In this paper, we elucidate a pivotal fixed point theorem for $ P $-contraction mappings defined on $ M $-metric spaces, offering a novel perspective on the interplay between mappings and the underlying space structure. This theorem's significance becomes evident when compared with earlier results, underscoring its potential to enhance our understanding of fixed point theory in $ M $-metric spaces and its broader applications.
Citation: Maide Gökșin Taș, Duran Türkoğlu, Ishak Altun. Fixed point results for $ P $-contractive mappings on $ M $-metric space and application[J]. AIMS Mathematics, 2024, 9(4): 9770-9784. doi: 10.3934/math.2024478
In this paper, we elucidate a pivotal fixed point theorem for $ P $-contraction mappings defined on $ M $-metric spaces, offering a novel perspective on the interplay between mappings and the underlying space structure. This theorem's significance becomes evident when compared with earlier results, underscoring its potential to enhance our understanding of fixed point theory in $ M $-metric spaces and its broader applications.
[1] | K. Abodayeh, N. Mlaiki, T. Abdeljawad, W. Shatanawi, Relations between partial metric spaces and $M$-metric spaces, Caristi Kirk's theorem in $M$-metric type spaces, J. Math. Anal., 7 (2016), 1–12. |
[2] | R. P. Agarwal, D. O'Regan, D. R. Sahu, Fixed point theory for Lipschitzian-type mappings and applications, Springer, 2009. |
[3] | H. Alamri, N. Hussain, I. Altun, Proximity point results for generalized $p$-cyclic Reich contractions: An application to solving integral equations, Mathematics, 11 (2023), 4832. https://doi.org/10.3390/math11234832 doi: 10.3390/math11234832 |
[4] | M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on $b$-metric-like spaces, J. Inequal. Appl., 2013 (2013). https://doi.org/10.1186/1029-242X-2013-402 doi: 10.1186/1029-242X-2013-402 |
[5] | I. Altun, H. A. Hançer, M. D. Ateș, Enriched $P$-contractions on normed space and a fixed point result, Turk. J. Math. Comput. Sci., in press. |
[6] | I. Altun, H. Sahin, D. Turkoglu, Fixed point results for multivalued mappings of Feng-Liu type on $M$-metric spaces, J. Nonlinear Funct. An., 2018 (2018). https://doi.org/10.22436/jnsa.009.06.36 doi: 10.22436/jnsa.009.06.36 |
[7] | M. Asadi, Fixed point theorems for Meir-Keeler type mappings in $M$-metric spaces with applications, Fixed Point Theory A., 2015 (2015). https://doi.org/10.1186/s13663-015-0460-9 doi: 10.1186/s13663-015-0460-9 |
[8] | M. Asadi, E. Karapınar, P. Salimi, New extension of $p$-metric spaces with some fixed-point results on $M$-metric spaces, J. Inequal. Appl., 1 (2014), 1–9. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18 |
[9] | R. Chakrabarti, R. Jagannathan, A $(p, q)$-oscillator realization of two-parameter quantum algebras, J. Phys. A. Math. Gen., 24 (1991), L711–0L718. https://doi.org/10.1088/0305-4470/24/13/002 doi: 10.1088/0305-4470/24/13/002 |
[10] | İ. Gençtürk, Boundary value problems for a second-order $(p, q)$-difference equation with integral conditions, Turk. J. Math., 46 (2022), 499–515. |
[11] | Y. Gholami, Second order two-parametric quantum boundary value problems, Differ. Equat. Appl., 11 (2019), 243–265. https://doi.org/10.7153/dea-2019-11-10 doi: 10.7153/dea-2019-11-10 |
[12] | F. H. Jackson, $q$-Difference equations, Amer. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183 |
[13] | N. Kamsrisuk, C. Promsakon, S. K. Ntouyas, J. Tariboon, Nonlocal boundary value problems for $(p, q)$-difference equations, Differ. Equat. Appl., 10 (2018), 183–195. |
[14] | S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x |
[15] | S. K. Mohanta, D. Biswas, Characterization of completeness for $m$-metric spaces and a related fixed point theorem, J. Anal., 29 (2021), 701–711. https://doi.org/10.1007/s41478-020-00275-5 doi: 10.1007/s41478-020-00275-5 |
[16] | P. Mondal, H. Garai, L. K. Dey, On contractive mappings in $b_{v}(s)$-metric spaces, Fixed Point Theory, 23 (2022), 573–590. |
[17] | H. Monfared, M. Azhini, M. Asadi, Fixed point results on $m$-metric spaces, J. Math. Anal., 7 (2016), 85–101. |
[18] | P. Neang, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, B. Ahmad, Nonlocal boundary value problems of nonlinear fractional $(p, q)$-difference equations, Fractal Fract., 5 (2021), 270. |
[19] | P. Neang, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, B. Ahmad, Existence and uniqueness results for fractional $(p, q)$-difference equations with separated boundary conditions, Mathematics, 10 (2022), 767. |
[20] | T. Nuntigrangjana, S. Putjuso, S. K. Ntouyas, J. Tariboon, Impulsive quantum $(p, q)$-difference equations, Adv. Differ. Equ., 2020 (2020), 1–20. |
[21] | C. Promsakon, N. Kamsrisuk, S. K. Ntouyas, J. Tariboon, On the second-order quantum $(p, q)$-difference equations with separated boundary conditions, Adv. Math. Phys., 2018, 9089865. |
[22] | P. N. Sadjang, On the fundamental theorem of $(p, q)$-calculus and some $(p, q)$-Taylor formulas, Results Math., 73 (2018), 39. |
[23] | H. Sahin, I. Altun, D. Turkoglu, Two fixed point results for multivalued $F$-contractions on $M$-metric spaces, RACSAM Rev. R. Acad. A, 113 (2019), 1839–1849. https://doi.org/10.1007/s13398-018-0585-x doi: 10.1007/s13398-018-0585-x |
[24] | M. Tariq, M. Arshad, M. Abbas, E. Ameer, S. Mansour, H. Aydi, A relation theoretic $m$-metric fixed point algorithm and related applications, AIMS Math., 8 (2023), 19504–19525. https://doi.org/10.3934/math.2023995 doi: 10.3934/math.2023995 |