This article focuses on analyzing the finite-time ruin probability within a specific class of discrete risk models. These models incorporate dependent claims, an interest rate component, and stationary noise terms exhibiting semi-heavy-tailed behavior. In this framework, the claim amount follows a unilateral linear dependent process with independent and identically distributed noise terms, while the discount factor is determined by both the interest rate and time. The finite-time ruin probability has been derived under insurance risk conditions resembling the gamma distribution.
Citation: Huifang Yuan, Tao Jiang, Min Xiao. The ruin probability of a discrete risk model with unilateral linear dependent claims[J]. AIMS Mathematics, 2024, 9(4): 9785-9807. doi: 10.3934/math.2024479
This article focuses on analyzing the finite-time ruin probability within a specific class of discrete risk models. These models incorporate dependent claims, an interest rate component, and stationary noise terms exhibiting semi-heavy-tailed behavior. In this framework, the claim amount follows a unilateral linear dependent process with independent and identically distributed noise terms, while the discount factor is determined by both the interest rate and time. The finite-time ruin probability has been derived under insurance risk conditions resembling the gamma distribution.
[1] | D. C. M. Dickson, Insurance risk and ruin, In: International Series on Actuarial Science, 2 Eds., Cambridge: Cambridge University Press, 2016. Available from: https://www.doc88.com/p-6532159693027.html. |
[2] | P. Embrechts, C. Kluppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Berlin: Springer, 1997. Available from: http://www.doc88.com/p-8939990860347.html. |
[3] | S. Gschll, C. Czado, Spatial modelling of claim frequency and claim size in non-life insurance, Scand. Actuar. J., 3 (2007), 202–225. https://doi.org/10.1080/03461230701414764 doi: 10.1080/03461230701414764 |
[4] | Y. Wang, H. H. Ingrid, Focused selection of the claim severity distribution, Scand. Actuar. J., 2 (2007), 129–142. https://doi.org/10.1080/03461238.2018.1519847 doi: 10.1080/03461238.2018.1519847 |
[5] | B. O. E. Nielsen, Processes of normal inverse Gaussian type, Financ. Stoch., 2 (1997), 41–68. https://doi.org/10.1007/s007800050032 doi: 10.1007/s007800050032 |
[6] | E. Eberlein, U. Keller, Hyperbolic distributions in finance, Bernoulli, 1 (1995), 281–299. Available from: https://www.jstor.org/stable/3318481. |
[7] | B. G. Hansen, E. Willekens, The generalized logarithmic series distribution, Stat. Probabil. Lett., 9 (1990), 311–316. https://doi.org/10.1016/0167-7152(90)90138-W doi: 10.1016/0167-7152(90)90138-W |
[8] | E. Hashorva, J. Li, ECOMOR and LCR reinsurance with gamma like claims, Insur. Math. Econ., 53 (2013), 206–215. https://doi.org/10.1016/j.insmatheco.2013.05.004 doi: 10.1016/j.insmatheco.2013.05.004 |
[9] | H. Zakerzadeh, A. Dolati, Generalized Lindley distribution, J. Math. Ext., 3 (2009), 13–25. Available from: https://ijmex.com/index.php/ijmex/article/view/45. |
[10] | R. Norberg, Ruin problems with assets and liabilities of diffusion type, Stoch. Proc. Appl., 81 (1999), 255–269. https://doi.org/10.1016/S0304-4149(98)00103-3 doi: 10.1016/S0304-4149(98)00103-3 |
[11] | J. Y. Peng, J. Huang, D. C. Wang, The ruin probability of a discrete-time risk model with a one-sided linear claim process, Commun. Stat.-Theor. M., 40 (2011), 4387–4399. https://doi.org/10.1080/03610926.2010.513789 doi: 10.1080/03610926.2010.513789 |
[12] | H. F. Yuan, P. Lin, T. Jiang, J. F. Xu, Model averaging multistep prediction in an infinite order autoregressive process, J. Syst. Sci. Complex., 35 (2022), 1875–1901. https://doi.org/10.1007/S11424-022-0311-9 doi: 10.1007/S11424-022-0311-9 |
[13] | H. Yang, Non-exponential bounds for ruin probability with interest effect includeded, Scand. Actuar. J., 1999 (1999), 66–79. https://doi.org/10.1080/03461230050131885 doi: 10.1080/03461230050131885 |
[14] | H. L. Yang, L. H. Zhang, Martingale method for ruin probability in an autoregressive model with constant interest rate, Probab. Eng. Inform. Sc., 17 (2003), 183–198. https://doi.org/10.1017/S0269964803172026 doi: 10.1017/S0269964803172026 |
[15] | Q. H. Tang, The ruin probability of a discrete time risk model under constant interest rate with heavy tails, Scand. Actuar. J., 2004 (2004), 229–240. https://doi.org/10.1080/03461230310017531 doi: 10.1080/03461230310017531 |
[16] | D. J. Yao, R. M. Wang, Exponential bounds for ruin probability in two moving average risk models with constant interest rate, Acta Math. Sin., 24 (2008), 319–328. https://doi.org/10.1007/s10114-007-1004-y doi: 10.1007/s10114-007-1004-y |
[17] | X. Wei, Y. J. Hu, Ruin probabilities for discrete time risk models with stochastic rates of interest, Stat. Probabil Lett., 78 (2008), 707–715. https://doi.org/10.1016/j.spl.2007.06.001 doi: 10.1016/j.spl.2007.06.001 |
[18] | R. X. Ming, X. X. He, Y. J. Hu, J. Liu, Uniform estimate on finite time ruin probabilities with random interest rate, Acta Math. Sin., 30 (2010), 688–700. https://doi.org/10.1016/S0252-9602(10)60070-7 doi: 10.1016/S0252-9602(10)60070-7 |
[19] | J. Y. Yu, Y. J. Hu, X. Wei, The asymptotic of finite time ruin probabilities for risk model with variable interest rate, Chinese J. Appl. Probab. Stat., 26 (2010), 57–65. Available from: https://kns.cnki.net/kcms2/article. |
[20] | H. U. Gerber, Ruin theory in the linear model, Insur. Math. Econ., 1 (1982), 213–217. https://doi.org/10.1016/0167-6687(82)90011-7 doi: 10.1016/0167-6687(82)90011-7 |
[21] | T. Mikosch, G. Samorodnitsky, The supremuim of a negative drift random walk with dependent heavy-tailed steps, Ann. Appl. Probab., 10 (2000), 1025–1064. Available from: https://www.researchgate.net/publication/38339766. |
[22] | F. L. Guo, D. C. Wang, Uniform asymptotic estimates for ruin probabilities of renewal risk models with exponential Levy process investment returns and dependent claims, Appl. Stoch. Model. Bus., 29 (2013), 295–313. https://doi.org/10.1002/asmb.1925 doi: 10.1002/asmb.1925 |
[23] | J. Y. Peng, D. C. Wang, Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Levy process investment returns, J. Ind. Manag. Optim., 12 (2016), 155–185. https://doi.org/10.3934/jimo.2016010 doi: 10.3934/jimo.2016010 |
[24] | R. F. Liu, D. C. Wang, F. L. Guo, The ruin probabilities of a discrete time risk model with one-sided linear claim-sizes and dependent risks, Commun. Stat.-Theor. M., 47 (2018), 1529–1550. https://doi.org/10.1080/03610926.2016.1202281 doi: 10.1080/03610926.2016.1202281 |
[25] | M. Y. Bai, J. Y. Peng, H. J. Jing, Asymptotic estimates of finite time ruin probabilities with dependent risks and CMC simulations, Chinese J. Appl. Probab. Stat., 36 (2020), 569–585. https://doi.org/10.3969/j.issn.1001-4268.2020.06.002 doi: 10.3969/j.issn.1001-4268.2020.06.002 |
[26] | H. J. Jing, J. Y. Peng, Z. Q. Jiang, Q. Bao, Asymptotic estimates for ruin probabilities of a discrete-time risk model under double dependence structures and numerical simulations, Adv. Math., 50 (2021), 290–302. https://doi.org/10.11845/sxjz.2019138b doi: 10.11845/sxjz.2019138b |
[27] | Y. Yang, K. C. Yuen, Asymptotics for a discrete-time risk model with Gamma-like insurance risks, Scand. Actuar. J., 2016 (2016), 565–579. https://doi.org/10.1080/03461238.2015.1004802 doi: 10.1080/03461238.2015.1004802 |
[28] | X. F. Huang, T. Zhang, Y. Yang, T. Jiang, Ruin probabilities in a dependent discrete-yime risk model with gamma-like tailed insurance risks, Risks, 5 (2017), 14. https://doi.org/10.3390/risks5010014 doi: 10.3390/risks5010014 |
[29] | Y. Q. Chen, J. J. Liu, Y. Yang, Ruin under light-tailed or moderately heavy tailed insurance risks interplayed with financial risks, Methodol. Comput. Appl., 25 (2023), 14. https://doi.org/10.1007/s11009-023-10008-3 doi: 10.1007/s11009-023-10008-3 |
[30] | E. Omey, S. V. Gulck, Semi-heavy tails, Lith. Math. J., 58 (2018), 480–499. https://doi.org/10.1007/s10986-018-9417-0 doi: 10.1007/s10986-018-9417-0 |
[31] | J. Ownuk, H. Baghishani, A. Nezakati, Heavy or semi-heavy tail, that is the question, J. Appl. Stat., 48 (2020), 646–668. https://doi.org/10.1080/02664763.2020.1738360 doi: 10.1080/02664763.2020.1738360 |
[32] | N. Bingham, C. M. Goldie, J. L. Teugels, Regular variations, Cambridge: Cambridge University Press, 1987. http://dx.doi.org/10.1017/CBO9780511721434 |