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1. Introduction

Risk theory is a discipline that involves quantitative analysis and the prediction of risks, and it
is primarily applied in insurance, risk management, finance, and various other fields. Actuarial
mathematics recognizes risk theory as a pivotal subject that has garnered a significant amount of
attention [1]. Financial and insurance companies are susceptible to bankruptcy due to substantial losses
resulting from a few extraordinary events, which can be characterized by heavy-tailed distributions. As
aresult, a significant portion of research efforts have been concentrated on assessing the ruin probability
in continuous and discrete time risk models, specifically pertaining to insurance risks characterized
by heavy-tailed claims [2]. Nonetheless, it is crucial to acknowledge that the impact of small- and
medium-sized claims on insurance companies should not be underestimated. Relevant literature
addressing this aspect can be found in [3, 4]. Notably, common distributions that capture semi-
heavy-tailed behavior include the generalized inverse Gaussian distribution, hyperbolic distribution,
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generalized Lindley distribution, and others [5-9]. For the convenience of calculation, we assume that
the premium is received and the claims are paid at the end of each period. Actually, the premium
for each period is paid before the end of the period. This article considers the following discrete risk
models:

U0:y’Um: m—1(1+r)+Xm_Ymam:1,2a"’, (11)

where U, > 0 signifies the initial reserve, r > O represents the interest rate of the insurance company,
and {Y,,},,>1 shows the claim amount for insurance companies from time m — 1 to time m, which can
be considered as insurance risks [10]. {X,,},,>1 is the premium amount for insurance companies from
time m — 1 to time m, and U,, indicates the surplus of an insurance company at time m. Non-negative
random variable sequences {Y,,},,>1 and {X,,}>1 are independent of each other. The above risk model
can be transformed into the following equation:

Up =y, Un(m, 1) =y+ > X =YL+ 1) m = 1,2, (12)
=1

where (1 + r)™ is the discount factor for time ¢ with respect to the initial moment. On this basis, we
consider a discrete risk model with a discount factor in the form of a general function:

Uy =y, U,w(im,r)=y+ Z(X{ -Yow(,r),m=1,2,---, (1.3)
=1

where w({, r) is the discount factor for periods { — 1 to £, which can be seen as a positive random
function of interest rate and time, with values ranging from O to 1.

To characterize the dependent structure of insurance risk, i.e., the claim amount {Y,,},>; with a
unilateral linear process [11,12], let

Yo = ) $msbe+ buom = 1,2, , (14)
=1

where yy > 0, & is a non-negative constant, and the noise term {£,,},,>1 1s a sequence of non negative
random variables that are independent and identically distributed in &, with the distribution denoted as
W, as shown in the formula (2.5). The coeflicients ¢,,_;, ¢, are also non-negative constants satisfying
that 3.7, ¢, = ¢ € (0, 00), The bankruptcy probability at time m can be defined as follows:

Y(y,m) = P{min U, <0 | Up = y}. (1.5)

In actuarial insurance, discount factors can be categorized as either random or non-random. These
factors, including interest rates, inflation, and consumption levels, have a time-dependent nature. When
considered together, the formulation of discount factors becomes notably intricate and non-unique.
Among these factors, interest rates have received a considerable amount of attention due to their
significant influence on discount factors. Regarding the bankruptcy probability for discrete risk models
with a constant interest rate, Yang [13] derived the Lundberg inequality and non-exponential upper
bounds. Additionally, Yang and Zhang [14] explored upper bounds when the claim amounts satisfy the
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conditions of an autoregressive process. Tang [15] obtained the form of bankruptcy probability when
the claim amount belongs to the sub-exponential distribution family. Yao and Wang [16] considered
exponential upper bounds for claim amounts modeled as a moving average process. Furthermore,
Wei et al. [17] and Ming et al. [18] investigated the bankruptcy probability for a random interest rate
discrete risk model. Yu et al. [19] derived asymptotic estimates of the finite-time bankruptcy probability
for a variable interest rate discrete risk model. Linear processes are used to express claim amounts
as weighted sums of past innovations. Subsequently, researchers have gradually incorporated linear
dependent structures into the insurance risk theory. For instance, Gerber [20] used a linear process,
which includes the autoregressive model and the autoregressive moving average model as a special
case, to describe the annual gains of an insurance company. Mikosch and Samorodnitsky [21] used a
two sided linear process to model single-period net losses, and they studied the asymptotic behavior of
the ultimate probability. Peng et al. [11], Guo and Wang [22], and Peng and Wang [23] obtained the
ruin probability for a discrete-time risk model with a unilateral linear claim process. Simultaneously,
the ruin probability problem of risk models with doubly dependent structures has been discussed by
Liu et al. [24], Bai et al. [25], and Jing et al. [26].

The above studies mostly focused on heavy-tailed claims and there is less discussion on the
asymptotic formula of the ruin probability with semi-heavy-tailed claims. Gamma-like tailed
distribution has been discussed as a form of semi-heavy-tailed distribution. For example, Hashorva and
Li [8] studied the asymptotic tail behavior of the reinsured amounts assuming that the claim sizes of an
insurance company have a common distribution with a gamma-like tail. Yang and Yuen [27] and Huang
et al. [28] discussed the asymptotic for a discrete-time risk model with gamma-like insurance risks.
Chen et al. [29] derived some asymptotic formulas for the ruin probability for various scenarios of
financial risks with light-tailed or moderately heavy tailed insurance risks. Based on this, we consider
a risk model in which the claim amount is a unilaterally linear dependent structure and the noise
term follows a semi-heavy-tailed distribution. Moreover, interest rates have a significant impact on
the discount factor. Although constant interest rates are easy to calculate, interest rates may change
in reality. Therefore, we chose to regard the discount factor as a function of interest rates and time,
that includes both constant and variable interest rates. We consider that the claim amount follows
a unilateral linear process. A discrete-time risk model with a noise term that follows a gamma-like
semi-heavy-tailed distribution is discussed for finite-time ruin probability.

The rest of this paper is organized as follows. In Section 2, we give some definitions and the
asymptotic result of the proposed model. Related lemmas and proofs are presented in Sections 3 and
4. We verify the asymptotic behavior through simulation in Section 5. A short conclusion is provided
in Section 6.

2. Symbols and main results

For two real numbers y, z and two positive functions w;(:), w,(+), all limit symbols in this article
follow the assumption that y — oo.

L If lim sup 29 < 1, then wi(y) $ wa(y) or wa(y) 2 wi(y).
IL If lim 2 WI‘” = 1, then wi(y) ~ wa(y).
ML If lim -2 W‘O) = 0, then wi(y) = o(w(y)).

V. If lim sup Wl(” < oo, then w; (y) = O(wL(y)).
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The heavy-tailed distribution includes many subfamilies. For any y > 0, note that W(y) = 1-W(y) is
the right-tailed distribution of Y, where W(y) is the distribution function of y. We only considered three
types including the long-tailed distribution family (£), the sub exponential distribution family (S), and
the regularly varying tailed distribution family (R). At the same time, we describe the relationship
between the semi-heavy-tailed distribution family (S/H) and these subfamilies.

Definition 1. /2] W € L at [0, o0) if it satisfies

fim YO+ _ @.1)
y—00 W(y)
forany z > 0.
Definition 2. /2] W € S at [0, ) if it satisfies
lim L0) _ (2.2)
y—o0 W(y)

foranyn =2,3,---, where W" stands for the n-fold convolution of W itself.

Definition 3. [2] Ultimately positive measurable function is called regularly varying at infinity with
the index p € R if it satisfies

i W)
1m — =
= W(y)

2, (2.3)

forany z >0, that is, W € R,,. R_, includes heavy- and light-tailed distributions.

Definition 4. [30,31] W(.) is a semi-heavy-tailed function with the parameter y > 0 if it satisfies
W) =e7G(y).y eR,

where G(-) is a heavy-tailed distribution. When G € R,,p € R, W(-) is called a semi-heavy-tailed
distribution with the parameters (p+ 1) € R and y > 0, also note that W € SH(p+ 1,y). When G € L,
W(-) satisfies
W(y —
im YO =3 _ e

— 2.4)
e W)

for any real number z, noting that W € SH(0, y).

For any A > 0, the slowly varying function satisfies [(ly) ~ I(y). The specific properties are shown
in [2,29,32]. Moreover, W(-) is defined on R if there is a slowly varying function I(-) : (0, 00) — (0, c0)
such that

W) ~ 1)y e, (2.5)

then W(.) is said to have a gamma-like tail with the parameters 6 > 0 andy > 0. Equation (2.5) can be
rewritten in a compact way as W(y) ~ e G(y), where G(y) = I(y)y*~! is a regularly varying function
with the index 6 — 1, that is, G € Rs_y and W € SH(6, y).
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A canonical example of the gamma-like distribution with the parameters 6 > 0 and y > 0 is the
gamma distribution with the corresponding parameters, that is,

) 00
o Y 5-1 -
W(y) = —f Te " dz,y > 0, (2.6)
y @) J, y

where I'(-) is the Euler gamma function. For specific properties of gamma-like tailed distributions, we
can refer to [8,30,31]. In this case, we have

o yor
W) ~ —==y""e . 2.7
o) re)’ ¢ 2.7)
Remark 1. I. Due to the fact that some distributions in the S family, such as the Weibull distribution
and lognormal distribution, also belong to the R_., family, the distribution of the S N R_., family is

called a moderate heavy-tailed distribution.
IL If W € SH(O,y) and it satisfies that E(e’Y) = 2, then W € S.

Proof. Note that

W "W - )W © Wiy —
im 20 b O-9Wlda) _ . f WO =9 wan
=% W(y) y—00 W(y) = Jo W(y)

= f ) ¢"*W(dz) = f ) e W(dy) = E(e™),
0 0

where E(-) denotes the mean of {-} with the cumulative distribution function W(-). Based on
Definition 2, we complete the proof. O

II. When v = 0, SH(6,0) includes all long-tailed distributions and sub-exponential type
distributions.

IV. When vy > 0, all gamma-like tailed distributions in SH(6,y) are light-tailed and belong to R_.
families, that is, W € R_..

Assume that the sum variable 3.}, ¢;w({ + 1, r) has a common distribution G with a finite upper
endpoint

¢, = sup{op” : G(¢") < 1} < c0.

Denote p. = P{Z:f’zo ¢l +n,r)=¢.)>0and L = # where ¢ > 0. The following results show the
asymptotics for the finite time ruin probability in the two cases of 0 < ¢, < 1 and ¢, = 1.

Theorem 1. Let {X,,},,>1 be a sequence of independent and identically distributed non-negative
random variables, {Y,}.>1 be a sequence of non-negative random variables introduced in (1.4), and
{( X0, Y)}ms1 be independent and identically distributed random pairs. In the discrete risk model (1.3),
if

(1) function w({, r) satisfies that Z?:o w(,r) < oo

(2) non-negative coefficients denoted by {$;};»0 satisfy that 0 < 37 g d;w({ +1,7) < ¢ < 0o, =
1,2,---,m,r >0, where ¢. is a finite upper endpoint of 3.7 o p;w({ +n,1);
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(3) W e SH(6, y) and the parameters 6 > 0 and y > 0, then it holds that
I. when 0 < ¢, < 1 and E(e") < oo for any m > 1, then

W(y,m) ~ LE(" 5y e ¥ 2.8)

1I. when ¢, = 1 for any m > 1, then

Lm,ym—l 1"(6))
,m) ~ ———[(y)y™ e, 2.9
Y(y, m) Tmd) Oy (2.9)
The assumption that ¢, < 1 in relations (2.8) and (2.9) means that the insurer invests all of their
surpluses into a risk-free market.

3. Related lemma and proof

Lemma 1. If Y\, Y,,---,Y, (m > 1) are mutually independent positive random variables with a

gamma-like tailed distribution Wg(y) ~ L)y’ e, the parameters 5; > 0 and y > 0, and 1,(y)
is a slowly varying function, = 1,2,--- ,m, then

- Y 72 T(S,) g
P(;Y">y)~ r(zzzlég) (HW))& e G-1)

Proof. 1t can be seen from Lemma 2.1 of [8].

Lemma 2. Under the conditions of Theorem 1, if 0 < ¢ < 1, then

P{Z £ g +6,7) > y} ~>. P{é—‘g D e +6.1) > y}, (3.2)
¢=1 =0 ¢=1

=0
foranyr > 0.

Proof. We first prove the upper bound:

P{i fgi bl +6,7) > y}
¢=1 I

= P{ gc
¢=1 g

+P {Zm: &

1 ¢

M= ©

¢=1

I
(=]

Bl +5.1) > 3, B (£ D" e+ 6,7) > v - L)}
=0

M=

1l
(=)

¢§'w(§+g’r‘) >y’g(§l (§§Z¢{w(§+g,r) >y_L)}
=0

TCs

< P{ (& " el +6r) >y - L)}

1
£=0

|
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=A+ A,

for any fixed 0 < L < co0. If 0 < ¢, < 1, then

{fg 3 bewld +6.r) > y} < P& > 2 ~ o W0).

=0

According to the Boolean inequality, we have that

A < iP{ngmlcbgw({w,r) >y—L}+P{§oZm:¢gw(§,r) >y-L
s=1 =0 £=0
< i P {fg i $e(l +6,1) > y} + o(W<y>).

¢=1 =0

———

Now we estimate A, and it follows that

{Z & Z dw(l +¢,1r) >y, N D (fg Z prw(l +6,1)>y— L)}
< P{ﬁl (ng‘Pgw({ +6,1r)>y— L)}
=0

Ple i b+ 5.0 >y L)

IA
/——~\ ﬁlt\/js

W(y))

Substituting relations A; and A, into the following expression, we have that

{Z & Z bew({ +6.1) > y}
=1
SN {fg b e > y} +o( W)

¢=1 =0
sZ;P{fg;%w({w,r)w}-

Second, the lower bound of the asymptotic formula is proved. And

{Z & Z el +6.1) > y}
¢=1
{ (> detc+6.0) > y)}

=0
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”DE

{ > } (gi¢§w(§+§,r)>y—L)}
¢=0 =0
P{fgzmlfﬁgw(ﬁc, r) >y} P{5g2¢gw(§+g,r) >y—L}
¢=0 £=0
{ N g+ 60 > y} - o[ W)

(=0

Fwwscrona}

rw({ +¢,1) >y

This ends the proof of this lemma when 0 < ¢, < 1.

Lemma 3. Under the conditions of Theorem 1, we have that

i {§§i¢gw(§+ S, 1)+ co> y} Zm:P{fgiqﬁgw({ +6,r)> y}, (3.3)

¢=1 ¢=1 =0
holds for any constants ¢y > 0 and r > 0 and the integer m > 1.

Proof. According to the condition of Theorem 1, 3/ ¢,w({ +¢,r) < oc0. If l ¢ < M (1 <M < m),
the asymptotic equation holds, that is,

M m M m
P {fg Dbl +6.r) + o> y} ~ ) P{fg D e +6.1) > y} . (3.4)
¢=1 =0 ¢=1 =0
If the asymptotic formula holds at 1 < ¢ < m, then the conclusion can be obtained.
For any € > 0, there exists z > (1 — €)z and a positive number c¢;; when y > 0, lim V:V((y;)) 2le <
y—o0

127! < 27!, And according to the independence and identically distributed property of {£,,},.>; and

Lemma 2, we can easily obtain that

dP {fg D b+, > y}
c=M+1 =0

{& D drald ol >y 2
1

Il
1 i 1

n

3
=

P {fg D dewld el > y=
1

¢ =0
R e by

a-1

m |, 1)) w(,r)¢
cl,(yM) y( ) i Qg
Ve n) | &4 w(s,r)

M=

c=M+
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m

sl g:%‘:—l (a)(gl‘, r) )Q_IO(W(};))'

So

>p {fg > gew(@+6.1) > y}
=0

=

sZm: {&Zmlrﬁgw(é +6, r)>y}
¢=1 ¢=0
M m m m
=ZP{§gZ¢gw<§+g,r>>y} + P{ngmw@mrby}
¢=1 =0 c=M+1 =0
M m
SZP{ng¢gw(§ +, r)>y} (W(y))
¢=1 =0
M m
sZP{f Z¢gw(§+§,”)>)’}
¢=1 {=0

Combining this with (3.4), the lemma is proved.
4. The proof of Theorem 1

From (1.5), it can be seen that the ruin probability can be expressed as

w(y.m) = P{ min U, <01 Uy =y}

:P{min U(l+r™<0]|U, zy}
1<k<m
= P{lrsl}g; (y + Z;(X( -Y)(1+ r)—g) < 0}

(Y(—Xg)(1+r)) }

M§

x

14
O be-cbc+ deto = X1 417 > y}

:l g:l

4 K
{lrgkg Db + Y ot~ X)) > y} .
=1 ¢=1

=1

Considering the following relationship

Z & Z el +6.7) - Z Xw(£, 1)
¢=1

AIMS Mathematics Volume 9, Issue 4, 9785-9807.
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1<k<m
=1 ¢=1
m ¢
<Y D e+ Z £09cw(L, 7)
=1 ¢=1 =1

= Z &) dw(l +6,1)+ Z Eopw(L, 1),

s=1  ¢=0 ¢=1
it follows that

PAY 6D el + 6,1 = ) Xewd,r) > y}
¢=1 =0 Z=1
<Y(y,m)
< { £ B +6,7) Z Eopew(l,T) > y}
¢=1 =0

According to Lemmas 2 and 3 and the Fatou lemma,

P{i&iq&w(ﬁw) - ixgw@,r) >y} ~ P{ifgiqﬁiw({w“g,r) >y}.
k=1 ¢=0 ¢=1 s=1 (=0

LetIlp =0andIl, = P {ZZ’ZI & ZZ‘:O dew(l +¢,1)> y}; we use mathematical induction to obtain the
asymptotic formula of I1,, in two different situations.

(1) When 0 < ¢, < 1, the asymptotic formula of I1,, can be obtained.

First, when m = 1,

P(Ey > y) = {-fl D b +1,1) > y}

P{g Z@w(gﬂ r)>y,Z¢:w({+l r e (O, cz]}

P

+

& Z‘W(“ L3 S gl + 1,7 € (e 6. )}

=0 ¢=0

+P{§ qugw(gﬂ r >y,z¢§w(§+1 ) _¢*}

—Bl+Bz+B3,

for any constant 0 < ¢, < ¢.; then, for By,

P S 4w+ 10 > 3 B b + 1) € Occa)
1m Su
- P > )

AIMS Mathematics Volume 9, Issue 4, 9785-9807.
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oy

) P(fl > Zg"zomw(jﬂ,r)) ' P& > ¢%)

< lim ¢ < lim 7 )
y—c0 P > y) v P(E] > y)

UG i

< lim = lim ——
y—o0 l(x)y(s—le—'yy Y00 ¢2_1

— 0.

For B,,
. . P{fl Z?:O¢§w({+ 1,r) >, Zzn:0¢{w({+ 1$r) G(CZ,(b*)}
lim lim sup
2/ P yoeo P(e>y)
m m 5-1
] Yy Xieo $ew(d+1,r)

< Cll;rq}*P{; prw(l+1,r) € (c2,¢*)}(; drw(d + l,r)) e Y 20

— 0.
For B3,

P& G +1,1) > 3, ) el +1,1) = ax}

¢=0 £=0
- p{gl > g+ 1,1 > y}P{Z Bl +1,7) = ¢*}
{=0 =0

_ y N _
= P{gl > ST deld l,r)}P{; ¢+ 1,r) = ¢*}

51 .
oF l(%)(%) e~ pul(y)eTE

= LIy’ e e SH, ¢l).

£

Combining By and B, with B3, P(Il; > y) ~ Ll(y)y‘s‘le_y'i% € SH(, ¢l*) for m = 1; the expectation is
expressed as follows:

E(yIL;) = —f yydP(I1, > y) = Lyf Iy e 7 dy
0 0

~ Ly f P(II, > y)dy = Ly f (1= Pa; < )y
0 0

< 00,

Second, suppose that m = k > 1, P(II, > y) ~ LE(’y%)l(y)yé_le_W% € SH(, %) and E(yII,) < oo
hold; then, the result is clearly valid when m = 1. We only need to prove that the above result is valid
whenm =k + 1.
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First of all,

k+1
P{HK + & Z prwk+{+1,r)> y}
=0

Kk+1

> (11, o Qe L 1>y - ¢K+12&w<x+1+§ 2

| Ges Z &+ 1+¢,7) = 0)P(es Z &+ 1+¢,)=0)
¢=1 ‘=1

k+1 k+1
= P > y) = P {Z & ) Bend +6.0) > y}

Kk+1
{ +fk+12¢4w(x+§+1r>>y ¢K+IZf¢w<K+1+4r>}

k+1
P{HK+§K+1Z¢§(U(K+§+ 1,7) >y}.

(=0

We need to prove that

k+1
P {HK + &er Z prwk++1,7) > y} ~ LE(eyH“)y"_ll(x)e_"‘ff?
=0
Furthermore,

k+1
P{HK + & Z(f){w(K +(+1,r)> y}

=0
Kk+1 k+1

= P{HK F bt Y Gk + L+ 1) >y T, > 0,601 Y dk++1,7) > 0}
¢=0 =0

k+1 k+1
+P{HK +Eer D bk + L+ 1,1 > )L 0,601 ) e+ L +1,1) > o}
=0 =0

Kk+1 k+1
+P{HK+§K+1Z¢;(»(K+§+ L) > 300> 0,61 ) grw(k +{ +1,7) < 0}
(=0 =0

=L+ 0L+ L.

Split the value of I1,, into A,,{ = 1,2,3,---. There exists 0 < (1 + 7)¢. < 1; then,

k+1 Kk+1
I = P{HK F b D Bk + L+ 1,1 > 1T > 0,61 ) prook+1,7) > 0}
=0 ¢=0

Kk+1 Kk+1
_P{H +§K+IZ¢M(K+§+1 P >y,0<T, < —— §K+1Z¢4w(,<+g+1 r)>()}

=0
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k+1 k+1
{H it G+ {4 1) > 3 ST < v ) ek + L+ 1) > 0}

=0 =0
Kk+1 k+1
P{HK+§K+1 D ek + L+ 1,0 > 3T >y, ) drok+ L+ 1,7) > 0}
=0 {=0
=1y + I + 113,

holds for any 0 < 7 < 1. For any 6, > 0 and sufficiently large y, when 0 < IT, < -, we have that

- I}E()),gajlnk)d_l = 2(y _yHK)6_1_50 <2 {(1 :T)y_l_éo Y 1}'

Based on the independent and identically distributed properties of &£, &, - - -, we have that

k+1

I, =P {0<n< §K+1Z¢,w(/<+{+1r)>x H}
Kk+1

:P{O<HK<1+ §K+1Z¢{w(K+{+lr)>y H}

00 k+1
= ZP{§K+IZ¢§Q)(K+§+ l,l") >y_HK | HK € AI}P(HK € At)
=0

Kk+1

:ip{gk+l>y¢ | 1, EA}P(H GA,)P(Z¢4w(K+§+1 r)—¢)

*

=1 7=0
S (Y =\ (y = L\ _vn
~ ) ) e panee sop.
=1 P- 2
o0 YV o
~ Z l(y)(—) e Ve’ P(I1, € A)p.
=1 ¢*
o-1 4 n
1)) e pE(er®)
P,
-1
y 2 e
- l(y)((;) e Vi . E(em 1<n,<>o>)
v K
~ LI(y)y* e 7% E(e I >0))
When 0 < ¢, < 1,
11,
112+Il3:P §K+1 1 Y- y_HK’L<HKSy
Z“ prw(k+ ¢+ 1,1) l+71

+P{§K+1 > y—HK,HK >)’}

y y
< 2P( w1 >y =11, I, > )S 2P(HK > )
Fer1 > 1+71 1+71
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51 ,
~ 2LE(€7HK'1)Z(L)( Y ) e_7<1+2)¢*
1+7/\1+71

y o—1 y
~ 2LE(e7HK*‘)l(y)(—) AT
1+7

Combining 1y, I, and 1,3, we can know that

Y v X 6-1 y
I ~ Liy)y’ e E(e%»*,(w) ; 2LE(e7H“ )l(y)(r) VT
T

~ Lyl rEE(e% )

And

y — 1, o Ik
P 07 K+ - HK
{ el > Ty pewk + L +1 r) b = }

(o8]

-y (.§K+1>y 0, | 11, EA,)P(H € A)

t=1
)

~ DIy =T ~ T e 7 M P(I, € )
t=1
~ W) Z MP(II, € A,).
t=1

If ¢ <Oissplitinto A, ¢ = 1,2,---, then

y—1I,
I =PI, 1 <0
} { >0 P dw(k++ 1,1) < b < }

P{H > 0, HK > y- §K+1¢*9§K+1 < O}

P{HK > 0, HK > y - §K+1¢* | §K+l € At} P(§K+1 € A1?1)

Mg

~
1l
—_

K+l

LE@M)I(y = £19)5 = i)’ €0 P(ésr € 1)

Mz

I
—_

n

LE@" DIy 7575 Pér € )

Mg

—_

n=

= LE(™)(y)y’ e "+ E (‘em+l lig, <00 )
= LE'(e}/HK*1 )l(y)yé_ ! e_y‘i’% E(67§1@<0) )

Combining /;, I, and I3, it can be seen that

*

P(,; > y) ~ LIy)Y e 75 E(e7%) € SH(S, ¢l>,
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and E(e”+1) < oo; s0, (2.8) holds.
(2) When ¢, = 1, the asymptotic formula of I1,, can be obtained.

Lm,ymfl (l—(é)) m
Imitate the process of 0 < ¢. < 1 and prove that P(I,, > y) ~ W(l(y)) ym-lew ¢

SH(mo,y). When m = 1, the conclusion is clearly valid. Suppose that the conclusion is valid when
m = k; we need to prove the asymptotic formula of P{HK + &1 Z?;E) prwk+{+1,r)> y} when
m=«k+1.LetS, . =&y Zgé¢§w(/<+ {+1,ryand S¢ | = (S | Sk > 0)II = (I, | I, > 0); then,

m+1
k+1
P(S/i+1 >y) :P{§K+IZ¢{(‘)(K+§+ 1,7‘) >)7|§K+1 >O}
=0

Pl S et + £+ 1,7) > v, > 0)
) Pt > 0)

I(y)y* e
wWo)
Similarly,

P(II; > y) = P{II, > y | IL, > 0}
_ PAL >y, I, >0)  PIL >Yy)
B P(I1, > 0) ~ P(I1, > 0)

Ly (r@) (1) yo-ren
T(x5)P(II, > 0)
LKV“‘I(F(é))Kl(Y)y“‘s‘le‘”’
T TP, > 0)

And

Kk+1
PATL + &1 ) ek + L +1,7) >y}

¢=0

k+1
= P{HK + & Z¢§U.)(K+§+ L,r)>y, S, >0II > 0}
=0

k+1
+P{HK + & Z¢§w(K+ (+1L,r)>y,850,>0,IL < 0}
=0

k+1

+P {HK +éar ) Gk + L+ 1,5 >y, 88, < 0,TIC > 0}

=0
=+ Hh+ s

For the tail probability of &,,; and I1,, it follows that

o—1

P(S41 >Y) ~ %y“ew ~ Ly e,
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Al

7|y )K P A Kk6=1 =y
) M)y e ()Y e
Then, according to Lemma 1,

Jy = PAT + 5, > Y)P(éq > 0)P(I, > 0)

BACNG Ly(ro)
r((K-+ 1)5) ['(kd)

BO) L)) w1

Kk+1
i LK)/K(F(('D) (l(y))K+1y<’<+1)5‘1e‘7y
d@+n®
Kk+1
o
du+n®

By the control convergence theorem and I, € SH (6, y), we have that
k+1
Jy = P{HK + Eeit Z¢§w(K+§+ L,r)>yS¢.,>0IL < O}
=0
:ESFWSH1>y—H@S;1>O|Hk€AQ“%HK€A@
Hh=1

~ YUy = Ty = T e PO WP, € ay)
=1

~ Z(Y)y(s_le_wE(eynkl(nKsm )
k+1
~ (l(y)) yK5+5—Ze—’yy

k+1
~o(D(iw) Yl
- O(I)Z(y)y(K+l)6_1€_yy.

Similarly,
k+1
Jz = P{HK + &t Z¢§M(K+§+ L,r)>y S, <0,IL > O}
7=0

= > P>y =S, TE> 01,0 € a,)

=1
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. LKyK—l(r(a))K (

T (iy-5.. )K W1 10-SDP(S | € A
T o) (v D]y e (Sks1 € Ap)

3=1
. zfyﬁ'l(rra))K(

-1 —yy Ser

=1

KA k—1 “
O

k+1
~(19) ¥ e
~ l(y)y(K+l)6_1€_yy0(l).

Combining Ji, J, and J3, we have that

~———

k+1
P{HK+§K+1 Z¢§M(K+{+ 1,r)>y
=0

k+1
i LKyK(F(5)) (l(y))K+1y(K+1)5‘le‘w
du+n®

k+1
+2(l(y)) YR 1)
. k+1
ST
K+
k+1
kak(r(a))
SO N Sy S iy
jw+n®

So when m = k + 1, it follows that

k+1
LK+17K(F(6))
P(HK+1 > )’) ~

dw+lw)l@wﬁm45w€swﬁk+n@ﬁ.

Thus, (2.9) holds. This completes the proof of Theorem 1.
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5. Simulation study

Considering the AR(1) unilateral linear process based on (1.3), sequence {{,}.>1 follows the
generalized Lindley distribution [9], that is, the random variable { ~ GL(«, 6, y) has a density function

a+1

Y
@+ y)I(a+1)

f:(2) = 2 Na+02e7%,a,0,y >0,z2> 0. (5.1)

When 6 = 0, it degenerates into a gamma distribution with the parameters «,y. When @ = 6,
it degenerates into a Lindley distribution. When @ = 1 and 6 = 0, it degenerates into a standard
exponential distribution. At the same time, it is easy to find that { € SH(a,7y) by Definition 4.
Assuming that ¥,, = v, let v = 20, ¢ = 1, m = 100 and ¢. = 0.5,1; simulate 7 = 1000
times. Four groups of the generalized Lindley distribution parameter set («, 6,7y) were simulated:
(0.8,0.5,0.5), (0.8,0.5,1), (0.8,1.5,1),(1.5, 1.5, 1); the process of generating random numbers can be
found in [9]. First, random numbers denoted by w;,i = 1,2,--- ,m were generated by applying a
uniform distribution, U(0, 1), with sample size n; we then generated random numbers, denoted by v, ;
that obey gamma(a, y), and random numbers, denoted by v,; that obey gamma(a + 1,7y). If w; < #,
then g; = vy;. Otherwise, §; = vy, i = 1,2, ,m.

Due to mild fluctuations in the interest rate level near a certain benchmark interest rate, in the
simulation, for a variable interest rate (i), when i was odd, we let (i) = ry; alternatively, when i was
an even number, we applied r(i) = r,,i = 0, 1,2, - - -, where the discount factor w(i,r) = (1 +r(i))™,i =
0,1,2,---. The values of r; and r, and the initial reserve x can be found in Tables 1 and 2. For a
constant interest rate r, the values were applied as 0.1, 0.15, and 0.2. The simulation results (Sim) for
bankruptcy probability and theoretical estimation (Est) are shown in Tables 1 and 2, and ¢. is presented
in the two tables. We obtained the ratio (Rat) of simulation results to estimated results. When r; = r»,
it is the bankruptcy probability under constant interest rates; otherwise, it is the bankruptcy probability
under variable interest rates.

According to the simulation results shown in Tables 1 and 2, under the same parameter distribution
background, if the initial reserve x remains unchanged, when r; = r, is a constant interest rate,
the probability of bankruptcy decreases with the increase of the interest rate. When r; # r, is
the variable interest rate and setting the interest rate as r; or r, will also cause a change in the
bankruptcy probability, the exchange order between the two will correspondingly induce a change
in the bankruptcy probability. Under the same parameter settings, if the interest rate r; and r, remain
unchanged, the probability of bankruptcy will also decrease with the increase of the initial reserve x.
Therefore, the larger the value of the initial reserve x and the interest rates r; and r,, the smaller the
corresponding bankruptcy probability; also, the rate at which its bankruptcy probability decreases will
vary. When the parameter settings are different, if the value of the initial reserve x and the interest rates
r; and r, remain unchanged, the bankruptcy probability will mainly be influenced by the values of the
parameters @ and y. As «a increases, the bankruptcy probability increases, while as vy increases, the
bankruptcy probability decreases. Therefore, the tail shape of the claim amount distribution will affect
the bankruptcy probability.

From the comparison of the simulation and estimated results in Tables 1 and 2, it can be seen that the
larger the initial reserve x, the closer the bankruptcy probability ratio between the two will gradually
approach 1, indicating that the estimation is more effective.
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Table 1. The ruin probability under the generalized Lindley distribution with different values

of (a, 0, Y) (9. = 0.5).

(0.8,0.5,0.5) (0.8,0.5, 1) 0.8,1.5,1) (1.5,1.5,1)

X r rn .
Sim Est

Rat Sim Est Rat Sim Est Rat Sim Est Rat

0.1 0.2 0.1819 0.0942
0.05 0.2 0.2685 0.1358
0.15 0.2 0.1893 0.1062
0.15 0.15 0.2065 0.1041
0.2 0.2 0.1397 0.0791
0.1 0.05 0.2618 0.1542
0.2 0.1 0.1488 0.0877

1.9309 0.1545 0.0368 4.1978 0.3884 0.0918 4.2305 0.2267 0.093 2.4375
1.9769 0.2348 0.0472 4.9742 0.5405 0.1447 3.7351 0.7085 0.1366 5.1865
1.7828 0.1135 0.0414 2.7425 0.5724 0.1036 5.5254 0.5322 0.1044 5.0977
1.9836 0.1631 0.0454 3.5929 0.3741 0.1085 3.4482 0.3719 0.1054 3.5287
1.7659 0.0871 0.0307 2.8364 2.2572 0.8014 2.8166 0.2597 0.0798 3.255
1.6977 0.2117 0.0491 4.3112 0.4740 0.147 3.2246 0.8403 0.1503 5.5911
1.6969 0.1135 0.036 3.1526 0.2590 0.0865 2.994 0.3401 0.0849 4.0058

0.1 0.1 0.2973 0.1217 2.4429 0.1884 0.0471 3.9999 0.5942 0.1468 4.0474 0.5760 0.1218 4.7291

0.1 0.2 0.1470 0.0892
0.05 0.2 0.1804 0.1157
0.15 0.2 0.1480 0.1026
0.15 0.15 0.1829 0.1029
0.2 0.2 0.1465 0.0863
0.1 0.05 0.1831 0.1165
0.2 0.1 0.1095 0.0812
0.1 0.1 0.1916 0.1061

10

1.6481 0.0513 0.0245 2.0923 0.2889 0.0849 3.4029 0.1270 0.0836 1.5193
1.5593 0.0825 0.0348 2.3699 0.1642 0.1056 1.5547 0.2657 0.113 2.3514
1.4428 0.0694 0.0309 2.2449 0.5187 0.105 4.9398 0.1995 0.1011 1.9734
1.7778 0.0790 0.031 2.5472 0.2163 0.1053 2.054 0.2407 0.1022 2.355
1.6972 0.0571 0.0227 2.5174 0.1478 0.0836 1.7685 0.1255 0.0754 1.6645
1.5716 0.1497 0.0377 3.9696 0.2964 0.1152 2.5725 0.2238 0.1293 1.7311
1.3483 0.0624 0.0244 2.5578 0.1680 0.0838 2.0047 0.1433 0.0807 1.7758
1.8058 0.0548 0.0311 1.7635 0.3350 0.1068 3.137 0.2673 0.1056 2.5311

0.1 0.2 0.1001 0.0693
0.05 0.2 0.0944 0.0794
0.15 0.2 0.0776 0.0729
0.15 0.15 0.1041 0.0761
30 0.2 0.2 0.0648 0.0528
0.1 0.05 0.1103 0.0875
0.2 0.1 0.0690 0.0635

0.1 0.1 0.1092 0.0792

1.4443 0.0245 0.0148 1.6571 0.0996 0.0688 1.4484 0.0927 0.0653 1.4192
1.1886 0.0328 0.0244 1.346 0.0843 0.079 1.0666 0.0991 0.0807 1.2283
1.0651 0.0288 0.0181 1.5938 0.1410 0.0725 1.9443 0.1077 0.0713 1.5108
1.3683 0.0275 0.0166 1.6555 0.1079 0.0754 1.431 0.1053 0.0764 1.3786
1.2274 0.0110 0.0104 1.0591 0.0713 0.0561 1.2716 0.0627 0.0544 1.1532
1.2604 0.0288 0.0257 1.1203 0.1090 0.0834 1.3075 0.1175 0.0852 1.3793
1.0862 0.0192 0.013 1.4754 0.1099 0.0604 1.819 0.0807 0.0619 1.3041
1.3786 0.0255 0.019 1.3424 0.1125 0.0775 1.4519 0.1167 0.079 1.4767

0.1 0.2 0.0291 0.0337
0.05 0.2 0.0538 0.0518
0.15 0.2 0.0427 0.0417
100 0.15 0.15 0.0530 0.0466
0.2 0.2 0.0334 0.0307
0.1 0.05 0.0658 0.0587
0.2 0.1 0.0334 0.0329
0.1 0.1 0.0548 0.0471

0.864 0.0134 0.0122 1.0959 0.0395 0.0335 1.1802 0.0411 0.0374 1.099
1.0382 0.0118 0.0181 0.65 0.0424 0.0524 0.8092 0.0478 0.054 0.8852
1.0238 0.0154 0.0152 1.0137 0.0599 0.0414 1.4466 0.0439 0.0427 1.0287
1.1369 0.0165 0.0163 1.0114 0.0604 0.0468 1.2923 0.0478 0.0435 1.0995
1.0874 0.0080 0.0103 0.7801 0.0301 0.0313 0.9624 0.0293 0.0326 0.8996
1.1204 0.0182 0.0194 0.9396 0.0361 0.0518 0.6961 0.0758 0.0601 1.2611
1.0164 0.0124 0.0109 1.1393 0.0329 0.0326 1.0091 0.0419 0.0338 1.2401
1.1645 0.0238 0.0167 1.4225 0.0647 0.0479 1.3503 0.0562 0.0462 1.2167
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Table 2. The ruin probability under the generalized Lindley distribution with different values
of (@,6,7) (¢ = D).
(0.8,0.5,0.5) (0.8,0.5, 1) 0.8,1.5,1) (1.5,1.5,1)
Sim  Est Rat  Sim  Est Rat Sim  Est Rat  Sim  Est Rat
0.1 0.2 0.3308 0.1024 3.2309 0.4056 0.0326 4.1988 0.2817 0.0974 2.8927 0.2089 0.0966 2.1624
0.05 0.2 0.2780 0.1335 2.0822 0.3242 0.0355 2.2295 0.3943 0.1344 2.9337 0.4392 0.1454 3.0206
0.15 0.2 0.3246 0.1062 3.0566 0.2773 0.0353 2.7023 0.2039 0.1054 1.9345 0.2376 0.1026 2.3149
0.15 0.15 0.2938 0.1092 2.6906 0.3134 0.0359 2.8939 0.2331 0.1079 2.1603 0.1843 0.1083 1.7013
0.2 0.2 0.1664 0.0881 1.8892 0.1863 0.0291 2.2258 0.1622 0.0864 1.8768 0.1804 0.0837 2.1548
0.1 0.05 0.7508 0.1827 4.1092 0.3308 0.0361 1.9725 0.3794 0.1663 2.2816 0.4390 0.1677 2.6177
0.2 0.1 0.2395 0.0992 2.4147 0.2324 0.0309 2.4593 0.3567 0.0969 3.6809 0.1727 0.0945 1.828
0.1 0.1 0.4603 0.1129 4.0774 0.3053 0.0349 2.6475 0.2389 0.1124 2.1254 0.4361 0.1153 3.7825
0.1 0.2 0.2333 0.0926 2.5198 0.2753 0.027 2.9069 0.2447 0.0913 2.6804 0.1884 0.0947 1.9897
0.05 0.2 0.2004 0.1257 1.594 0.3013 0.0324 2.2074 0.2312 0.1305 1.772 0.2727 0.1365 1.998
0.15 0.2 0.1473 0.0922 1.5979 0.2000 0.0284 2.1525 0.1780 0.0924 1.9263 0.2026 0.0929 2.1805
0.15 0.15 0.2273 0.093 2.4446 0.1756 0.0299 1.7828 0.1807 0.0937 1.9285 0.1513 0.0985 1.5365
0.2 0.2 0.1447 0.0801 1.8069 0.1422 0.0248 1.7389 0.1291 0.083 1.5555 0.1361 0.0818 1.6636
0.1 0.05 0.2611 0.1526 1.7108 0.2344 0.0357 1.667 0.2032 0.1335 1.5218 0.2100 0.1406 1.4932
0.2 0.1 0.1461 0.0839 1.7411 0.1313 0.0256 1.5069 0.2847 0.0836 3.4053 0.1541 0.0871 1.7698
0.1 0.1 0.3108 0.1089 2.8543 0.2028 0.0321 1.9747 0.1749 0.1063 1.6453 0.1546 0.1027 1.5049
0.1 0.2 0.0746 0.0499 1.4952 0.0993 0.0187 2.0217 0.0688 0.0493 1.3949 0.0788 0.0491 1.6043
0.05 0.2 0.0892 0.0691 1.2916 0.1137 0.0243 1.697 0.0975 0.0664 1.469 0.0920 0.067 1.3725
0.15 0.2 0.0657 0.051 1.2875 0.0869 0.0223 1.71 0.0643 0.0518 1.2408 0.0800 0.0508 1.5739
0.15 0.15 0.0814 0.0577 1.4102 0.0710 0.0235 1.2526 0.0851 0.0541 1.5731 0.0818 0.0567 1.4424
30 0.2 0.2 0.0469 0.0395 1.1875 0.0628 0.0135 1.6072 0.0396 0.0384 1.0325 0.0579 0.0391 1.4807
0.1 0.05 0.1006 0.0696 1.4449 0.0718 0.0266 1.0378 0.0773 0.0631 1.2245 0.0895 0.0692 1.2935
0.2 0.1 0.0718 0.0465 1.5446 0.0723 0.0174 1.5991 0.0508 0.0423 1.1998 0.0539 0.0452 1.193
0.1 0.1 0.0988 0.0645 1.5324 0.0811 0.0239 1.3769 0.0761 0.0582 1.3072 0.0820 0.0589 1.3916
0.1 0.2 0.0392 0.0391 1.0023 0.0668 0.0135 1.7072 0.0393 0.0355 1.1084 0.0358 0.0368 0.9739
0.05 0.2 0.0538 0.0477 1.1288 0.0436 0.0187 0.9135 0.0606 0.0534 1.1353 0.0432 0.0461 0.9375
0.15 0.2 0.0422 0.0404 1.0454 0.0426 0.0146 1.0547 0.0324 0.0411 0.7876 0.0636 0.0417 1.5254
100 0.15 0.15 0.0377 0.0429 0.878 0.0508 0.0151 1.1853 0.0612 0.0448 1.3665 0.0504 0.0437 1.1534
0.2 0.2 0.0276 0.0343 0.8037 0.0351 0.0101 1.0228 0.0315 0.0314 1.0047 0.0436 0.0309 1.4098
0.1 0.05 0.0668 0.0536 1.2471 0.0522 0.0245 0.9748 0.0630 0.0596 1.0569 0.0655 0.0524 1.2504
0.2 0.1 0.0510 0.0362 1.4079 0.0366 0.0119 1.0097 0.0340 0.034 1.0008 0.0285 0.0312 0.9136
0.1 0.1 0.0542 0.046 1.178 0.0364 0.0168 0.792 0.0568 0.0477 1.1915 0.0371 0.0438 0.8459

X r r

10

6. Conclusions

This article explored an insurance risk-dependent structure, where the discount factor is modeled
as a function of both the interest rate and time. Specifically, we investigated the asymptotic ruin
probability of a discrete risk model within a unilaterally dependent structure, incorporating claim
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stationary noise that exhibits semi-heavy-tailed behavior.
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