7(ξ,G) = r12 −
(r12 − r11)

(
r12 − φ

2
1

)
(
φ2

1 − r11

)
tanh2

(
1
4

√
γ
(
r12 − φ

2
1

) (
φ2

1 − r11

)
| ξ |

)
+ r12 − φ

2
1

and a peak-solitary wave solution with expression

φ8(ξ,G) = r11 +
(r12 − r11)

(
φ2

1 − r11

)
(
r12 − φ

2
1

)
tanh2

(
1
4

√
γ
(
r12 − φ

2
1

) (
φ2

1 − r11

)
| ξ |

)
+ φ2

1 − r11

;
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(3) when G = G+
1 (β), there are a peak-solitary wave solution with expression

φ9(ξ) = −
β

γ
+

12β
9γ + β2ξ2

and a family of periodic wave solutions with expression

φ10(ξ) =

(r13A − r14B) cn
(√

γAB
4 | ξ |,

√
(r14−r13)2−(A−B)2

4AB

)
+ r13A + r14B

(A − B)cn
(√

γAB
4 | ξ |,

√
(r14−r13)2−(A−B)2

4AB

)
+ A + B

.

Here, φ1
1 and φ2

1 are the abscissa values of the center and the saddle point of (2.2) respectively, r7 =

−(4β+
√

16β2 + 144γh1)/(3γ), r8 = −(4β−
√

16β2 + 144γh1)/(3γ), r9 = −(4β+
√

16β2 + 144γh2)/(3γ),
r10 = −(4β−

√
16β2 + 144γh2)/(3γ), A2 = (8β(r13 + 2r14) + 3γ(r2

13 + 2r13r14 + 3r2
14)− 12h3)/(3γ), B2 =

(8β(2r13+r14)+3γ(3r2
13+2r13r14+r2

14)−12h3)/(3γ), h1 ∈ (H1(φ1
1, 0), 0), h2 ∈ (0,+∞), h3 ∈ R\{−β

2/(2γ)},
and parameters ri(i = 11, 12, 13, 14) satisfy r11 < r12, r13 < r14, H1(r11, 0) = H1(r12, 0) = H1(φ2

1, 0) and
H1(r13, 0) = H1(r14, 0) = h3. Moreover, when G → G0(β) − 0, we have

φ7(ξ,G)→ φ5(ξ), φ8(ξ,G)→ φ6(ξ);

when G → G+
1 (β) + 0, we have

φ7(ξ,G)→ −
β

γ
, φ8(ξ,G)→ φ9(ξ),

which reveals the process that the solitary wave solutions of (1.5)n=1 changes with the change of G in
the case of α = −1 and γ > 0.

Detailed proofs of the above two theorems are given below.

Proof of Theorem 3.1. Assume that α = −1 and γ < 0 (see Figure 3(b)). The proof is divided into the
following two cases.
Case 1. G0(β) < G < G+

1 (β). Clearly, H1(φ, y) = H1

(
φ2

1, 0
)

defines a homoclinic orbit of (2.3)n=1. It
possesses the expression

y2 = −
γ

4

(
φ − φ2

1

)2
(φ − r1)(φ − r2), for r2 6 φ < φ

2
1.

Substituting the above formula into the first equation of (2.2) and integrating it along the homoclinic
orbit, we have ∫ φ

r2

dφ(
φ2

1 − φ
) √

(φ − r1)(φ − r2)
=

√
−
γ

4
| ξ | .

Letting x =
√

(φ − r2)/(φ − r1), we get

∫ φ

r2

dφ(
φ2

1 − φ
) √

(φ − r1)(φ − r2)
=

1√
(φ2

1 − r1)(φ2
1 − r2)

ln

√
φ2

1 − r2 +

√
φ2

1 − r1x√
φ2

1 − r2 −

√
φ2

1 − r2x
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and express the solitary wave solution φ1(ξ).
Moreover, H1(φ, y) = h, h ∈

(
H1(φ1

1, 0),H1(φ2
1, 0)

)
, defines a periodic closed orbits with expression

y2 = −
γ

4
(φ − r3)(φ − r4)(r5 − φ)(r6 − φ), for r4 6 φ 6 r5.

Substituting the above formula into the first equation of (2.2) and integrating it along the corresponding
periodic closed orbit, we have∫ φ

r4

dφ√
(φ − r3)(φ − r4)(r5 − φ)(r6 − φ)

=

√
−
γ

4
| ξ | .

According to the elliptic integral formula,

∫ φ

r4

dφ√
(φ − r3)(φ − r4)(r5 − φ)(r6 − φ)

=
2

√
(r6−r4)(r5−r3)

sn−1


√

(r5 − r3)(φ − r4)
(r5 − r4)(φ − r3)

,

√
(r5 − r4)(r6 − r3)
(r6 − r4)(r5 − r3)

 .
Thus, we can express the periodic wave solutions φ2(ξ, h). In particular, as h→ H1

(
φ2

1, 0
)
−0, it follows

that r3 → r1, r4 → r2 and r5,6 → φ2
1. Then we have

lim
h→H1(φ2

1,0)−0
φ2(ξ, h) = r1 −

(φ2
1 − r1) (r2 − r1)(

φ2
1 − r2

)
sn2

(
1
4

√
−γ

(
φ2

1 − r2

) (
φ2

1 − r1

)
| ξ |, 1

)
+ r1 − φ

2
1

= r1 −
(φ2

1 − r1) (r2 − r1)(
φ2

1 − r2

)
tanh2

(
1
4

√
−γ

(
φ2

1 − r2

) (
φ2

1 − r1

)
| ξ |

)
+ r1 − φ

2
1

= φ1(ξ).

Case 2. G = G0(β). Clearly, when h̃ ∈
(
0, 4β2/(−9γ)

)
, H1(φ, y) = h̃ defines a homoclinic orbit

of (2.3)n=1. It possesses the expression

y2 = −
γ

4
φ2 (s1 − φ) (s2 − φ), for 0 < φ 6 s1.

Substituting the above formula into the first equation of (2.2) and integrating it along the homoclinic
orbit, we have ∫ s1

φ

dφ

φ
√

(s1 − φ) (s2 − φ)
=

√
−
γ

4
| ξ | .

Letting x =
√

(s1 − φ)/(s2 − φ), we get∫ s1

φ

dφ

φ
√

(s1 − φ) (s2 − φ)
=

1
√

s1s2
ln
√

s1 +
√

s2x
√

s1 −
√

s2x

and express the solitary wave solution φ3

(
ξ, h̃

)
. Furthermore, it confirms the validity of Property C

mentioned in Section 2. �
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Proof of Theorem 3.2. Assume that α = −1 and γ > 0 (see Figure 3(a)). The proof is divided into the
following three cases.
Case 1. G = G0(β). Clearly, for given h1 ∈

(
H1

(
φ1

1, 0
)
, 0

)
, H1(φ, y) = h1 defines a periodic closed orbit

of (2.3). It possesses the expression

y2 =
γ

4
φ2(φ − r7)(r8 − φ), for r7 6 φ 6 r8.

Substituting the above formula into the first equation of (2.2) and integrating it along the corresponding
periodic closed orbit, we have ∫ φ

r7

dφ

−φ
√

(φ − r7)(r8 − φ)
=

√
γ

4
| ξ | .

Letting x =
√

(φ − r7)/(r8 − φ), we get∫ φ

r7

dφ

−φ
√

(φ − r7)(r8 − φ)
=

2
√

r7r8
tan−1


√

r8(φ − r7)
r7(r8 − φ)

 ,
and then express the solitary wave solution φ4(ξ).

Moreover, for any h2 ∈ (0,+∞), H1(φ, y) = h2 defines two homoclinic orbits with expression

y2 =
γ

4
φ2(φ − r9)(r10 − φ), for r9 6 φ < 0 or 0 < φ 6 r10.

Substituting the above formula into the first equation of (2.2) and integrating it along the corresponding
homoclinic orbit, we have ∫ φ

r9

dφ

−φ
√

(φ − r9)(r10 − φ)
=

√
γ

4
| ξ |

and ∫ r10

φ

dφ

φ
√

(φ − r9)(r10 − φ)
=

√
γ

4
| ξ |,

respectively. Letting x =
√

(φ − r9)/(r10 − φ) and z =
√

(r10 − φ)/(φ − r9), we get∫ φ

r9

dφ

−φ
√

(φ − r9)(r10 − φ)
=

1
√
−r9r10

ln
√
−r9 +

√
r10x

√
−r9 −

√
r10x

and ∫ r10

φ

dφ

φ
√

(φ − r9)(r10 − φ)
=

1
√
−r9r10

ln
√

r10 +
√
−r9z

√
r10 −

√
−r9z

,

respectively. Therefore, we can express the solitary wave solutions φ5(ξ) and φ6(ξ). Furthermore, it
confirms the validity of Property C mentioned in Section 2.
Case 2. G+

1 (β) < G < G0(β). Clearly, H1(φ, y) = H1

(
φ2

1, 0
)

defines two homoclinic orbits with a same
expression

y2 =
γ

4

(
φ2

1 − φ
)2

(φ − r11)(r12 − φ), for r11 6 φ < φ
2
1 or φ2

1 < φ 6 r12.
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Substituting the above formula into the first equation of (2.2) and integrating it along the corresponding
homoclinic orbit, we have ∫ φ

r11

dφ(
φ2

1 − φ
) √

(φ − r11)(r12 − φ)
=

√
γ

4
| ξ |

and ∫ r12

φ

dφ(
φ − φ2

1

) √
(φ − r11)(r12 − φ)

=

√
γ

4
| ξ |,

respectively. Letting x =
√

(φ − r11)/(r12 − φ) and z =
√

(r12 − φ)/(φ − r11), we get

∫ φ

r11

dφ(
φ2

1 − φ
) √

(φ − r11)(r12 − φ)
=

1√
(r12 − φ

2
1)(φ2

1 − r11)
ln

√
φ2

1 − r11 +

√
r12 − φ

2
1x√

φ2
1 − r11 −

√
r12 − φ

2
1x

and ∫ r12

φ

dφ(
φ−φ2

1

) √
(φ − r11)(r12 − φ)

=
−1√

(r12 − φ
2
1)(φ2

1 − r11)
ln

√
r12 − φ

2
1 +

√
φ2

1 − r11z√
r12 − φ

2
1 −

√
φ2

1 − r11z
,

respectively. Therefore, we can express the solitary wave solutions φ7(ξ,G) and φ8(ξ,G). Furthermore,
it confirms the validity of Property D mentioned in Section 2.
Case 3. G = G+

1 (β). Clearly, H1(φ, y) = −β4/
(
2γ3

)
defines a homoclinic orbit with expression

y2 =
γ

4

(
φ +

β

γ

)3 (
β

3γ
− φ

)
, for −

β

γ
< φ 6

β

3γ
.

Substituting the above formula into the first equation of (2.2) and integrating it along the corresponding
homoclinic orbit, we have ∫ β

3γ

φ

dφ(
φ +

β

γ

) √(
φ +

β

γ

) (
β

3γ − φ
) =

√
γ

4
| ξ |,

and then express the peak-solitary wave solution φ9(ξ). Furthermore, it confirms the validity of
Property D mentioned in Section 2.

Moreover, for any h3 ∈ R\
{
−β4/

(
2γ3

)}
, H1(φ, y) = h3 defines a periodic closed orbit with

expression

y2 =
γ

4
(φ − r13)(r14 − φ)

(
φ2 +

(
8β
3γ

+ r13 + r14

)
φ +

8β
3γ

(r13 + r14) + r2
13 + r2

14 + r13r14 −
4h3

γ

)
,

for r13 6 φ 6 r14. Substituting the above formula into the first equation of (2.2) and integrating it along
the corresponding closed orbit, we have∫ φ

r13

dφ√
(φ − r13)(r14 − φ)

(
φ2 +

(
8β
3γ + r13 + r14

)
φ +

8β
3γ (r13 + r14) + r2

13 + r2
14 + r13r14 −

4h3
γ

) =

√
γ

2
| ξ | .
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According to the elliptic integral formula, we can express the periodic wave solution φ10(ξ), which
confirms the validity of Property B mentioned in Section 2.

Finally, from the expressions of φi(ξ)(i = 5, 6, 9) and φ j(ξ,G)(i = 7, 8) we further obtain the
following relationship of these solitary waves. As G → G0(β)− 0, it follows that φ2

1 → 0, r11 → r9 and
r12 → r10. Then it is not difficult to deduce

lim
G→G0(β)−0

φ7(ξ,G) = φ5(ξ), lim
G→G0(β)−0

φ8(ξ,G) = φ6(ξ).

As G → G+
1 (β) + 0, it follows that φ2

1 → −β/γ, r11 → −β/γ, r12 → β/(3γ) and

tanh


√
γ
(
r12 − φ

2
1

) (
φ2

1 − r11

)
16

ξ

 ∼
√
γ
(
r12 − φ

2
1

) (
φ2

1 − r11

)
16

ξ.

Then it is not difficult to deduce limG→G+
1 (β)+0 φ7(ξ,G) = −β/γ and

lim
G→G+

1 (β)+0
φ8(ξ,G) = −

β

γ
+

16
(
β

3γ +
β

γ

)
γ
(
β

3γ +
β

γ

)2
ξ2 + 16

= φ9(ξ).

�

4. Expressions of non-smooth wave solutions of (1.5)n=1

From Lemmas 2.5 and 2.6, (1.5) may have non-smooth traveling wave solutions. In this section we
give explicit expressions of solitary cusp wave solution and periodic cusp wave solution of (1.5) for
the case of n = 1.

Theorem 4.1. For α > 1, γ > 0 and G > G0(β), (1.5)n=1 has a peak-periodic cusp wave solution with
expression

φ11(ξ) =

(r15C − r16D) cn
(√

γCD
2(α+3) | ξ |, k

)
+ r15C + r16D

(C − D)cn
(√

γCD
2(α+3) | ξ |, k

)
+ C + D

, | ξ |< cn−1
(
r16D + r15C
r16D − r15C

, k
)

and a valley-periodic cusp wave solution with expression

φ12(ξ) =

(r15C − r16D) cn
(√

γCD
2(α+3) | ξ |, k

)
− r15C − r16D

(C − D)cn
(√

γCD
2(α+3) | ξ |, k

)
−C − D

, | ξ |< cn−1
(
r15C + r16D
r15C − r16D

, k
)
.

Here, k =
√

((r16 − r15)2 − (C − D)2)/(4CD), C2 = 4β(α+3)(r15 +2r16)/(3γ(α+2))+r2
15 +2r15r16 +3r2

16,
D2 = 4β(α+ 3)(2r15 + r16)/(3γ(α+ 2)) + 3r2

15 + 2r15r16 + r2
16, and parameters r15,16 satisfy r15 < r16 and

are determined by equations

4β(α + 3)
3γ(α + 2)

(r2
15 + r15r16 + r2

16) + r3
15 + r2

15r16 + r15r2
16 + r3

16 = 0,

4β(α + 3)
3γ(α + 2)

(r2
15r16 + r15r2

16) + r3
15r16 + r2

15r2
16 + r15r4

16 +
4G(α + 3)
γ(α − 1)

= 0.
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Theorem 4.2. For α > 1, γ < 0 and G = G∗1(β), (1.5)n=1 has a valley-solitary cusp wave solution with
expression

φ13(ξ) =
β(α + 3)
−γ(α + 2)

(
1 − exp

(
−β

α+2

√
α+3
−γ
| ξ |

)) (
1 +

(
5 − 2

√
6
)

exp
(
−β

α+2

√
α+3
−γ
| ξ |

))
1 + 4

(√
6 − 2

)
exp

(
−β

α+2

√
α+3
−γ
| ξ |

)
−

(
5 − 2

√
6
)

exp
(
−

2β
α+2

√
α+3
−γ
| ξ |

) .
Theorem 4.3. For α = −1, γ < 0 and G = G0(β), (1.5)n=1 has a valley-solitary cusp wave solution

φ14(ξ) =
4β

−3γ
(
exp

(
−

2β
3
√
−γ
| ξ |

)
+ 1

) .
Detailed proofs of the above three theorems are given below.

Proof of Theorem 4.1. For the case of α > 1, γ > 0 and G > G0(β) (see Figure 2(a)), H1(φ, y) = 0
defines two heteroclinic orbits of (2.3), which possess the same expression

y2 =
γ(φ − r15)(r16 − φ)

2(α + 3)

(
φ2 +

(
4β(α + 3)
3γ(α + 2)

+ r15 + r16

)
φ +

4β(α + 3)
3γ(α + 2)

(r15 + r16) + r2
15 + r2

16 + r15r16

)
,

for r15 6 φ < 0 or 0 < φ 6 r16. Substituting the above formula into the first equation of (2.2) and
integrating it along the corresponding orbit, we have∫ φ

r15

dφ√
(φ − r15)(r16 − φ)

(
φ2 +

(
4β(α+3)
3γ(α+2) + r15 + r16

)
φ +

4β(α+3)
3γ(α+2) (r15 + r16) + r2

15 + r2
16 + r15r16

)
=

√
γ

2(α + 3)
| ξ |

and ∫ r16

φ

dφ√
(φ − r15)(r16 − φ)

(
φ2 +

(
4β(α+3)
3γ(α+2) + r15 + r16

)
φ +

4β(α+3)
3γ(α+2) (r15 + r16) + r2

15 + r2
16 + r15r16

)
=

√
γ

2(α + 3)
| ξ |,

respectively. According to the elliptic integral formula,∫ φ

r15

dφ√
(φ − r15)(r16 − φ)

(
φ2 +

(
4β(α+3)
3γ(α+2) + r15 + r16

)
φ +

4β(α+3)
3γ(α+2) (r15 + r16) + r2

15 + r2
16 + r15r16

)
=

1
√

CD
cn−1

 (r16 − φ)D − (φ − r15)C
(r16 − φ)D + (φ − r15)C

,

√
(r16 − r15)2 − (C − D)2

4CD


and ∫ r16

φ

dφ√
(φ − r15)(r16 − φ)

(
φ2 +

(
4β(α+3)
3γ(α+2) + r15 + r16

)
φ +

4β(α+3)
3γ(α+2) (r15 + r16) + r2

15 + r2
16 + r15r16

)
=

1
√

CD
cn−1

 (φ − r15)C + (φ − r16)D
(φ − r15)C − (φ − r16)D

,

√
(r16 − r15)2 − (C − D)2

4CD

 .
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Thus, we can express the peak-periodic cusp wave solution φ11(ξ) and the valley-periodic cusp wave
solution φ12(ξ). �

Proof of Theorem 4.2. For the case of α > 1, γ < 0 and G = G∗1(β), H1(φ, y) = 0 defines three
heteroclinic orbits of (2.3) connecting the saddles P± and (−β(α + 3)/(γ(α + 2)), 0) with expression

y2 =
−γ

2(α + 3)

(
φ +

β(α + 3)
γ(α + 2)

)2 (φ − β(α + 3)
3γ(α + 2)

)2

+
2β2(α + 3)2

9γ2(α + 2)3

 ,
for 0 < φ < − β(α+3)

γ(α+2) . Substituting the above formula into the first equation of (2.2) and integrating it
along the corresponding orbit, we have∫ φ

0

dφ(
−
β(α+3)
γ(α+2) − φ

) √(
φ − β(α+3)

3γ(α+2)

)2
+

2β2(α+3)2

9γ2(α+2)3

=

√
−γ

2(α + 3)
| ξ | .

Letting tan(θ) =
√

2/2 − 3γ(α + 2)φ/
(√

2β(α + 3)
)
, we calculate

∫ φ

0

dφ(
−
β(α+3)
γ(α+2) − φ

) √(
φ − β(α+3)

3γ(α+2)

)2
+

2β2(α+3)2

9γ2(α+2)3

=
−1
√

2r0

ln


3
√

2φ − 2
√

9φ2 + 6r0φ + 3r2
0 + 3

√
2r0(√

6 − 2
) (

3
√

2φ +

√
9φ2 + 6r0φ + 3r2

0

)
 ,

where r0 = −β(α + 3)/ (γ(α + 2)). Thus, we express the valley-solitary cusp wave solution φ13(ξ). �

Proof of Theorem 4.3. For the case of α = −1, γ < 0 and G = G0(β), H1(φ, y) = −4β2/(9γ) defines two
heteroclinic orbits of (2.3) connecting the saddles (0, 0) and (−4β/(3γ), 0), which possess the following
expression

y2 = −
γ

4
φ2

(
φ +

4β
3γ

)2

, for 0 < φ < −
4β
3γ
.

Substituting the above formula into the first equation of (2.2) and integrating it along the corresponding
orbits, we have ∫ φ

−
2β
3γ

−
3γdφ

φ(3γφ + 4β)
=

√
−γ

4
| ξ | .

By direct calculation, we have ∫ φ

−
2β
3γ

−
3γdφ

φ(3γφ + 4β)
= −

3γ
4β

ln
−3γφ

3γφ + 4β
.

Thus, we express the valley-solitary cusp wave solution φ14(ξ). Furthermore, it confirms the validity
of Property A mentioned in Section 2. �
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5. Conclusions and simulations

In this paper, we apply the dynamical system methods to investigate the traveling wave system (2.3)
corresponding to a generalized VP-mVP equation with non-homogeneous power law nonlinearity (1.5)
in the case of (α, β, γ,G) ∈ Ω. This method allows detailed analysis on phase space geometry of (2.3)
to obtain parameter bifurcation sets so that all possible traveling waves of (1.5) and corresponding
existence conditions can be identified clearly. All types of traveling waves and bifurcation diagrams
of (2.3) have been obtained. 14 exact explicit expressions of traveling wave solutions, including smooth
and non-smooth ones, are derived.

Notice that α is an important parameter in (1.5). Depending on α > 1, α = 1 or α < 1, system (2.3)
has different dynamics. When α > 1, (1.5) has non-smooth traveling wave solutions, including solitary
cusp wave solutions and periodic cusp wave solutions. When α = 1, (1.5) has only smooth traveling
wave solutions, including solitary wave solutions and periodic wave solutions, whose phase orbits do
not intersect the singular line φ = 0. When α < 1, there is a special class of homoclinic orbits (resp.
periodic closed orbits), that intersects with the singular line φ = 0 and there are no equilibria inside
them. Then, these orbits give rise to a family of smooth solitary wave solutions (resp. smooth periodic
wave solutions).

Finally, by (2.1) we give two examples of numerical simulation to visualize each kind of traveling
wave solution of (1.5).

Example 1. For the case of n = α = β = 2, γ = −1 and G = 256
√

6/2835, when taking initial values
(ϕ̃1 − 0.1, 0), (ϕ̃1 − 0.3, 0), (ϕ̃1 − 0.5, 0) and (ϕ̃1 − 0.7, 0) respectively, we get the numerical simulation
results as shown in Figure 5(a). When taking initial values (ϕ̃1, 0), (ϕ̃1 + 0.02, 0), (ϕ̃1 + 0.04, 0) and
(ϕ̃1 + 0.07, 0) respectively, we get the numerical simulation results as shown in Figure 5(b). When
taking initial values (ϕ̃2, 0), (ϕ̃2 +0.1, 0), (ϕ̃2 +0.2, 0) and (ϕ̃2 +0.5, 0) respectively, we get the numerical
simulation results as shown in Figure 5(c). Here, ϕ̃1 = −2.024285 and ϕ̃2 = 0.000001.

(a) (b) (c)

Figure 5. The numerical simulations of (2.1) when n = α = β = 2, γ = −1 and
G =256

√
6/2835; (a)Breaking wave solutions; (b)Periodic wave solutions and periodic cusp

wave solution; (c)Periodic wave solutions and solitary cusp wave solution.

From Figure 5(a), it is seen that when the initial value
(
φ(0), φ

′

(0)
)

meets φ(0) ∈ (−∞, ϕ̃1)
and φ

′

(0) = 0, the graph of φ(ξ) satisfying (2.1) is fully close to the line φ = 0 within a limited
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time. This implies that, for an orbit of (2.2) with initial value being on the left of the point (ϕ̃1, 0),
there is a finite value ξ = ξ̃, such that limξ→±ξ̃ φ(ξ) = 0. By [16, Theorem 2.4], these orbits give rise to
uncountably infinitely many bounded breaking wave solutions (i.e., Compactons). From Figure 5(b),
we see that if (φ(0), φ

′

(0)) meets φ(0) ∈ (ϕ̃1, 0) and φ
′

(0) = 0, the graph of φ(ξ) satisfying (2.1) is
a periodic curve, which gives rise to a periodic wave solution. Especially when φ(0) → ϕ̃1, this
curve is fully close to the boundary curves consisting of a segment P+P− and an arc P̂+P− defined
by H2(φ, y) = 0, in which by [16, Theorems 2.3 and 2.4] the arc P̂+P− gives rise to a periodic cusp
wave solution. From Figure 5(c), we see that if (φ(0), φ

′

(0)) meets φ(0) ∈ (0, 1.632993) and φ
′

(0) = 0,
the graph of φ(ξ) satisfying (2.1) is a periodic curve, which gives rise to a periodic wave solution of
(1.5). Especially when φ(0) → 0 or φ(0) → 1.632993, this curve gradually loses its smoothness and
periodicity, which implies that this periodic wave solution gradually evolve into a solitary cusp wave
solution.

Example 2. For the case of n = β = 1, α = γ = −4 and G = 0, when taking initial values
(0.1, 0), (0.2, 0), (0.3, 0) and (0.333333, 0) respectively, we get the numerical simulation results as
shown in Figure 6(a). For the case of n = β = 1, α = γ = −4 and G = −4, when taking
initial values (0.872629, 0) and (−0.992475, 0) respectively, we get the numerical simulation results
as shown in Figure 6(b); when taking initial values (−1.2, 0), (−1.1, 0) and (−1, 0) respectively, we get
the numerical simulation results as shown in Figure 6(c).

(a) G = 0. (b) G = −4. (c) G = −4.

Figure 6. The numerical simulations of (2.1) when n = β = 1 and α = γ = −4; (a)This is a
family of solitary wave solutions whose corresponding orbits intersect the singular line φ = 0
at (0, 0); (b)These are two solitary wave solutions whose corresponding orbits pass through
the singular line φ = 0; (c)This is a family of periodic wave solutions whose corresponding
orbits pass through the singular line φ = 0.

From Figure 6(a), it is seen that the graphs of φ(ξ) is a family of Gaussian curves when initial values(
φ(0), φ

′

(0)
)

meet φ(0) ∈ (0, 1/3) and φ
′

(0) = 0, which giving rise to uncountably infinitely many
solitary wave solutions. From Figure 6(b), it is seen that the graphs of φ(ξ) are two Gaussian curves
when initial values are (0.872629, 0) and (−0.992475, 0) respectively and pass through the line φ = 0.
This phenomenon implies that two homoclinic orbits of (2.2) pass through the singular line φ = 0.
From Figure 6(c), we see that when (φ(0), φ

′

(0)) meets φ(0) ∈ (−1.337699,−0.992475) and φ
′

(0) = 0,
the graph of φ(ξ) satisfying (2.1) passes through the line φ = 0 periodically. This phenomenon implies
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that infinitely many periodic orbits of (2.2) pass through the singular line φ = 0.
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